
Action Theories over Generalized Databases with
Equality Constraints

Fabio Patrizi

Sapienza Università di Roma, Italy
patrizi@dis.uniroma1.it

Ongoing joint work with Stavros Vassos

Bolzano – April 12, 2014

1 / 25

patrizi@dis.uniroma1.it

Situation Calculus
[McCarthy63,McCarthyHayes69,Reiter01]

First-order multi-sorted language for reasoning about actions
Sorts

Objects ∆ : (possibly infinite) domain of discourse –block1, block2, . . .

Actions Act (defined using finite set A of action function symbols):
I finitely many action types –pick(x), stack(x, y)
I possibly infinitely many actions –pick(block1), pick(block2), . . .

Situations S: world histories (defined inductively)
I S0: constant denoting initial situation
I do(s, α) situation resulting from executing (ground) action α at s

Fluents

predicates asserting properties of objects in situations –On(x, y, s)

NO functional fluents (here)

2 / 25

Basic Action Theories (BATs)

D = D0 ∪ Dap ∪ Dss ∪ Duna ∪ Σ

Initial situation description D0:
FO axioms (uniform in S0) defining initial configuration

Precondition axioms Dap –when actions are executable:
Poss(A(~x), s) ≡ ΦA(~x, s) (FO)

Successor state axioms Dss –action effects:
F (~x, do(a, s)) ≡ ΦF (~x, a, s) (FO)

Uniqueness of action names Duna:
A(~x) 6= A′(~y), A(~x) = A(~y) ⊃ ~x = ~y (FO)

Foundational axioms Σ:
(domain-independent) formal definitions of

I situation tree (SO, due to induction)
I ordering v among situations

We restrict to standard interpretations [Levesque98]: named objects;
u.n.a. axioms for constants; axioms for equality (E)

3 / 25

Basic Action Theories
Example

0 1 2

2

1

0

3
Start

3

Infinite grid

Start in (2, 3)

Can move only along lines

Can change direction only by stopping on marked crossings

4 / 25

Basic Action Theories
Example

Action types: A = {moveTo(x, y)}

Fluents: F = {At(x, y, s), Dest(x, y, s), Cross(x, y, s)}

D0:

I At(x, y, S0) ≡ x = 2 ∧ y = 3
I Dest(x, y, S0) ≡ x = 2

I Cross(x, y, S0) ≡ (x = y) ∨ (x = 0 ∧ y = 2) ∨ (x = 1 ∧ y = 0)

Dap:

I Poss(moveTo(x, y), s) ≡ Dest(x, y, s)

Dss:

I Cross(x, y, do(moveTo(x′, y′), s)) ≡ Cross(x, y, s)
I At(x, y, do(moveTo(x′, y′), s)) ≡ (x = x′ ∧ y = y′)
I Dest(x, y, do(moveTo(x′, y′), s)) ≡ (Cross(x′, y′, s) ∧ (x = x′ ∨ y = y′))∨

∃x′′, y′′.At(x′′, y′′, s) ∧ [(x′ = x′′ ∧ y′ 6= y′′ ∧ x = x′)∨
(y′ = y′′ ∧ x′ 6= x′′ ∧ y = y′) ∨ (y′ = y′′ ∧ x′ = x′′ ∧Dest(x, y, s))]

OBS: Dest extension can be infinite
5 / 25

Situation Calculus
Reasoning Tasks

Regression[PirriReiter99] (not this work) Reduce reasoning about a future
situation to reasoning about initial situation (weakest
precondition)

Progression[LinReiter97] (this work) Provide a “complete” description Dα
of the new configuration obtained by executing α in S0

Projection[Reiter01] (this work) Predict whether a condition φ(s) holds
after a sequence α0, . . . , αn of actions is executed (we
consider a more general form)

6 / 25

Progression
Progression: Set of sentences Dα such that D and (D −D0) ∪ Dα
“coincide” from do(α, S0) on

Important questions:

Is progression, i.e. Dα, FO-definable?

(When) Can we come up with a FO Dα?

Some answers:

Second-Order Dα required [LinReiter97, VassosLevesque13]

Practically-relevant cases exist of FO-progressable theories
[LinReiter97]:

I Initial KB is definitional (in our case a possibly infinite database):

D0 = {
∧
F∈F
∀~x.F (~x, S0) ≡ φF (~x)}, φF mentions no situation

I Context-free SSAs: F depends only on F at previous situation

7 / 25

Projection

(Simple) Projection: given a sequence of actions α1 · · ·αn check whether
D |= φ(s), for s = do(αn, . . . , do(α1, S0)))

Through regression, projection can be reduced to a query over the initial
KB (to answer which, theorem proving is needed in general)

Decidable (and practical) in few cases:

initial KB is a regular database[Reiter92]

incomplete knowledge as proper KB + local effects [LiuLevesque05]
(sometimes complete)

two-variable fragment of FO [GuSoutchanski07]

bounded action theories [DeGiacomo-etal12] (beyond projection)

8 / 25

Progression and Projection

Action sequence: α1 · · ·αn, Property: φ

Progression can be used as a basic step for projection:

1 Start with D0 and α = α1

2 Progress current D0 w.r.t. current action α, getting Dα
3 Update D0 with obtained progression, i.e., let D0 = Dα
4 Iterate 2 with α = αi+1 until i = n

5 Check whether obtained Dα satisfies φ(s)

D0
α1−→ Dα1

α2−→ · · · αn−1−→ Dαn−1

αn−→ Dαn

Dαn |= φ?

