Action Theories over Generalized Databases with
Equality Constraints

Fabio Patrizi

Sapienza Universita di Roma, ltaly
patrizi@dis.uniromal.it

Ongoing joint work with Stavros Vassos

Bolzano — April 12, 2014

25

patrizi@dis.uniroma1.it

Situation Calculus
[McCarthy63,McCarthyHayes69, Reiter01]

First-order multi-sorted language for reasoning about actions

Sorts
@ Objects A : (possibly infinite) domain of discourse —blocky, blocks, . . .
o Actions Act (defined using finite set A of action function symbols):

» finitely many action types —pick(x), stack(z,y)
» possibly infinitely many actions —pick(block,), pick(blocks), . . .

e Situations S: world histories (defined inductively)

» Sy: constant denoting initial situation
» do(s, «) situation resulting from executing (ground) action « at s

Fluents
@ predicates asserting properties of objects in situations -On(z, y, s)
e NO functional fluents (here)

N

25

Basic Action Theories (BATS)
D - D() U Dap U Dss U Dun,a) Z

o Initial situation description Dj:
FO axioms (uniform in Sp) defining initial configuration

@ Precondition axioms D, —when actions are executable:
Poss(A(Z),s) = ®a(Z, s) (FO)

@ Successor state axioms D, —action effects:
F(Z,do(a,s)) = ®p(Z,a,s) (FO)

@ Uniqueness of action names D,;,4:
A7) # A'(Y), A@) = A(y) > 7=y (FO)

@ Foundational axioms X:

(domain-independent) formal definitions of

» situation tree (SO, due to induction)
» ordering = among situations

We restrict to standard interpretations [Levesque98]: named objects;
u.n.a. axioms for constants; axioms for equality (£)

Basic Action Theories

Example
. --
- -
0= -
012 e
o Infinite grid
e Start in (2,3)
@ Can move only along lines
@ Can change direction only by stopping on marked crossings

25

Basic Action Theories

Example

@ Action types: A = {moveTo(z,y)}
Fluents: F = {At(x,y,s), Dest(x,y, s), Cross(z,y, s)}

4 Do:

> At(z,y,So)=x=2Ay=3
Dest(x,y,S0) =z =2
> Cross(z,y,S0) = (z=y)V(xz=0Ay=2)V(z=1Ay=0)

v

> Poss(moveTo(x,y),s) = Dest(z,y,s)

> Cross(z,y,do(moveTo(z',y’), s)) = Cross(z,y, s)
> At(z,y,do(moveTo(z',y'),s)) = (z =2 ANy =1')
> Dest(z,y,do(moveTo(z',y’),s)) = (Cross(z’,y',s) Nz =2’ Vy=19y'))V
"y Aty s) AN (@' =2 Ay #y' A =al)V
W =y"ANa" #£2" Ny=y)V (Y =y" ANa' =a" A Dest(z,y,s))]

OBS: Dest extension can be infinite

25

Situation Calculus

Reasoning Tasks

Regression[PirriReiter99] (not this work) Reduce reasoning about a future
situation to reasoning about initial situation (weakest
precondition)

Progression[LinReiter97] (this work) Provide a “complete” description D,
of the new configuration obtained by executing « in Sy

Projection|[Reiter01] (this work) Predict whether a condition ¢(s) holds
after a sequence ay, ..., ay, of actions is executed (we
consider a more general form)

Progression
Progression: Set of sentences D, such that D and (D — Dy) U D,,

“coincide” from do(a, Sp) on

Important questions:

@ Is progression, i.e. D,, FO-definable?

@ (When) Can we come up with a FO D, 7

Some answers:

@ Second-Order D, required [LinReiter97, VassosLevesquel3|

@ Practically-relevant cases exist of FO-progressable theories
[LinReiter97]:

» Initial KB is definitional (in our case a possibly infinite database):

Dy =1 /\ VZ.F(Z,S0) = ¢r(Z)}, o mentions no situation
FeF

» Context-free SSAs: F' depends only on F' at previous situation

25

Projection

(Simple) Projection: given a sequence of actions aj - - - a,, check whether
D E ¢(s), for s = do(au, . . .,do(ai,Sp)))

Through regression, projection can be reduced to a query over the initial
KB (to answer which, theorem proving is needed in general)

Decidable (and practical) in few cases:
e initial KB is a regular database[Reiter92]

@ incomplete knowledge as proper KB + local effects [LiuLevesque05]
(sometimes complete)

@ two-variable fragment of FO [GuSoutchanski07]

