Two-player Game Structures for Service Composition, Synthesis and Generalized Planning

Fabio Patrizi

SAPIENZA – Università di Roma

<u>patrizi@dis.uniroma1.it</u>

www.dis.uniroma1.it/~patrizi

Solving Composition Problems

- Service Composition problems can be solved using a variety of approaches, e.g.,:
 - PDL-based[Berardi, Calvanese, De Giacomo, Lenzerini, Mecella@ICSOC03]
 - Direct simulation computation
 [Ströder,Pagnucco@IJCAI09]
 - LTL synthesis [Sardina,DeGiacomo@ICAPS08; P@Phd09]
- 2-GS: powerful framework to capture and solve all above

Two-player Game Structures (2-GS)

- Inspired by game structures for LTL synthesis
 [Piterman, Pnueli, Sa'ar@VMCAI06; Alur, Hentzinger, Kupferman@JACM-02]
- Model the rules of a game (e.g., Chess) between players:
 - Controller (the good)
 - Environment (the bad)
- With the game at hand, we can:
 - define a problem (e.g., can we checkmate from a starting situation?)
 - (Try to) solve the problem

2-GS: Definition

$G=\langle \mathcal{X}, \mathcal{Y}, start, \rho_e, \rho_c \rangle$, where:

- \mathcal{X} : set of environment (uncontrolled) variables x_1 , ..., x_n , ranging over $X=X_1\times...\times X_n$
- \mathcal{Y} : set of controller (controlled) variables $y_1, ..., y_m$, ranging over $Y=Y_1\times ...\times Y_m$
- start= $\langle x_0, y_0 \rangle \in X \times Y$ is the initial game state
- $-\rho_e \subseteq X \times Y \times X$ is the environment transition relation
- $-\rho_c \subseteq X \times Y \times X \times Y$ is the controller transition relation

2-GS: Rounds

- Each round consists of an environment move and a controller reply
- Moves and replies must be compliant with $\rho_{\rm e}$ and $\rho_{\rm c}$

2-GS MC Example: TIC-TAC-TOE

	A	В	C
1			
2			
3			

- $\mathcal{X} = \{x_{A1},...,x_{A3},...,x_{C1},x_{C3}\}$: propositional
- $\mathcal{J} = \{y_{A1},...,y_{A3},...,y_{C1},y_{C3}\}$: propositional
- Start: all variables are initially false
- ρ_e : assign true exactly one \mathscr{L} variable \mathscr{L}_{ij} s.t. \mathscr{U}_{ij} is false
- ρ_c : assign true exactly one \mathscr{Y} variable y_{ij} s.t. x_i is false

Example(2)

- 2-GSs capture (ND) planning domains:
 - The controller executes an action
 - The environment chooses the outcome

- ρ_c accounts for preconditions
- ρ_e accounts for (ND) effects

Goals for 2GS

- When does a player win G?
- It depends on the goal
- In planning, we have reachability goals, e.g.:
 - checkmate the opponent's king
- In general, we can define complex goals, e.g.:
 - The controller can always reach a state where the coin can be tossed

μ-calculus over 2-GS

- To define goals, we use a variant of the μ-calculus_[Emerson96], whose formulae are:
 - atoms of the form x = x or y = y
 - \odot Ψ (*next*), if Ψ is a formula
 - μΖ.Ψ (*least fixpoint*), if Ψ is a formula
 - vZ.Ψ (greatest fixpoint), if Ψ is a formula
 - Boolean combinations of above formulae

μ -calculus over 2-GS (2)

For complete semantics, see [Emerson96]

Key operator next

$$\langle x,y\rangle \models \odot \Psi \text{ iff}$$

$$\exists x'. \ \rho_e(x,y,x') \land \\ \forall x'. \ \rho_e(x,y,x') \longrightarrow \exists y'. \ \rho_c(x,y,x',y') \text{ s.t. } \langle x',y'\rangle \models \Psi$$

(Player controller is able to force the game to reach, in one step, a state where Ψ holds, no matter how the environment moves)

Defining Goals

- Given a (μ -calculus) goal formula φ , player controller wins iff $\langle x_0, y_0 \rangle \models \varphi$
- We use particular goal patterns

 $\diamondsuit \varphi \doteq \mu Z. \varphi \lor \odot Z$ (C. can force the game to eventually reach φ)

 $\Box \Phi \doteq vZ.\Phi \land \odot Z$ (C. can force the game to always satisfy Φ)

 $\Box \diamondsuit \varphi$ (C. can force the game to always satisfy $\diamondsuit \varphi$)

2-GS Model Checking

- <u>DEF</u>: Given a 2-GS G and a goal formula φ , $G \models \varphi$ iff $\langle x_0, y_0 \rangle \models \varphi$
- The MC problem requires to check if, given G and φ, G ⊨ φ
- If so, the controller has a strategy to enforce φ, (no matter how the environment plays)
- <u>Strategy</u>: function of histories
- We are not only interested in the checking problem, but in computing the strategy

2-GS Model Checking (2)

- The computational cost of 2-GS MC is $O((|G| \cdot |\varphi|)^k)$, where:
 - $|G| = |S_G| + |\rho_e| + |\rho_c|$
 - k is the number of fixpoint nestings in φ

Conditional Planning with 2-GS (2)

```
Domain: Tossing a coin

Predicates: inHand, head

Actions:

toss(pre: inHand,
eff: oneof(head,¬head) and ¬inHand
)
turn(
pre: ¬inHand
eff: (when (head)(¬head) and when (¬head)(head))
)
nop()
```

