FACOLTÀ DI INGEGNERIA DELL'INFORMAZIONE

ELECTIVE IN ROBOTICS

Quadrotor

Motion Planning Algorithms

Prof. Marilena Vendittelli Prof. Jean-Paul Laumond

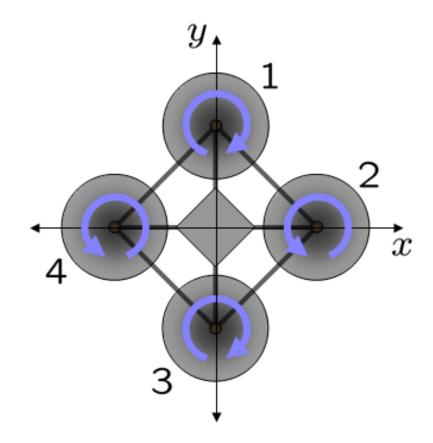
Jacopo Capolicchio Riccardo Spica

Academic Year 2010-2011

Introduction

Small-scale quadrotors

- Four pitch-fixed rotors
 disposed at the vertices of a
 square, whose directions of
 rotation are equal in pairs
- Vertical and lateral displacements, as well as yaw rotations, by varying the relative turning speeds of rotors



Introduction

Pros and Cons

Simple Mechanics

Low cost

Robustness

High Maneuverability

VTOL

Hovering

Low Payloads

Poor sensors

equipment

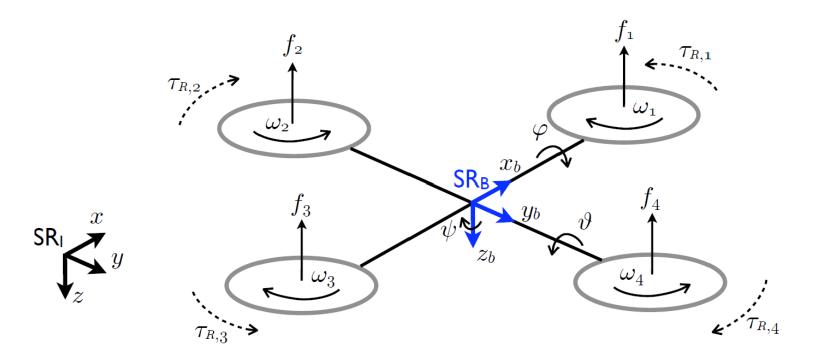
Low computational

capabilities

Preliminaries

- SR_I: world inertial frame
- SR_B: body-attached frame
- Configuration = Position + Orientation of SR_B w.r.t. SR_I
- Assumptions:
 - Robot symmetry
 - No disturbances
 - Negligible gyroscopic and aerodynamic effects
 - Negligible motor dynamics
 - Low level controllers for blades rotational speed

Preliminaries (2)



$$\begin{split} f_i &= b \omega_i^2 \\ \tau_{R,_i} &= d \omega_i^2 \end{split}$$

$$\tau_{R,i} = d\omega_i^2$$

b: thrust factor

d: drag factor.

Newton-Euler approach (1)

The orientation is described by using RPY angles $(\varphi, \vartheta, \psi)$:

$${}^{I}R_{B} = \begin{pmatrix} c_{\psi} c_{\vartheta} & c_{\psi} s_{\vartheta} s_{\varphi} - s_{\psi} c_{\varphi} & c_{\psi} s_{\vartheta} c_{\varphi} + s_{\psi} s_{\varphi} \\ s_{\psi} c_{\vartheta} & s_{\psi} s_{\vartheta} s_{\varphi} + c_{\psi} c_{\varphi} & s_{\psi} s_{\vartheta} c_{\varphi} - c_{\psi} s_{\varphi} \\ -s_{\vartheta} & c_{\vartheta} s_{\varphi} & c_{\vartheta} c_{\varphi} \end{pmatrix}$$

Control inputs transformation:

$$\begin{cases} T = f_1 + f_2 + f_3 + f_4 \\ \tau_{\varphi} = l (f_2 - f_4) \\ \tau_{\vartheta} = l (f_1 - f_3) \\ \tau_{\psi} = -\tau_{R,_1} + \tau_{R,_2} - \tau_{R,_3} + \tau_{R,_4} \end{cases}$$

Newton-Euler approach (2)

The translational dynamics is governed by the Newton equation:

$$m\begin{pmatrix} \ddot{\mathbf{x}} \\ \ddot{\mathbf{y}} \\ \ddot{\mathbf{z}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ mg \end{pmatrix} + {}^{I}\mathbf{R}_{B} \begin{pmatrix} 0 \\ 0 \\ -T \end{pmatrix}$$

The angular acceleration is governed by the **Euler equation**:

$$I\begin{pmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{pmatrix} + \begin{pmatrix} p \\ q \\ r \end{pmatrix} \times I\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} \tau_{\phi} \\ \tau_{\vartheta} \\ \tau_{\psi} \end{pmatrix}$$

For small roll and pitch angles:

$$\begin{pmatrix} \mathbf{p} \\ \mathbf{q} \\ \mathbf{r} \end{pmatrix} = \begin{pmatrix} 1 & 0 & -\sin\vartheta \\ 0 & \cos\varphi & \cos\vartheta\sin\varphi \\ 0 & -\sin\varphi & \cos\vartheta\cos\varphi \end{pmatrix} \begin{pmatrix} \dot{\varphi} \\ \dot{\vartheta} \\ \dot{\psi} \end{pmatrix} \sim \begin{pmatrix} \dot{\varphi} \\ \dot{\vartheta} \\ \dot{\psi} \end{pmatrix}$$

Newton-Euler approach (3)

