Two-player Game Structures for
Service Composition, Synthesis and
Generalized Planning

Fabio Patrizi
SAPIENZA — Universita di Roma
patrizi@dis.uniromal.it
www.dis.uniromal.it/~patrizi

Solving Composition Problems

e Service Composition problems can be solved
using a variety of approaches, e.g.,:
— PDL-based

[Berardi,Calvanese,De Giacomo,Lenzerini,Mecella@ICSOC03]

— Direct simulation computation
[Stroder,Pagnucco@IJCAIQ9]

— LTL synthesis
[Sardina,DeGiacomo@ICAPS08; P@Phd09]

* 2-GS: powerful framework to capture and
solve all above

Two-player Game Structures (2-GS)

* |Inspired by game structures for LTL synthesis
[Piterman,Pnueli,Sa’ar@VMCAIO06; Alur,Hentzinger,Kupferman@JACM-02]

 Model the rules of a game (e.g., Chess) between
players:
— Controller (the good)
— Environment (the bad)

* With the game at hand, we can:

— define a problem (e.g., can we checkmate from a
starting situation?)
— (Try to) solve the problem

2-GS: Definition

G=(4, 7 start,p.,p>, where:

— 4 set of environment (uncontrolled) variables .z,
....Th, FANgINg over X=Xix...xXx

— /- set of controller (controlled) variables 4,...,¢x,
ranging over Y=Y:x...xYn

— start={X,,Yoy€XXY is the initial game state
— p. &EXXYxX is the environment transition relation
— p. EXxYxXXY is the controller transition relation

Patrizi, F., Two-Player Game Structures for
Brescia (It) - Feb 11, 2010 Service Composition, Synthesis and
Generalized Planning

2-GS: Rounds

e Each round consists of an environment move
and a controller reply

* Moves and replies must be compliant with p-.
and p.

Game transition

Patrizi, F., Two-Player Game Structures for
Brescia (It) - Feb 11, 2010 Service Composition, Synthesis and
Generalized Planning

2-GS MC Example: TIC-TAC-TOE
A B _lc

2
3

o X={n,...,1n,...,.201, 2c3}: propositional

* Y={yn,,ym, .. g0, gt propositional
e Start: all variables are initially false

* p.: assign true exactly one X variable .z s.t. 4sis false

* p. assign true exactly one 7/variable 4 s.t. zis false

Patrizi, F., Two-Player Game Structures for
Brescia (It) - Feb 11, 2010 Service Composition, Synthesis and
Generalized Planning

Example(2)

e 2-GSs capture (ND) planning domains:
— The controller executes an action
— The environment chooses the outcome

* p.accounts for preconditions
* p. accounts for (ND) effects

Patrizi, F., Two-Player Game Structures for
Brescia (It) - Feb 11, 2010 Service Composition, Synthesis and
Generalized Planning

Goals for 2GS

When does a player win G?

It depends on the goal

In planning, we have reachability goals, e.g.:
— checkmate the opponent’s king

In general, we can define complex goals, e.g.:

— The controller can always reach a state where the
coin can be tossed

u-calculus over 2-GS

* To define goals, we use a variant of the

l-calculusiemersongs], whose formulae are:
— atoms of the form n=xor 4=y
— oW (next), if W is a formula
— nZ.W (least fixpoint), if W is a formula
— vZ.W (greatest fixpoint), if W is a formula
— Boolean combinations of above formulae

u-calculus over 2-GS (2)

For complete semantics, see [Emerson96]

* Key operator next

X,y oW iff

3 x". p(x,y,x") A

VX, pe(X,y,X') — Ay’ p(x,y,x,y’) s.t. x,yHeW

(Player controller is able to force the game to reach,
in one step, a state where W holds, no matter
how the environment moves)

Defining Goals

* Given a (p-calculus) goal formula ¢, player
controller wins iff {xo,yo)= ®

* We use particular goal patterns
<>C|) = |JZ.C|) V o7 (C. can force the game to eventually reach ¢)
D(I) = VZ.CI) \ ©Z (C. can force the game to always satisfy ¢)

|Z|<>(1) (C. can force the game to always satisfy ¢)

2-GS Model Checking

DEF: Given a 2-GS G and a goal formula ¢,
GF CI) iff <Xo,yo>|= (I)

The MC problem requires to check if, givenGand ¢, G= ¢

If so, the controller has a strategy to enforce ¢, (no matter
how the environment plays)

Strategy: function of histories

We are not only interested in the checking problem, but in
computing the strategy

2-GS Model Checking (2)

* The computational cost of 2-GS MCis

O((IG| - [$])), where:
— |G|=[Ss[+]p:[+]p]
— k is the number of fixpoint nestings in ¢

Conditional Planning with 2-GS (2)

Domain: Tossing a, coin
Predicates: inHand, head
Actions:
toss(pre: inHand,
eff: oneof(head,-head) and -inHand
)
turn(
pre: -inHand
eff: (when (head)(-head) and when (-head)(head))

)
nopQ)

Init: inHand
Goal: head

Coin Tossing as a 2-GS

GS:

o X={nHand, /ead}: propositional

* ¢/=A{ac}, over: {toss, turn, nop, init}

o start: veHand = fiecad =1 ; acr = iNit

* p.: selects action effects (according to current ««)

* p.: chooses next action, among those executable
In current state

e Special action init for initialization only
Goal formula: W=&(/ead/ = T)

=1L
/=1
a=turn

o/
4=T
(@ -turn

Patrizi, F., Two-Player Game Structures for
Brescia (It) - Feb 11, 2010 Service Composition, Synthesis and 16
Generalized Planning

Solution Approach

We applied a MC algorithm for p-calc
Time cost: O(|2°| [A|+]|p])