Decidable and practical when progression and |= are so

9 / 25

BATs with Definitional Initial KB: Progression
[LinReiter97]

Progression obtained by syntactically replacing fluent atoms with their
definition in D0

For each SSA F (~x, do(a, s)) ≡ Φ(~x, a, s):

Replace every atom Fj(~o, s) in Φ(~x, a, s) with the definition φj of Fj
in D0

The obtained set Dα is a progression

NOTE: at every progression step, size of axioms in Dα grows

Dα: set of (FO) axioms → query answering needs theorem proving

We look for a more practical, ready-to-use form of progression

10 / 25

BATs with Definitional KB: Progression
Example

s = do(moveTo(2, 4), S0)

D0 = {At(x, y, S0) ≡ x = 2 ∧ y = 3, Dest(x, y, S0) ≡ x = 2,

Cross(x, y, S0) ≡ (x = y) ∨ (x = 0 ∧ y = 2) ∨ (x = 1 ∧ y = 0)}

Dss = {Cross(x, y, do(moveTo(x′, y′), s)) ≡ Cross(x, y, s),
At(x, y, do(moveTo(x′, y′), s)) ≡ (x = x′ ∧ y = y′),
Dest(x, y, do(moveTo(x′, y′), s)) ≡ (Cross(x′, y′, s) ∧ (x = x′ ∨ y = y′))∨
∃x′′, y′′.At(x′′, y′′, s) ∧ [(x′ = x′′ ∧ y′ 6= y′′ ∧ x = x′)∨

(y′ = y′′ ∧ x′ 6= x′′ ∧ y = y′) ∨ (y′ = y′′ ∧ x′ = x′′ ∧Dest(x, y, s))]}

Dα = {Dest(x, y, do(moveTo(2, 4), S0)) ≡
(((2 = 4) ∨ (2 = 0 ∧ 4 = 2) ∨ (2 = 1 ∧ 4 = 0)) ∧ (x = 2 ∨ y = 4))∨
∃x′′, y′′.x′′ = 2 ∧ y′′ = 3 ∧ [(2 = x′′ ∧ 4 6= y′′ ∧ x = 2)∨
(4 = y′′ ∧ 2 6= x′′ ∧ y = 4) ∨ (4 = y′′ ∧ 2 = x′′ ∧ x = 2)], . . .}

11 / 25

Generalized Databases (with Equality Constraints)
[Kanellakis-etal95]

Generalized k-tuple : (models of) conjunction of equality constraints
involving k variables x1, . . . , xk

Generalized relation (of arity k) : (model of) disjunction of k-tuples over
x1, . . . , xk

Generalized Database: set of (models of) generalized relations

Example (Generalized relation)

Cross(x, y, S0) ≡ (x = y) ∨ (x = 0 ∧ y = 2) ∨ (x = 1 ∧ y = 0)

12 / 25

Answering Queries over Generalized DBs
Generalized relations can be infinite: not representable extensionally

What if we need to answer queries on a generalized DB?

Theorem (Kanellakis-etal95)

Query answers on Generalized DBs are computable and representable as
generalized relations:

1 Replace each relation atom Ri in the query φ by its formula φR
2 Build all the (finitely many, up to isomorphism) generalized tuples of

appropriate arity

3 Keep only the tuples consistent with the new query φ′ obtained in 1

Corollary: logical equivalence (under E) is decidable

Thus:

Effective procedure to answer queries on a class of infinite DBs
A closed representation system

We exploit these features to address progression and projection
13 / 25

BATs with Generalized Fluent DBs

Definition

Generalized fluent DB (GFDB) D0:

{
∧
Fi∈F

∀~xi.F (~xi, S0) ≡ φi(~xi)}

with φi(~xi) a generalized relation formula (with equality constraints)

Intuition: extension of each fluent as a generalized relation

Definition

A BAT-GFDB D is a BAT s.t. D0 is a GFDB

14 / 25

BAT-GFDBs and BATs with Definitional KB

Theorem

For any definitional KB there exists an equivalent generalized fluent
database, and viceversa.