System state:

$$\boldsymbol{\xi} = [\boldsymbol{x} \quad \boldsymbol{y} \quad \boldsymbol{z} \quad \boldsymbol{\phi} \quad \boldsymbol{\vartheta} \quad \boldsymbol{\psi} \quad \dot{\boldsymbol{x}} \quad \dot{\boldsymbol{y}} \quad \dot{\boldsymbol{z}} \quad \dot{\boldsymbol{\phi}} \quad \dot{\boldsymbol{\vartheta}} \quad \dot{\boldsymbol{\psi}}]^T$$

Then:

$$\begin{cases} \ddot{\mathbf{x}} = -[\cos(\psi)\sin(\vartheta)\cos(\phi) + \sin(\psi)\sin(\phi)]\frac{T}{m} \\ \ddot{\mathbf{y}} = -[\sin(\psi)\sin(\vartheta)\cos(\phi) - \cos(\psi)\sin(\phi)]\frac{T}{m} \\ \ddot{\mathbf{z}} = \mathbf{g} - \cos(\vartheta)\cos(\phi)\frac{T}{m} \\ \ddot{\mathbf{\phi}} = \frac{\tau_{\phi}}{I_{\mathbf{x}}} \\ \ddot{\mathbf{\theta}} = \frac{\tau_{\theta}}{I_{\mathbf{y}}} \\ \ddot{\mathbf{\psi}} = \frac{\tau_{\psi}}{I_{\mathbf{z}}} \end{cases}$$

Differential flatness (1)

Flat outputs: (x, y, z, ψ)

From the dynamic model one obtains:

$$\vartheta = \operatorname{atan}\left(\frac{\ddot{x}\cos(\psi) + \ddot{y}\sin(\psi)}{\ddot{z} - g}\right)$$
$$\varphi = \operatorname{atan}\left(\frac{\ddot{x}\sin(\psi) - \ddot{y}\cos(\psi)}{\ddot{z} - g}\cos(\vartheta)\right)$$

and by derivation

$$\begin{split} \dot{\vartheta} &= \frac{1}{1+\tan^2\vartheta} \frac{1}{\ddot{z}-g} \Big[\big(x^{(3)} + \ddot{y} \dot{\psi} \big) \cos\psi + \big(y^{(3)} - \ddot{x} \dot{\psi} \big) \sin\psi - z^{(3)} \tan\vartheta \Big] \\ \dot{\phi} &= \frac{1}{1+\tan^2\phi} \frac{1}{\ddot{z}-g} \Big(\sin\psi \left(\ddot{y} \dot{\psi} + x^{(3)} \right) \cos\vartheta + \left(\ddot{y} \dot{\vartheta} \sin\vartheta \right) \Big) \\ &+ \cos\psi \Big(\Big(x \dot{\psi} + y^{(3)} \Big) \cos\vartheta + \Big(\ddot{y} \dot{\vartheta} \sin\vartheta \Big) - \tan\phi \Big) \end{split}$$

Differential flatness (2)

$$\begin{split} \ddot{\vartheta} &= -2\dot{\vartheta}^2 \tan\vartheta - \frac{z^{(3)}\dot{\vartheta}}{\ddot{z} - g} \\ &+ \frac{1}{1 + \tan^2\vartheta} \frac{1}{\ddot{z} - g} \Big[\big(x^{(4)} + 2y^{(3)}\dot{\psi} + \ddot{y}\ddot{\psi} - \ddot{x}\dot{\psi}^2 \big) \cos\psi \\ &+ \big(y^{(4)} - 2x^{(3)}\dot{\psi} - \ddot{x}\ddot{\psi} - \ddot{y}\dot{\psi}^2 \big) \sin\psi - z^{(4)} \tan\vartheta \\ &- z^{(3)}\dot{\vartheta} (1 + \tan^2\vartheta) \Big] \\ \ddot{\varphi} &= -2\dot{\phi}^2 \tan\varphi - \frac{z^{(3)}\dot{\varphi}}{\ddot{z} - g} \\ &+ \frac{1}{1 + \tan^2\varphi} \frac{1}{\ddot{z} - g} \Big[\cos\psi \left(\sin\vartheta \,\dot{\vartheta} \big(y^{(3)} - \ddot{x} \big) + \cos\vartheta \dot{\vartheta}^2 \ddot{y} + \sin\vartheta \,\ddot{\vartheta} \ddot{y} \\ &+ \cos\vartheta \left(-y^{(4)} + x^{(3)}\dot{\psi} + \ddot{x}\ddot{\psi} + x^{(3)}\dot{\psi} + \ddot{y}\dot{\psi}^2 \right) + \sin\vartheta \,\dot{\vartheta} \big(y^{(3)} - \ddot{x}\dot{\psi} \big) \\ &+ \sin\psi \left(\sin\vartheta \,\dot{\vartheta} \big(x^{(3)} - \ddot{y} \big) + \cos\vartheta \dot{\vartheta}^2 \ddot{x} + \sin\vartheta \,\ddot{\vartheta} \ddot{x} \\ &+ \cos\vartheta \left(x^{(4)} + y^{(3)}\dot{\psi} + \ddot{y}\ddot{\psi} + y^{(3)}\dot{\psi} - \ddot{x}\dot{\psi}^2 \right) + \sin\vartheta \,\dot{\vartheta} \big(x^{(3)} - \ddot{y}\dot{\psi} \big) \\ &- z^{(4)} \tan\varphi - z^{(3)}\dot{\vartheta} \big(1 + \tan^2\varphi \big) \dot{\varphi} \Big] \end{split}$$

Differential flatness (3)