During the check, we saved additional
information to extract a witness, i.e., a strategy
for the controller

A strategy for &(/ecaa/=T) corresponds, in fact, to
a conditional plan

Explicit state manipulation not required: symbolic
approaches (e.g., BDD-based) can be used

Solving Multi-Target Composition using
2-GS

* Encoding similar to Planning Programs

e Player Environment features:
— the execution of target programs

— (A target program is advanced only after the controller declares its
request fulfilled)

e Player Controller:

— delegates, at each step, an action requested by some target, to some
available service able to execute it

— At some point, based on action outcomes, declares some targets
fulfilled

— (When no more target requests are pending, at least one target must
be declared satisfied, so as to get a new request)

Solving Multi-Target Composition using

2-GS (2)

Q= {J/’ 95,90 /90 /f,f,}
— s: State of avallable service
— ¢z requested transition
— act . action to execute
— sero: delegated service
— - fulfilled?
* start: ac = ser-=1nit; /=1 (all state initial)
* p.: selects action effects, according to current e« and se, and
advances the target, according to /«/,

* p.: chooses next action acz, according to ¢, delegates to se<, and,

when needed, declares targets’ fulfillment, assigning_
e (Special action init for initialization only)

Goal formula: W=E& (/= T)N ... ANQS(ud, = T)

Patrizi, F., Two-Player Game Structures for
Brescia (It) - Feb 11, 2010 Service Composition, Synthesis and
Generalized Planning

19

Solution

e Still an exponential bound
 Optimal as the problem is EXPTIME-complete

Solving Agent Planning Programs using
2-GS
Domain: TVworld

Predicates: on, broken, mute

Actions:
muteTV (pre:on
eff: when(mute)(-mute) A when(-mute)(mute))

switchOn (pre: off A -broken

eff: on)
switchOff (pre: on
eff: off) off
B on —
throwTV (eff: off A broken) 0 t1 |mute

Init: off A -broken A -mute

Solving Agent Planning Programs using
2-GS (2)

* Player Environment features:
— the planning domain
— the target service evolution, i.e., its requests

— (The target service advances only when its current
request is fulfilled)

e Player Controller:

— selects, at each step, the actions needed to fulfill
current request

— announces current request fulfillment to the
environment (which advances the target)

Solving Agent Planning Programs using
2-GS (3)

TV Domain:
o (= {oméfoéé/%mé@,é/b}
o Y= Aact.last)
* In the start state, 2z = L (special action init also used)
* e
— according to current acc changes o broter. e
— If /252 = 7, changes #<according to the target service

°* P
— chooses next action, among those executable in current state
— sets /s = T only if current #« is actually realized

* Goal formula: W= (4use = T)

ofe =
bre=1
mte=1
(-=110P
@ =init
last = L

(o L)
br=1
nute=L
=tr_on
«=1nit

Example

()

or=1

br=1
e = 1
/=tr_on
«=8wOn

ké&fé: J_)

(il)

br=1L
mle = 1
/o=tr_on
« =throw

k@é: _L)

I
v

Brescia (It) - Feb 11, 2010

\é[éé =1)

Patrizi, F., Two-Player Game Structures for
Service Composition, Synthesis and

(-)

ore=T
br=1
e = 1
/=tr_on
«=8wOn

\él«i‘[f'= J_)

Generalized Planning

/=tr_on
«=8wOn
_ last =T)

|

orv="T

br=1
/e = 1
w=tr_mute
@ =8swOn

(")

(")

orv=T

br=1
1ule = 1
#=tr_mute
«=8wOn

\ last =T)

I
v

24

Observation

Each target transition is realized by a
(conditional) plan

However, plans cannot be computed as usually
done in planning

Realizability of possible future transitions must
be guaranteed

TV cannot be switched off by throwing it
because this prevents future requests for on

Solution

Again, we use a MC algorithm (in fact, the
same as before) for p-calc

(This time, two non-nested fixpoint
computations are needed, for ¢ and)

Time cost: O(|2°|-(|p[+]6]))

Optimal, as the problem is EXPTIME-complete

Agent Planning Programs and Services

* How planning programs are related to
services?

* Given a set of available services, we compose
a high-level procedure, instead of a new
service

Generalized Planning w/ loops under
strong fairness constraints

e 2-GS and the p-calc are also useful to tackle
generalized forms of planning

 Sample ND Domain:

toss

tossS ! head \ /

. start
toss toss

toss
tail

toss

Generalized Planning w/ loops under
strong fairness constraints (2)

e Conditional Plan:

Acyclic plan that reaches a goal , e.g., “head”, no
matter how nondeterminism is resolved at
runtime

¢ Strong CVClIC Plan[Cimatti,Pistore,Roveri,Traverso-AI 03]:

Cyclic plan that reaches a goal, under the
assumption that loops iterate only a finite (though
unbounded) number of times

Fairness Constraints

Strong cyclic plans work under a specific fairness
assumption, required to hold for all loops

We want to be able to

1. Asserting explicitly general fairness
constraints on domain evolutions

2. Finding plans that work under such
constraints

Patrizi, F., Two-Player Game Structures for
Service Composition, Synthesis and
Generalized Planning

Brescia (It) - Feb 11, 2010 30

Fairness Constraints (2)

4 oss

+ 0 (act=toss)— <> (head)

tos toss

Patrizi, F., Two-Player Game Structures for
Brescia (It) - Feb 11, 2010 Service Composition, Synthesis and 31
Generalized Planning

Generalized Planning w/ loops under
strong fairness constraints (3)

e Can be reduced to MC a 2GS (not done, yet)

e (Currently: reduction to LTL synthesis problem

[DeGiacomo,P,Sardina@KR10])

* The problem is EXPTIME-complete

Conclusion

III

e “Local” MC techniques can be useful for
optimization?

