
Data management for data science

prof. Riccardo Rosati
Master (laurea magistrale) in Data Science
Sapienza Università di Roma, 2020/2021

Exercise on SQL

We want to build a relational database about the domain of students and exams. In partic-
ular, we want to store information about students (name, birthdate, ID (matricola), enrollment
year, city, address), course editions (name, number of CFUs, year, semester, professor), exams
(student, course name, year, grade), exam reservations (student, course name, year).

1. Write SQL statements that define the schema of the above described database;

2. Write SQL statements that insert some tuples in each of the tables defined at the previous
point;

3. Write SQL statements that express the following queries:

(a) return the names of all the students living in Rome;

(b) return the names of the professors of the exams passed by John Doe;

(c) return the names of the professors of the exams passed by John Doe in 2018;

(d) return the ID and the birthdate of all the students that have passed at least an
exam in 2018;

(e) return name and number of CFUs of all the courses that were passed by the students
enrolled in 2017;

(f) return the names of the professors that have registered exams that were not reserved
by students;

(g) for every student, return the name and the number of exams passed by the student;

(h) for every student, return the name and the average grade of the of exams passed
by the student;

(i) for every student, return the name and the number of exams that were reserved but
not passed by the student;

(j) return the ID and the birthdate of every student such that the total amount of
CFUs of the exams passed by the student in 2018 is less than 20;

(k) return the professor(s) who registered the maximum number of exams with the
maximum grade (either 30 or 30 cum laude).

Solution of point 1:

Schema:

1



CREATE TABLE Student (name CHAR(30), birthdate INT, studentID INT,

enrollmentYear INT, city CHAR(30), address CHAR(30));

CREATE TABLE CourseEdition (name CHAR(30), cfus INT, year INT,

semester INT, professor CHAR(30));

CREATE TABLE Exam (studentID INT, courseName CHAR(30), year INT, grade INT);

CREATE TABLE ExamReservation (studentID INT, courseName CHAR(30), year INT);

Solution of point 3 (b):

Solution 1:

SELECT professor

FROM CourseEdition ce, Exam e, student s

WHERE e.courseName=ce.name

AND e.year=ce.year

AND s.studentID=e.studentID

AND s.name=’John Doe’;

Solution 2:

SELECT professor

FROM CourseEdition ce

WHERE (ce.name,ce.year) IN (

SELECT e.courseName, e.year

FROM Exam e, student s

WHERE s.studentID=e.studentID

AND s.name=’John Doe’);

Solution 3:

SELECT professor

FROM CourseEdition ce

WHERE EXISTS (

SELECT *

FROM Exam e

WHERE e.courseName=ce.name

AND e.year=ce.year

AND EXISTS (

SELECT *

FROM Student s

WHERE s.studentID=e.studentID

AND s.name=’John Doe’ ));

Solution of point 3 (d):

Solution 1:

2



SELECT s.studentID, s.birthdate

FROM Exam e, Student s

WHERE s.studentID=e.studentID

AND e.year=2018;

Solution 2:

SELECT s.studentID, s.birthdate

FROM Exam e JOIN Student s ON s.studentID=e.studentID

WHERE e.year=2018;

Solution 3:

SELECT s.studentID, s.birthdate

FROM Student s

WHERE EXISTS (

SELECT *

FROM Exam e

WHERE s.studentID=e.studentID

AND e.year=2018);

Solution of point 3 (e):

Solution 1:

SELECT ce.name, ce.cfus

FROM CourseEdition ce, Exam e, Student s

WHERE s.studentID=e.studentID

AND ce.name=e.courseName

AND ce.year=e.year

AND s.enrollmentYear=2018;

Solution 2:

SELECT ce.name, ce.cfus

FROM CourseEdition ce

WHERE (ce.name,ce.year) IN (

SELECT e.courseName, e.year

FROM Exam e, Student s

WHERE s.studentID=e.studentID

AND s.enrollmentYear=2018);

Solution of point 3 (f):

Solution 1:

3



SELECT professor

FROM CourseEdition ce

WHERE EXISTS (

SELECT *

FROM Exam e

WHERE e.courseName=ce.name

AND e.year=ce.year

AND NOT EXISTS (

SELECT *

FROM ExamReservation er

WHERE er.studentID=e.studentID

AND er.courseName=e.courseName

AND er.year=e.year))

Solution 2:

SELECT professor

FROM CourseEdition ce, Exam e

WHERE e.courseName=ce.name

AND e.year=ce.year

AND NOT EXISTS (

SELECT *

FROM ExamReservation er

WHERE er.studentID=e.studentID

AND er.courseName=e.courseName

AND er.year=e.year)

Solution 3:

SELECT professor

FROM CourseEdition ce, Exam e

WHERE e.courseName=ce.name

AND e.year=ce.year

AND (e.studentID, e.courseName, e.year) NOT IN (

SELECT *

FROM ExamReservation er)

Solution of point 3 (g):

Solution 1:

SELECT s.name, count(*)

FROM Student s, Exam e

WHERE s.studentID=e.studentID

GROUP BY s.name;

4



This solution does not take into account the possibility that two (or more) students may
have the same name.

Solution 2:

SELECT s.name, count(*)

FROM Student s, Exam e

WHERE s.studentID=e.studentID

GROUP BY s.name, s.studentID;

This solution groups by student name AND student ID, thus overcoming the problem of
the previous solution. Actually, if we assume that the student ID is unique, we can just group
by this attribute without changing the meaning of the query:

SELECT s.name, count(*)

FROM Student s, Exam e

WHERE s.studentID=e.studentID

GROUP BY s.studentID;

Solution of point 3 (h):

Solution 1:

SELECT s.name, avg(e.grade)

FROM Student s, Exam e

WHERE s.studentID=e.studentID

GROUP BY s.name;

This solution does not take into account the possibility that two (or more) students may
have the same name.

Solution 2:

SELECT s.name, avg(e.grade)

FROM Student s, Exam e

WHERE s.studentID=e.studentID

GROUP BY s.studentID;

As illustrated in the previous point, this solution groups by student ID rather than student
name, thus overcoming the problem of the previous solution.

Solution of point 3 (i):

Solution 1:

First, let us define the SQL query returning the exams that were reserved but not passed
by the students:

5



SELECT *

FROM Exam e

WHERE (e.studentID, e.courseName, e.year) NOT IN (

SELECT *

FROM examReservation);

Using the above query as a subquery (in the FROM clause), we can now write the query
requested by point (i):

SELECT s.name, count(*)

FROM Student s,

(SELECT *

FROM Exam e

WHERE (e.studentID, e.courseName, e.year) NOT IN (

SELECT *

FROM examReservation)) examNotReserved

WHERE s.studentID=examNotReserved.studentID

GROUP BY s.name;

Solution 2:

As already explained, if in the previous solution we group by student ID rather than by
student name, we can correctly handle the presence of multiple students with the same name:

SELECT s.name, count(*)

FROM Student s,

(SELECT *

FROM Exam e

WHERE (e.studentID, e.courseName, e.year) NOT IN (

SELECT *

FROM examReservation)) examNotReserved

WHERE s.studentID=examNotReserved.studentID

GROUP BY s.studentID;

Solution 3:

SELECT s.name, count(*)

FROM Student s, Exam e

WHERE s.studentID=e.studentID

AND (e.studentID, e.courseName, e.year) NOT IN (

SELECT *

FROM examReservation)

GROUP BY s.studentID;

6