Finally the torque inputs are:

$$\begin{cases} \tau_{\phi} = \ddot{\phi} I_{x} \\ \tau_{\vartheta} = \ddot{\vartheta} I_{y} \\ \tau_{\psi} = \ddot{\psi} I_{z} \end{cases}$$

while the thrust is:

$$T = m\sqrt{\ddot{x}^2 + \ddot{y}^2 + (\ddot{z} - g)^2}$$

For $\mathcal{T} \to \infty$ all the derivatives of the flat outputs go to zero, then

$$\begin{bmatrix} \begin{bmatrix} \phi \\ \vartheta \end{bmatrix} \to \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} T \\ \tau_{\phi} \\ \tau_{\theta} \\ \tau_{\psi} \end{bmatrix} \to \begin{bmatrix} mg \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

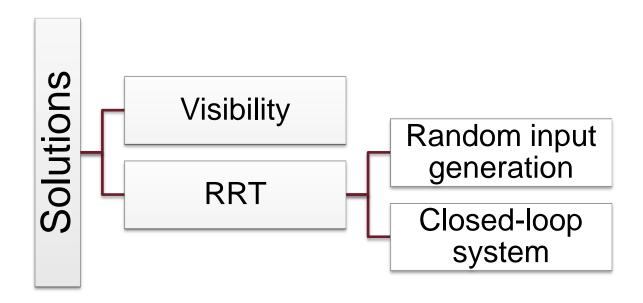
Differential flatness (4)

- The robot is able to track any given trajectory of the 3D position and yaw angle provided that it is "smooth enough"
- In particular to guarantee inputs continuity:
 - the position trajectory has to be continue up to the fourth order derivative
 - the yaw angle trajectory has to be continue up to the second order derivative
- To satisfy motors constraints T has to be "large enough"

Motion Planning

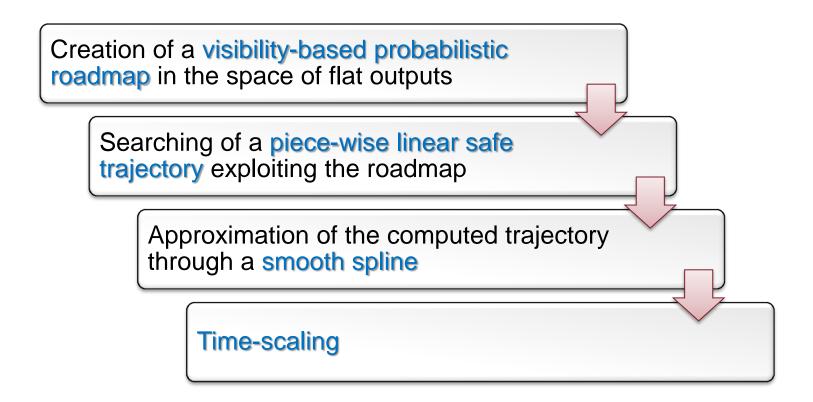
Introduction

Aim: build a feasible trajectory going from a start to a goal, possibly considering yaw angle variations, in presence of obstacles and actuators constraints



Introduction

The motion planning has been split in four steps:



Visibility roadmap construction (1)

Aim: build a roadmap with few nodes but still sufficient for solving the global planning problem

• For a given local method \mathcal{L} , the visibility domain of q is the set of configurations reachable by q through \mathcal{L}

$$\mathcal{V}_{\mathcal{L}}(q) = \left\{ q' \in \mathit{CS}_{free} \ s. \ t. \ \mathcal{L}(q, q') \subset \mathit{CS}_{free} \right\}$$

- q is the guard of $\mathcal{V}_{\mathcal{L}}(q)$
- A set of guards constitutes a coverage of CS_{free} if the union of their visibility domains covers CS_{free}
- Note: such a finite coverage may not always exist, depending on both the shape of CS_{free} and the local method $\mathcal L$

Visibility roadmap construction (2)

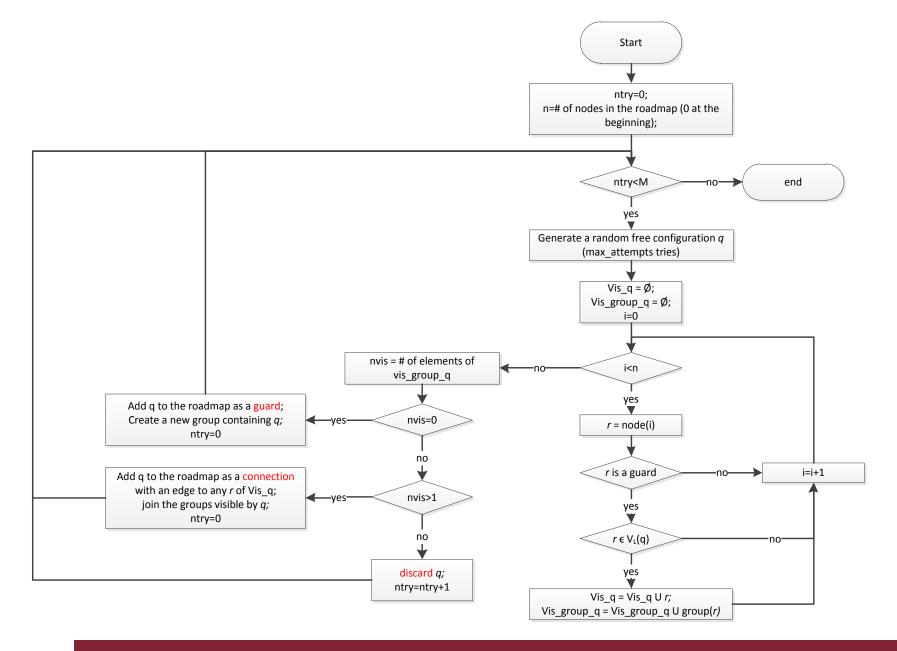
A free configuration q is added to the roadmap iff one of the following conditions is satisfied:

q is a guard

 q does not belong to the visibility domain of any other guard of the current roadmap → it enlarges the coverage of CS_{free}

q is a connection

 q lies in the intersection of the visibility domains of at least two guards belonging to different connected components of the current roadmap → it enhances the connectivity