From definitional KB to GFDB (viceversa obvious):

Eliminate quantifiers (FO theories of equality admit quantifier
elimination)

Rewrite as DNF

Constructive: actual procedure to transform a definitional KB into a GFDB

15 / 25

Progression of BAT-GFDBs

Progression as query answering on (generalized) DBs

Example
Dest(x, y, do(moveTo(x′, y′), s)) ≡ (Cross(x′, y′, s) ∧ (x = x′ ∨ y = y′))∨

∃x′′, y′′.At(x′′, y′′, s) ∧ [(x′ = x′′ ∧ y′ 6= y′′ ∧ x = x′)∨
(y′ = y′′ ∧ x′ 6= x′′ ∧ y = y′) ∨ (y′ = y′′ ∧ x′ = x′′ ∧Dest(x, y, s))]

Dest(x, y, do(moveTo(2, 4), S0)) can be obtained by answering the
RHS above on D0

Dα = {Dest(x, y, do(moveTo(2, 4), S0)) ≡ (x = 2), . . .}

Dα is now more of a materialized update than a logical specification!

Theorem

There always exists a progression Dα that is a GFDB

16 / 25

Simple Projection Over BAT-GFDBs

We can iteratively progress a theory w.r.t. a sequence of actions
α1, . . . , αn, obtaining a GFDB at every step:

D0
α1−→ Dα1

α2−→ · · · αn−→ Dαn

So, we can check whether D |= φ(do(αn, . . . , do(α1, S0))) by simply
checking whether Dαn |= φ(do(αn, . . . , do(α1, S0))) (recall φ is local)

NOTE: Decidability of projection for definitional KBs was known and based
on regression. When a method is preferable needs further investigation.

17 / 25

Generalized Projection Over BAT-GFDBs

Generalization: φ may refer to any number of future situations

φ = ∀s.do(moveTo(2, 4), S0) v s ⊃ ∃x, y.Dest(x, y, s)

(After executing moveTo(2, 4), any future situation allows for at least one
destination)

Language Lp of generalized projection queries:

φ := x = c | x = y | F (~x, s) | F (~x, σ) | ¬φ | φ ∧ φ | ∃x.φ

ϕ := φ | ¬ϕ | ϕ ∧ ϕ | ∃s.σ v s ∧ ϕ

where φ is uniform in s or in σ, with free variables only of sort situation

We consider only sentences in Lp

18 / 25

Generalized Projection Over BAT-GFDBs

BAT-GFDBs in general infinite-state → cannot simply “visit” the model of
D to check whether D |= φ

However: for a special class of BAT-GFDBs we can reduce the check to
one over a finite structure

19 / 25

Constant-bounded BAT-GFDBs

Definition

A BAT-GFDB D is C-bounded by B if the state of every executable
situation can be represented as a GFDB mentioning at most B distinct
constants.

NOTE: Semantic definition. Syntactic conditions to be investigated.

Example

The grid theory is C-bounded. At every situation, we need:

2 constants for current position (At)

3 constants for Cross

At most 2 constants for Dest

(Recall we have named objects)

C-bounded BAT-GFDBs generalize bounded BATs [DeGiacomo-etal12]

20 / 25

Generalized Projection over C-bounded BAT-GFDBs

Theorem

Checking whether D |= ϕ for a C-bounded BAT-GFDB and a generalized
projection query is decidable.

Crux of the proof:

Base case of projection queries is local (FO) sentence

For given B, only finitely many equivalence classes of logically
equivalent (under E) GFDBs exist

Only equivalence class matters for the base case

Can build a finite-state TS T̂D,ϕ with isomorphism types as states, that
preserves transitions between types

21 / 25

Generalized Projection over C-bounded BAT-GFDBs
Construction of T̂D,ϕ

Given: a BAT-GFDB D and a generalized projection query ϕ ∈ Lp:
1 Fix a finite set of constants H containing:

I all constants mentioned in D (CD) and ϕ (Cϕ)
I B × |F| fresh constants
I NA fresh constants, with NA max num of parameters in action types

2 From D0, iteratively progress the current situation
I Consider all possible actions for A and H
I Generate progression in the form of BAT-GFDB
I Record progression steps as action-labelled transitions
I If a logically equivalent progression has been generated, reuse it (i.e.,

connect back)

Stop when all progressions (up to logical equivalence) are expanded

OBS: by finiteness of H, T̂D,ϕ is finite-state

22 / 25

Generalized Projection over C-bounded BAT-GFDBs
Property Check

Theorem

D |= ϕ iff T̂D,ϕ |= ϕ

We can check ϕ against the finite T̂D,ϕ instead of the infinite model of D

Can be easily done using a MC-like procedure

23 / 25

Conclusions

1 Generalized DBs characterize definitional KBs (without non-fluent
predicates) and generalize bounded BATs

2 Transformation from definitional KB to GFDB provided

3 Closed representation system

4 Progression of GFDBs closer to an actual update than logical
specification

5 For BAT-GFDBs, standard projection and a generalized form
decidable (actual procedure given)

6 To date most expressive SitCalc theory with infinite fluent extensions
and decidable progression and generalized projection

24 / 25

Future Work

1 Investigate syntactical conditions that guarantee C-boundedness

2 Add forms of incomplete knowledge (e.g., bounded unknowns
[VassosP13])

3 Consider special non-GFDB-expressible fluents such as linear order

4 Exploit results for actual implementation on Golog family of high-level
agent programming languages

25 / 25