Init: inHand

Goal: head

Coin Tossing as a 2-GS

GS:

- $\mathcal{X} = \{in \mathcal{H}and, head\}$: propositional
- $\mathcal{Y} = \{act\}$, over: $\{toss, turn, nop, init\}$
- start: $in \mathcal{H} and = head = \bot$; act = init
- ρ_e: selects action effects (according to current act)
- ρ_c: chooses next action, among those executable in current state
- Special action init for initialization only

Goal formula:
$$\Psi = \diamondsuit (head = \top)$$

Patrizi, F., Two-Player Game Structures for Service Composition, Synthesis and Generalized Planning

Solution Approach

- We applied a MC algorithm for μ-calc
- Time cost: $O(|2^{P}||A|+|\rho|)$
- During the check, we saved additional information to extract a witness, i.e., <u>a strategy</u> <u>for the controller</u>
- A strategy for $\diamondsuit(head = \top)$ corresponds, in fact, to a conditional plan
- Explicit state manipulation not required: symbolic approaches (e.g., BDD-based) can be used

Solving Multi-Target Composition using 2-GS

- Encoding similar to Planning Programs
- Player Environment features:
 - the execution of target programs
 - (A target program is advanced only after the controller declares its request fulfilled)
- Player Controller:
 - delegates, at each step, an action requested by some target, to some available service able to execute it
 - At some point, based on action outcomes, declares some targets fulfilled
 - (When no more target requests are pending, at least one target must be declared satisfied, so as to get a new request)

Solving Multi-Target Composition using 2-GS (2)

- $\mathcal{X} = \{s_1, \dots, s_n, t_1, \dots, t_m\}$
 - s: state of available service
 - t: requested transition
- $\mathcal{Y} = \{act, ser, full_1, \dots, full_m\}$
 - act: action to execute
 - ser: delegated service
 - full; : fulfilled?
- start: act = ser = init; full = \perp (all state initial)
- ρ_e : selects action effects, according to current *act* and *ser*, and advances the target, according to *full*;
- ρ_c : chooses next action act, according to t_i , delegates to ser, and, when needed, declares targets' fulfillment, assigning full_i
- (Special action init for initialization only)

Goal formula:
$$\Psi = \Box \diamondsuit (full_1 = \top) \land ... \land \Box \diamondsuit (full_m = \top)$$

Solution

- Still an exponential bound
- Optimal as the problem is EXPTIME-complete

Solving Agent Planning Programs using 2-GS

Domain: TVworld

Predicates: on, broken, mute

Actions:

muteTV (pre: on

eff: when(mute)(\neg mute) \land when(\neg mute)(mute))

switchOn (pre: off ∧ ¬broken

eff: on)

switchOff (pre: on

eff: off)

throwTV (eff: off \land broken)

Init: off $\land \neg broken \land \neg mute$

Solving Agent Planning Programs using 2-GS (2)

- Player Environment features:
 - the planning domain
 - the target service evolution, i.e., its requests
 - (The target service advances only when its current request is fulfilled)
- Player Controller:
 - selects, at each step, the actions needed to fulfill current request
 - announces current request fulfillment to the environment (which advances the target)

Solving Agent Planning Programs using 2-GS (3)

TV Domain:

- $\mathcal{X} = \{on, broken, mute, tr\}$
- *y* = {*act*, *last*}
- In the start state, $last = \bot$ (special action init also used)
- ρ_e:
 - according to current act changes on, broken, mute
 - If $last = \top$, changes treaccording to the target service
- ρ_c:
 - chooses next action, among those executable in current state
 - sets last = T only if current tr is actually realized
- Goal formula: $\Psi = \Box \diamondsuit (last = \top)$

Example

Observation

- Each target transition is realized by a (conditional) plan
- However, plans cannot be computed as usually done in planning
- Realizability of possible future transitions must be guaranteed
- TV cannot be switched off by throwing it because this prevents future requests for on

Solution

- Again, we use a MC algorithm (in fact, the same as before) for μ -calc
- (This time, two <u>non-nested</u> fixpoint computations are needed, for ⋄ and □)

• Time cost: $O(|2^{P}| \cdot (|\rho| + |\delta|))$

Optimal, as the problem is EXPTIME-complete

Agent Planning Programs and Services

 How planning programs are related to services?

 Given a set of available services, we compose a high-level procedure, instead of a new service

Generalized Planning w/ loops under strong fairness constraints

- 2-GS and the μ -calc are also useful to tackle generalized forms of planning
- Sample ND Domain:

Generalized Planning w/ loops under strong fairness constraints (2)

Conditional Plan:

Acyclic plan that reaches a goal, e.g., "head", no matter how nondeterminism is resolved at runtime

• Strong Cyclic Plan[Cimatti, Pistore, Roveri, Traverso-Al 03]:

Cyclic plan that reaches a goal, under the assumption that loops iterate only a finite (though unbounded) number of times

Fairness Constraints

Strong cyclic plans work under a specific *fairness* assumption, required to hold for all loops

We want to be able to

- 1. Asserting explicitly general fairness constraints on domain evolutions
- 2. Finding plans that work under such constraints

Fairness Constraints (2)

Generalized Planning w/ loops under strong fairness constraints (3)

Can be reduced to MC a 2GS (not done, yet)

• (Currently: reduction to LTL synthesis problem [DeGiacomo,P,Sardina@KR10])

The problem is EXPTIME-complete

Conclusion

 "Local" MC techniques can be useful for optimization?