Visibility roadmap construction (4)

Operating space: flat outputs

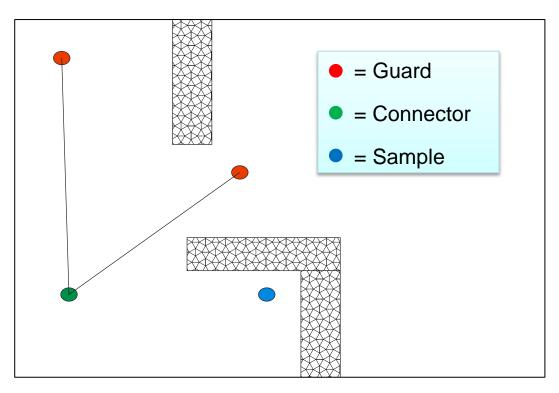
$$\sigma = \begin{pmatrix} x \\ y \\ z \\ \psi \end{pmatrix}$$

Collision checking: obstacle expansion

$$arm\ length\ l=0,25\ m$$

Local method: straight lines

Visibility roadmap construction (5)



Why not to exploit connections to increase the coverage?

Visibility roadmap construction (6)

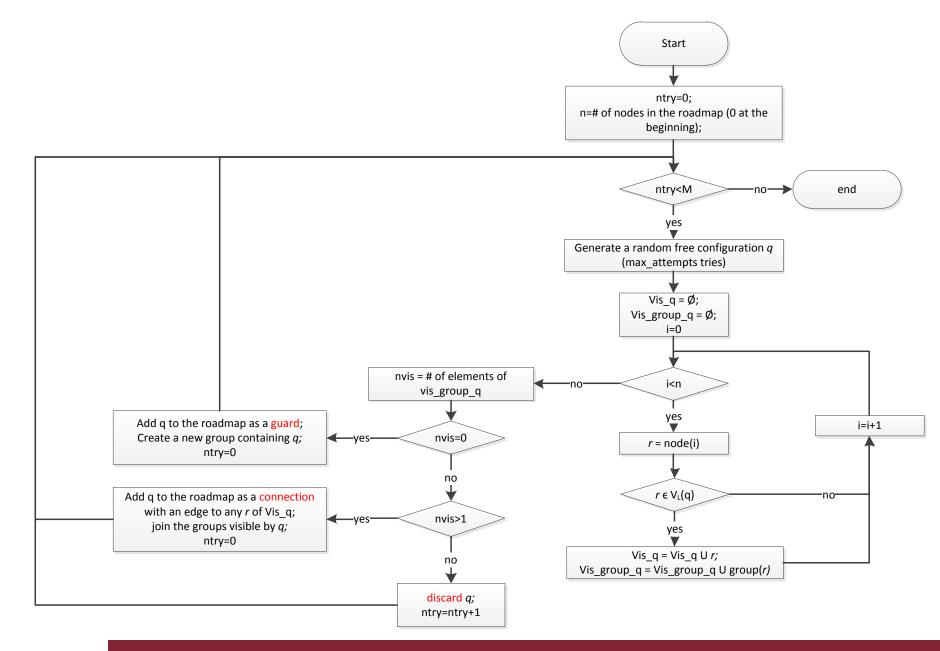
In the alternative version of algorithm a free configuration q is added to the roadmap iff one of the following conditions is satisfied:

q is a guard

 q does not belong to the visibility domain of any other node (either a guard or a connection) of the current roadmap

q is a connection

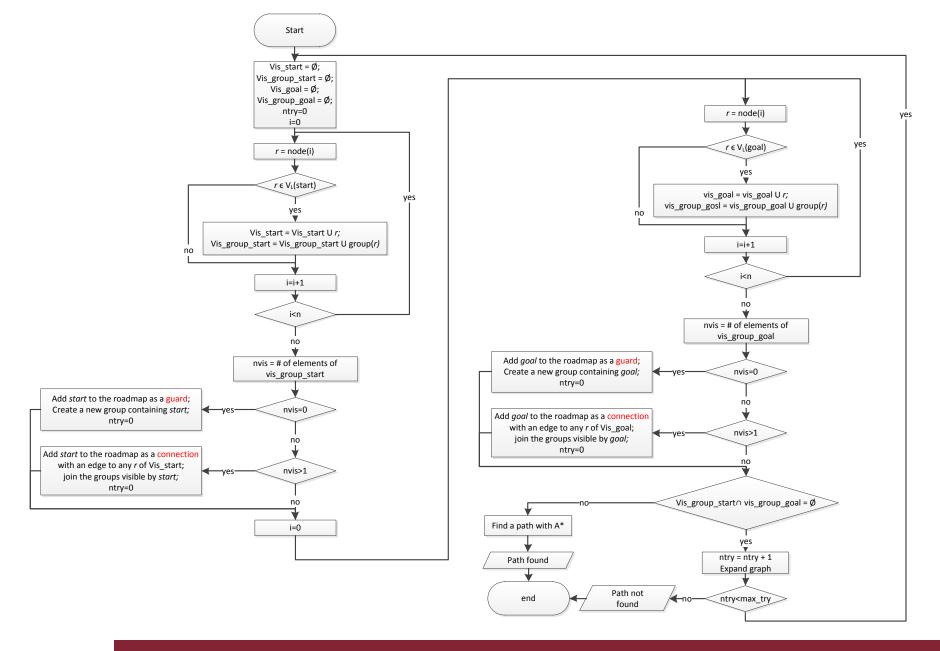
 q lies in the intersection of the visibility domains of at least two nodes (either guards or connections) belonging to two different connected components of the current roadmap