@ bounded action theories [DeGiacomo-etal12] (beyond projection)

Progression and Projection
Action sequence: ag - - -y, Property: ¢

Progression can be used as a basic step for projection:
@ Start with Dy and o = o
@ Progress current Dy w.r.t. current action «, getting D,,
© Update Dy with obtained progression, i.e., let Dy = D,
Q lterate 2 with a = ;41 until t =n
© Check whether obtained D,, satisfies ¢(s)

Qn—1

Dy 25 Dy, =2 - 5D, 5D,

Do, | 07

Decidable and practical when progression and |= are so

25

BATs with Definitional Initial KB: Progression
[LinReiter97]

Progression obtained by syntactically replacing fluent atoms with their
definition in Dy

For each SSA F(Z,do(a, s)) = ®(Z, a, s):
@ Replace every atom Fj(0,s) in ®(Z, a,s) with the definition ¢; of F;
in DO
The obtained set D, is a progression
NOTE: at every progression step, size of axioms in D, grows

D,: set of (FO) axioms — query answering needs theorem proving

We look for a more practical, ready-to-use form of progression

10/25

BATs with Definitional KB: Progression

Example

@ s = do(moveTo(2,4),5)

@ Do = {At(z,y,S0) =x=2Ay =3, Dest(z,y,S0) =z =2,
Cross(z,y,S0) =(z=y) V(@ =0Ay=2)V(z=1Ay=0)}

@ Dy, = {Cross(z,y,do(moveTo(z’,y'),s)) = Cross(z,y, s),
At(, y, do(moveTo(a',3/),5)) = (x = 2’ Ay =),
Dest(x,y,do(moveTo(z',y"),s)) = (Cross(z',y',s) ANz =2’ Vy =y'))V

3"y Aty)N (& =2 Ay £y A=)V
W =y'nNe' £2" Ny=y)V (Y =y’ ANa' =a" A Dest(x,y,s))]}

@ D, = {Dest(z,y,do(moveTo(2,4),S0)) =
(2=4)V(2=0A4=2)V(2=1A4=0)A(z=2Vy=4)V
Jzy" 2 =20y =3N[2=3" N #£Y Az =2)V
A=y'N2#£2" Ny=4)Vvd=y'A2=2"Nz=2)],...}

11/25

Generalized Databases (with Equality Constraints)
[Kanellakis-etal95]

Generalized k-tuple : (models of) conjunction of equality constraints
involving k variables z1, ...,z

Generalized relation (of arity k&) : (model of) disjunction of k-tuples over
Tlyeooy Tk

Generalized Database: set of (models of) generalized relations

Example (Generalized relation)
Cross(z,y,S0) = (z=y)V(r=0Ay=2)V(z=1Ay=0) J

12/25

Answering Queries over Generalized DBs
Generalized relations can be infinite: not representable extensionally

What if we need to answer queries on a generalized DB?

Theorem (Kanellakis-etal95)
Query answers on Generalized DBs are computable and representable as
generalized relations:

© Replace each relation atom R; in the query ¢ by its formula ¢r

@ Build all the (finitely many, up to isomorphism) generalized tuples of
appropriate arity
© Keep only the tuples consistent with the new query ¢/ obtained in 1

Corollary: logical equivalence (under £) is decidable

Thus:
o Effective procedure to answer queries on a class of infinite DBs
@ A closed representation system

We exploit these features to address progression and projection
13/25

BATs with Generalized Fluent DBs

Definition
Generalized fluent DB (GFDB) Dy:

{ N\ VZ:.F(;, S0) = ¢i()}

FeF

with ¢;(%;) a generalized relation formula (with equality constraints)

Intuition: extension of each fluent as a generalized relation
Definition
A BAT-GFDB D is a BAT s.t. Dy is a GFDB J

14 /25

BAT-GFDBs and BATs with Definitional KB

Theorem

For any definitional KB there exists an equivalent generalized fluent
database, and viceversa.

From definitional KB to GFDB (viceversa obvious):

e Eliminate quantifiers (FO theories of equality admit quantifier
elimination)

@ Rewrite as DNF

Constructive: actual procedure to transform a definitional KB into a GFDB

15/25

Progression of BAT-GFDBs

Progression as query answering on (generalized) DBs

Example

@ Dest(z,y,do(moveTo(z',y"),s)) = (Cross(z’,y’,s) ANz =2’ Vy =1y'))V
Jz' y" At(z",y", s) AN [(2 =2 ANy £y Az =)V

(v =y" na! £ Ay =y)V (Y =¢" A =" A Dest(z,y,5))

Dest(x,y, do(moveTo(2,4),Sp)) can be obtained by answering the
RHS above on Dy

@ D, = {Dest(z,y,do(moveTo(2,4),50)) = (z = 2),...}

D, is now more of a materialized update than a logical specification!