Searching a safe trajectory (1)

Aim: compute (if possible) a safe piece-wise linear path that goes from the starting position to the goal

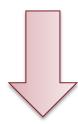
- Such a trajectory requires the quadrotor to stop at each viapoint
- The searching of a safe solution is made iteratively:
 - try to connect (using straight lines) start and goal to two nodes q_s and q_g belonging to the same connected component of the roadmap
 - If success, a solution exists
 - If notexpand the roadmapand try again



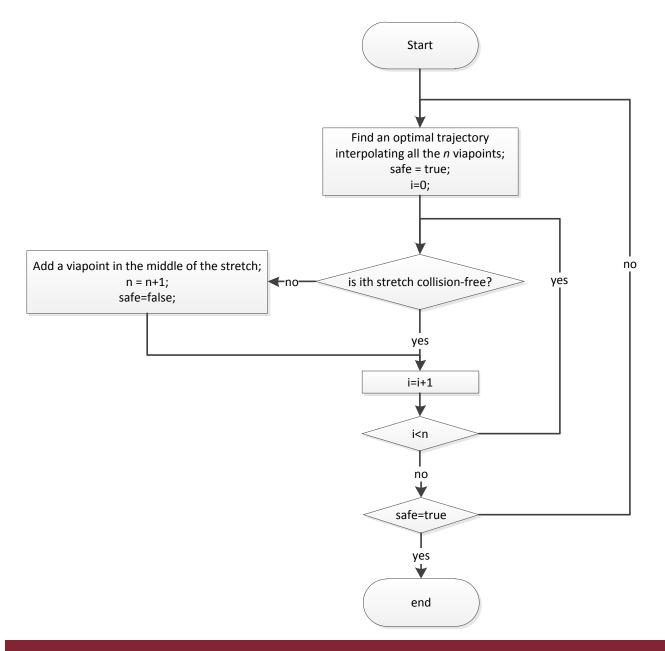
Spline interpolation (1)

Aim: compute a smooth solution approximating the piece-wise linear path obtained in the previous step

- Path computed by using a B-spline interpolating viapoints
- This kind of trajectory may significantly diverge from the safe piece-wise linear solution and consequently become unsafe



Introduction of a viapoint in the middle of any unsafe stretch



Spline interpolation (3)

Split the geometrical aspect from the temporal one

$$\begin{array}{c} s_{x}(\tau) \in \mathcal{C}^{4} \colon [0,1] \to \mathbb{R} \\ s_{y}(\tau) \in \mathcal{C}^{4} \colon [0,1] \to \mathbb{R} \\ s_{z}(\tau) \in \mathcal{C}^{4} \colon [0,1] \to \mathbb{R} \end{array} \longrightarrow \begin{array}{c} 6^{th} \ order \\ s_{\psi}(\tau) \in \mathcal{C}^{2} \colon [0,1] \to \mathbb{R} \end{array} \longrightarrow \begin{array}{c} 4^{th} \ order \end{array}$$

such that

$$\begin{cases} s_x(\tau_i) = x_i, & i = 1, ..., n \\ s_y(\tau_i) = y_i, & i = 1, ..., n \\ s_z(\tau_i) = z_i, & i = 1, ..., n \\ s_{\psi}(\tau_i) = \psi_i, & i = 1, ..., n \end{cases} \text{ with } 0 = \tau_1 < \tau_2 < \cdots < \tau_n = 1$$

Spline interpolation (4)

 $(\tau_1, \tau_2, ..., \tau_n)$ are chosen by solving an optimization problem:

Variables

$$\delta_i = \tau_{i+1} - \tau_i \quad \text{for } i = 1, ..., n-1$$

Constraints:

$$0 < \delta_i < 1 \quad \text{for } i = 1, \dots, n-1$$

$$\sum_{i=1}^{n-1} \delta_i = 1$$

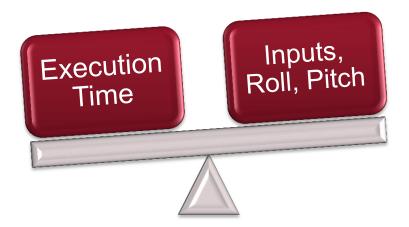
Objective function:

$$\int_{0}^{1} \left[a \left(\left\| \frac{d^{4} s_{x}(\tau)}{d\tau^{4}} \right\|^{2} + \left\| \frac{d^{4} s_{y}(\tau)}{d\tau^{4}} \right\|^{2} + \left\| \frac{d^{4} s_{z}(\tau)}{d\tau^{4}} \right\|^{2} \right) + b \left\| \frac{d^{2} s_{\psi}(\tau)}{d\tau^{2}} \right\|^{2} \right] d\tau$$

Time scaling (1)

Aim: optimize the time needed to complete the trajectory

• Changing the time to navigate through the nodes by a factor of k (s.t. $t_i = k\tau_i$) the result is simply a time-scaled version of the non-dimensional solution



Time scaling (2)

k is chosen by solving an optimization problem:

Variables:

k

Constraints:

$$\begin{bmatrix} |T| \\ |\tau_{\varphi}| \\ |\tau_{\theta}| \\ |\tau_{\psi}| \end{bmatrix} \leq \begin{bmatrix} T_{M} \\ \tau_{\varphi,M} \\ \tau_{\theta,M} \\ \tau_{\psi,M} \end{bmatrix}$$

Objective function:

$$k = \mathcal{T}$$

Alternative choice for ψ

 ψ is actuated independently $\begin{tabular}{ll} ψ is actuated independently <math>\begin{tabular}{ll} ψ is actuated independently independentl$

Putting:

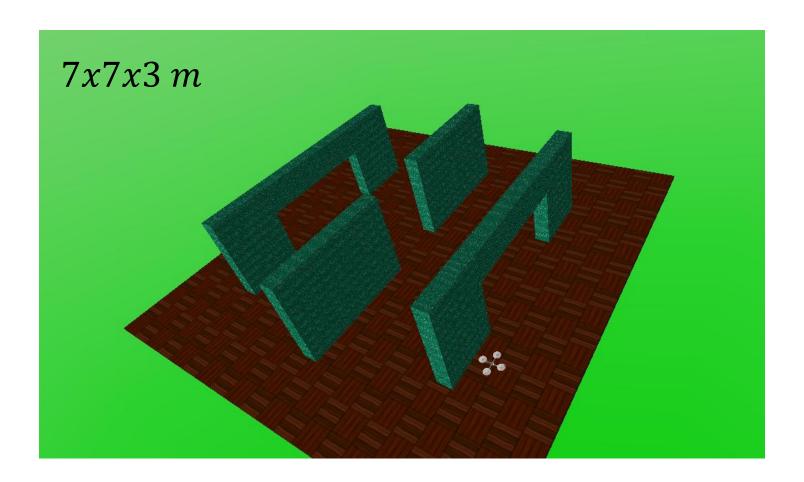
$$\psi = atan2(\dot{y}, \dot{x})$$

The robot points in the direction of motion and

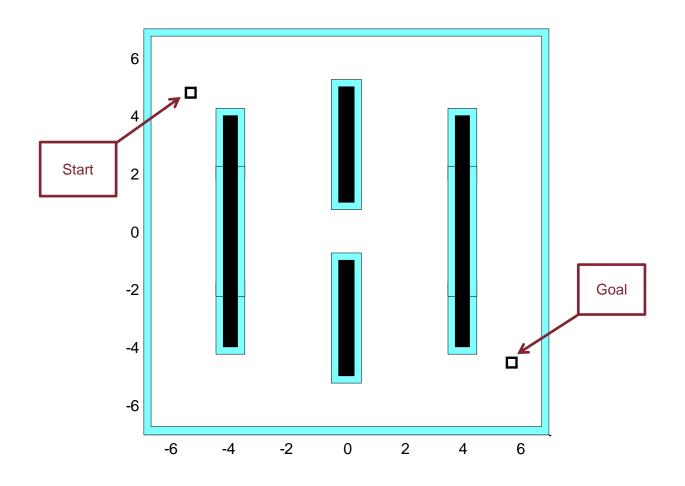
$$\dot{\psi} = \frac{1}{1 + \left(\frac{\dot{y}}{\dot{x}}\right)^{2}} \left(\frac{\ddot{y}}{\dot{x}} - \frac{\dot{y}\ddot{x}}{\dot{x}^{2}}\right)$$

$$\ddot{\psi} = \frac{1}{1 + \left(\frac{\dot{y}}{\dot{x}}\right)^{2}} \left\{\frac{1}{\dot{x}} \left[y^{(3)} + \frac{1}{\dot{x}} \left(2\frac{\dot{y}\ddot{x}^{2}}{\dot{x}} - 2\ddot{y}\ddot{x} - \dot{y}x^{(3)}\right)\right]\right\} - 2\frac{\dot{y}\dot{\psi}^{2}}{\dot{x}}$$