Theorem
There always exists a progression D, that is a GFDB J

16 /25

Simple Projection Over BAT-GFDBs

We can iteratively progress a theory w.r.t. a sequence of actions
ai, ..., Qq,, obtaining a GFDB at every step:

(0% o (0%
DO_1>1)&1_2>..._">1)%

So, we can check whether D = ¢(do(ay,, . . ., do(aq,Sy))) by simply
checking whether D, E ¢(do(ay,, . ..,do(a1,Sy))) (recall ¢ is local)

NOTE: Decidability of projection for definitional KBs was known and based
on regression. When a method is preferable needs further investigation.

17/25

Generalized Projection Over BAT-GFDBs
Generalization: ¢ may refer to any number of future situations

¢ = Vs.do(moveT'0(2,4),Sy) C s D Iz, y.Dest(x,y, s)

(After executing moveTo(2,4), any future situation allows for at least one

destination)

Language L, of generalized projection queries:
pi=a=clz=y|F(@s)| F(#0)| 6|60 |30

poi=¢|p|loeAp|IsoCsAhgp

where ¢ is uniform in s or in o, with free variables only of sort situation

We consider only sentences in £,

18/25

Generalized Projection Over BAT-GFDBs

BAT-GFDBs in general infinite-state — cannot simply “visit” the model of
D to check whether D |= ¢

However: for a special class of BAT-GFDBs we can reduce the check to

one over a finite structure

19/25

Constant-bounded BAT-GFDBs

Definition
A BAT-GFDB D is C-bounded by B if the state of every executable

situation can be represented as a GFDB mentioning at most B distinct
constants.

NOTE: Semantic definition. Syntactic conditions to be investigated.

Example

The grid theory is C-bounded. At every situation, we need:
@ 2 constants for current position (At)
@ 3 constants for C'ross
@ At most 2 constants for Dest

(Recall we have named objects)

C-bounded BAT-GFDBs generalize bounded BATs [DeGiacomo-etall2]

20 /25

Generalized Projection over C-bounded BAT-GFDBs

Theorem

Checking whether D |= ¢ for a C-bounded BAT-GFDB and a generalized
projection query is decidable.

Crux of the proof:
@ Base case of projection queries is local (FO) sentence

@ For given B, only finitely many equivalence classes of logically
equivalent (under £) GFDBs exist

@ Only equivalence class matters for the base case

Can build a finite-state TS Tp#, with isomorphism types as states, that
preserves transitions between types

21/25

Generalized Projection over C-bounded BAT-GFDBs

Construction of Tp.w

Given: a BAT-GFDB D and a generalized projection query ¢ € Ly:
© Fix a finite set of constants H containing:
» all constants mentioned in D (Cp) and ¢ (C.,)
» B x |F| fresh constants
» N4 fresh constants, with N4 max num of parameters in action types
@ From Dy, iteratively progress the current situation
Consider all possible actions for A and H
» Generate progression in the form of BAT-GFDB
» Record progression steps as action-labelled transitions
>

If a logically equivalent progression has been generated, reuse it (i.e.,
connect back)

v

Stop when all progressions (up to logical equivalence) are expanded
OBS: by finiteness of H, Tp,cp is finite-state

Generalized Projection over C-bounded BAT-GFDBs

Property Check

Theorem
D):goifpr,(p):gp J

We can check ¢ against the finite Tp#, instead of the infinite model of D

Can be easily done using a MC-like procedure

23/25

Conclusions

o

2]
o
o

Generalized DBs characterize definitional KBs (without non-fluent
predicates) and generalize bounded BATs

Transformation from definitional KB to GFDB provided
Closed representation system

Progression of GFDBs closer to an actual update than logical
specification

For BAT-GFDBs, standard projection and a generalized form
decidable (actual procedure given)

To date most expressive SitCalc theory with infinite fluent extensions
and decidable progression and generalized projection

24 /25

Future Work

@ Investigate syntactical conditions that guarantee C-boundedness

@ Add forms of incomplete knowledge (e.g., bounded unknowns
[VassosP13])

© Consider special non-GFDB-expressible fluents such as linear order

@ Exploit results for actual implementation on Golog family of high-level
agent programming languages

25 /25