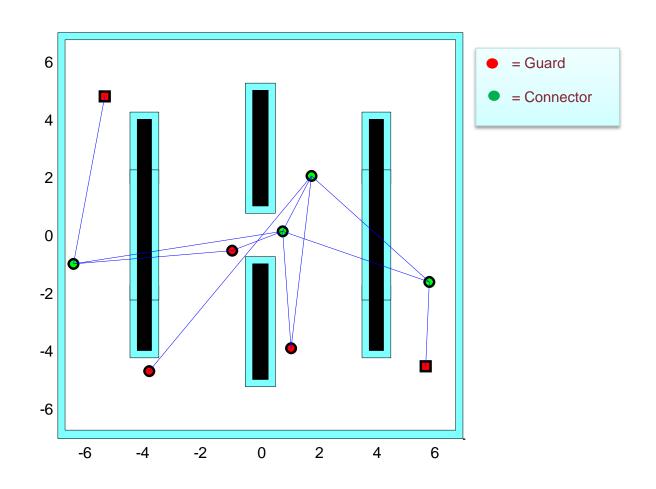
Simulation scenario



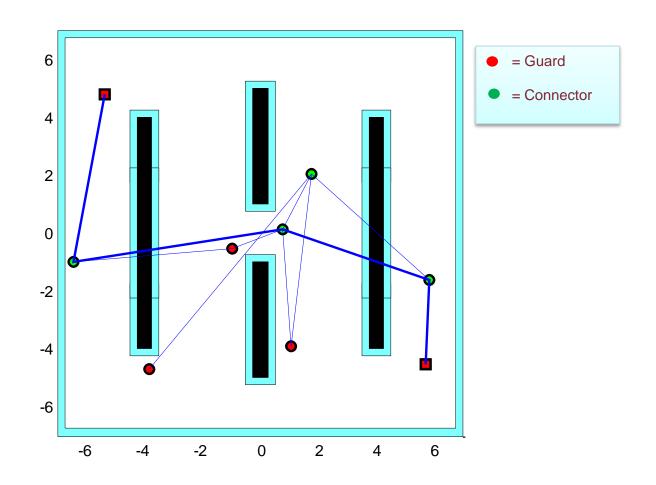
Start and Goal selection



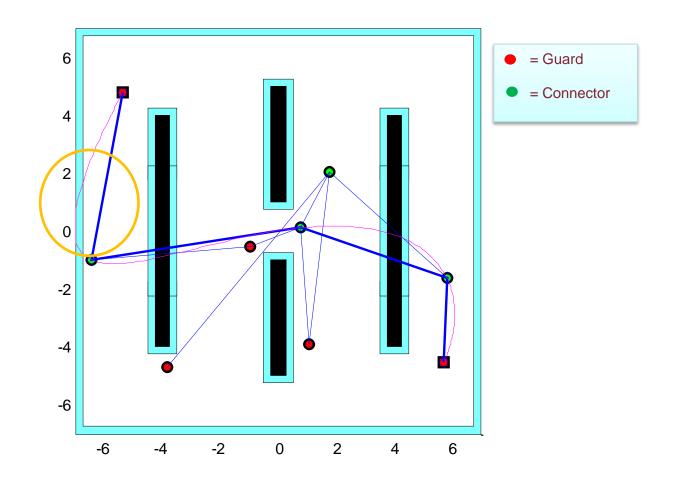
Roadmap construction



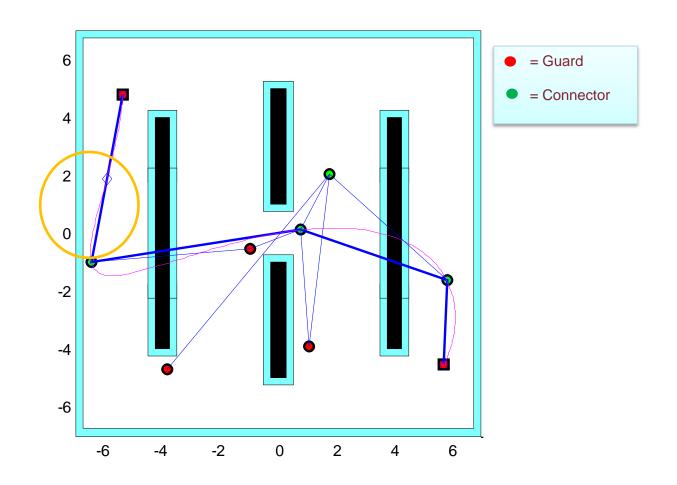
Path computed by A*



Path Computed after the Optimization

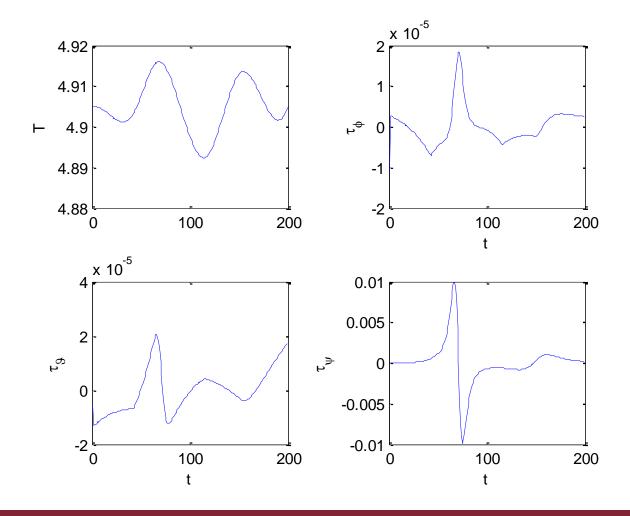


Safe Path Computed after the Optimization



Visibility-Based Motion Planning

Time Scaling



Introduction

Key-idea: incrementally grow a search tree by applying control inputs over short time intervals to reach new nodes

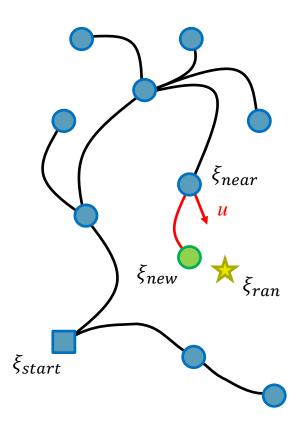
Features:

- Exploration biased toward unexplored portions of the space (Rapidly Exploring)
- Suitable for solving problems in high-dimensional spaces
- Takes into account both kinematic and dynamic constraints
- Generates a trajectory directly in the state space
- Provides control inputs needed to execute the trajectory

Basic iteration

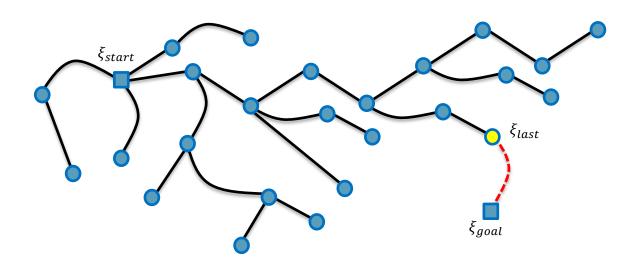
At each iteration:

- Extract a random state ξ_{ran}
- Select ξ_{near} (according to the metric)
- Compute u to steer the robot towards ξ_{ran}
- Apply u for a time δt , reaching ξ_{new}
- If the path from ξ_{near} to ξ_{new} is safe, add ξ_{new} to the tree and save u
- Otherwise, discarded it



Trajectory reconstruction

- Once $\|\xi_{last} \xi_{goal}\| < \epsilon$, the algorithm stops
- The solution trajectory can then be found by traversing the tree backwards from ξ_{last} to ξ_{start}
- The last stretch might be computed (if necessary) using any local planner



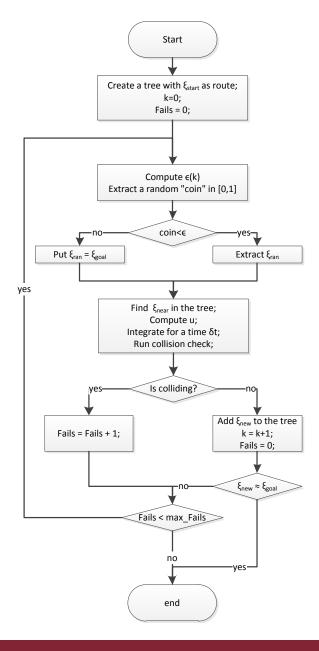
Exploration vs. Exploitation

The tree will eventually cover the connected component of CS_{free} containing the start, coming arbitrarily close to any goal belonging to the same component

Convergence is often slow switch between two phases:

- Exploration: the tree is expanded toward a random state
- Exploitation: the tree is expanded toward the goal ($\xi_{ran} = \xi_{goal}$) ϵ -greedy strategy:

$$\epsilon = \frac{\epsilon_0}{1 + \alpha k} \Rightarrow \begin{cases} coin < \epsilon \rightarrow exploration \\ coin > \epsilon \rightarrow exploitation \end{cases}$$



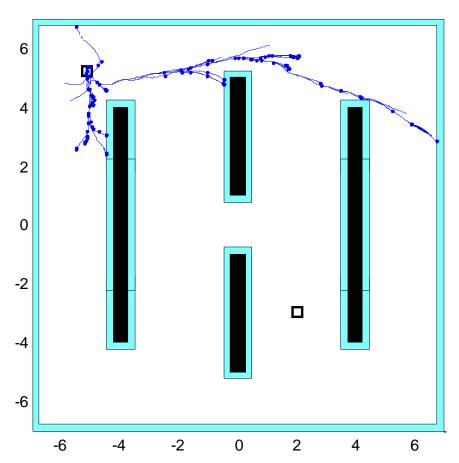
Random inputs choice

At each iteration:

- Extract 10 random values of the motors velocities between 0 and 1000 rad/s
- Compute the corresponding thrust and torques using input transformation
- Integrate the equations of motion (ode45) for a constant time
 δt = 0.1 s
- Choose the input vector that brings (safely) the robot closer to ξ_{ran} .

Random inputs choice (Simulation Results)

6 hours later...



Closed-loop system

Key-idea: use a combination of the RRT planning along with a controller to ensure that the quadrotor moves toward ξ_{ran}

Variable LQR controller: linearization around the current ξ_{near}

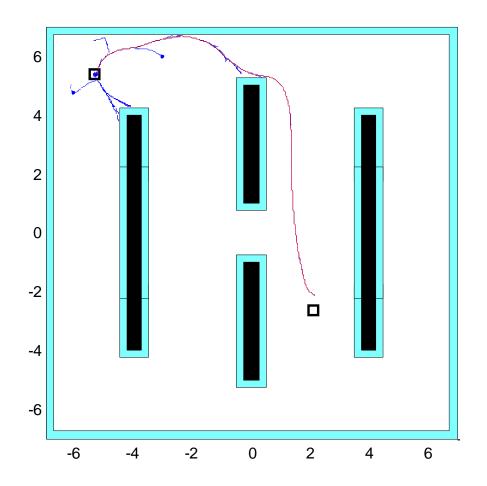
$$A = \frac{\partial \dot{\xi}}{\partial \xi}\Big|_{u=(mg \ 0 \ 0 \ 0)^T} \qquad B = \frac{\partial \dot{\xi}}{\partial u}\Big|_{u=(mg \ 0 \ 0 \ 0)^T}$$

$$\xi = \xi_{near} \qquad \qquad \xi = \xi_{near}$$

K computed by Matlab® Iqr function

$$\mathbf{u} = (mg \quad 0 \quad 0 \quad 0)^T - K(\xi - \xi_{ran})$$

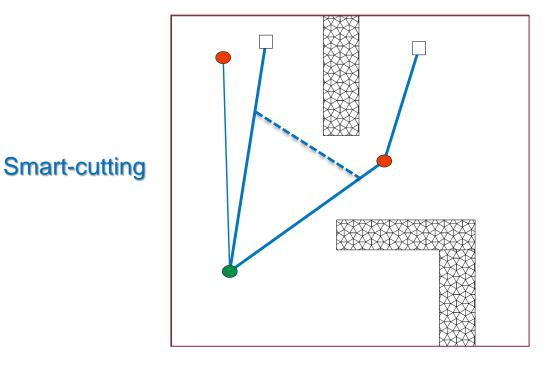
Closed-loop system (Simulation Results)

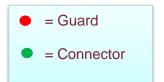


Conclusions

(1)

Visibility algorithm is suitable for finding a roadmap with few nodes easy to handle but, possibly not containing the shortest path





Conclusions

(2)

- The trajectory would be even smoother if the spline passed near to the nodes of the roadmap instead of interpolating them (more freedom to the optimizer)
- RRT planners seem to perform worse
- Enhancements may be achieved by:
 - Tuning δt , ϵ and the number of random inputs
 - Putting the system under the action of a controller
 - Tuning the gains Q and R of the LQR filter or by using any other controller (even non-linear)

THANKS FOR LISTENING

