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Artifact and Artifact Systems

Recent paradigm for Business Process modeling and development [CH09]

Artifact: information model + lifecycle
I (Nested) records equipped with actions

Artifact System: set of interacting artifacts

Features:

Data and processes are given same emphasis
I data affect the actions to execute
I actions affect data (content and structure)

Modularized approach (sort of Object-Orientation)
I focus on one artifact at a time
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Artifact Systems
Motivating Scenario
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Artifact Systems
Motivating Scenario (cont.)

CPO

id customer id product code status

createPO(id , cid , code)

deletePO(id)

addItemPO(id , itm, qty)

. . .

WO

id cpo line itms status

createWO(id , cpo)

deleteWO(id)

addLineItemWO(id ,mat, qty)

. . .
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Artifact Systems

As the process goes on, artifact actions are executed
I e.g., the Customer Purchase Order is sent to the Manufacturer.

Actions add/remove artifacts or change artifact attributes
I e.g., the CPO status changes from created to submitted

The whole system can be seen as a data-aware dynamic system

At every step, an action yields a change in the current state
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Framework
Preliminaries

Preliminary (standard) notions and notation

A database schema is a set D = {P1/a1, . . . ,Pn/an} of relation
symbols Pi , each with its arity ai

A D-interpretation (or instance) over (possibly infinite) U is a
mapping associating each Pi with a finite ai -ary relation D(Pi ) ⊆ Uai

Active domain: adom(D) ⊆ U is the (finite) set of all distinct
elements occurring in D

First-Order formulas/sentences are syntactically defined as usual but
evaluated under active-domain semantics:

I quantified variables range over the active domain

7 / 40



Framework
Artifact Systems: Syntax

How do we describe an Artifact System?

Definition (Artifact System)

An Artifact System is specified as a tuple S = 〈D,U,D0,Φ〉, where:

D = {P1/a1, . . . ,Pn/an} is a database schema

U is a possibly infinite interpretation domain

D0 is an initial D-instance over U

Φ is a finite set of parametric actions of the form
α(~x) = 〈π(~y), ψ(~z)〉, where:

I α(~x) is the action signature and ~x the set of its formal parameters
I ~x = ~y ∪ ~z
I π(~y) is a FO-formula over D called the action precondition
I ψ(~z) is a FO-formula over D ∪D′ called the action postcondition,

where D′ .= {P ′
1/a1, . . . ,P

′
n/an}
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Framework
Artifact Systems: Semantics

Definition (Model of an Artifact System)

Given an Artifact System S = 〈D,U,D0,Φ〉, its model is the Kripke
structure K = 〈Σ,D0, τ〉, where:

Σ ⊆ ID(U) is the set of states (ID(U): all instances of D over U)

D0 ∈ Σ is the initial state

τ : Σ→ Σ is the transition relation s.t. τ(D,D ′) iff for some α there
exists an execution α(~u) = 〈π(~v), ψ(~w)〉 such that:

I adom(D ′) ⊆ adom(D) ∪ {w1, . . . ,w`} ∪ const(ψ)
I D |= π(~v), i.e., the action is enabled
I D ⊕ D ′ |= ψ(~w), where D ⊕ D ′ interprets unprimed symbols as in D

and primed ones as in D ′.

NOTE: First-Order formulas evaluated under active-domain semantics.
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Framework
Intuition

Each state is a D-instance

As actions are executed, new states are reached

Action parameters can introduce new values

Infinite U yields potentially infinitely many distinct states

In general, infinite branching and infinite run-length
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The Problem
Intuition

Check whether all possible system evolutions satisfy a desired property

Does the system satisfy a (branching-time) temporal specification?
E.g.:

I It is always the case that every artifact can be deleted
I There exists a way to create a certain number of artifacts
I A product can be shipped to the customer only after assemblage

Flavor of Model Checking, but:

Relational states + infinite interpretation domain = infinite state space!
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Verification Formalism: FO-CTL
Syntax

How to specify system properties?

Definition (Syntax of FO-CTL over S)

ϕ ::= φ | ϕ ∧ ϕ | ¬ϕ | AXϕ | AϕUϕ | EϕUϕ,

where φ is a FO-sentence over D and U.

(Other operators derived as usual)
Essentially, CTL with propositional formulas replaced by FO sentences
E.g.:

ϕship = AG ∀c
(
shippedCPO(c)→ ∀m (related(c,m)→

shippedMPO(m))
)

ϕt+ = EF ∃x1, . . . , xt+1
∧

i 6=j xi 6= xj

ϕempty = AG EF (emptyCPO ∧ emptyWO ∧ emptyMPO)
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Verification Formalism: FO-CTL
Semantics

(A run r is a sequence of successor states. r(i) selects the i-th r -state.)

Definition (Semantics of FO-CTL over S)

Let K be the model of S and D ∈ Σ a K-state.

(K,D) |= ϕ iff D |= ϕ, if ϕ is an FO-sentence;

(K,D) |= ¬ϕ iff (K,D) 6|= ϕ;

(K,D) |= ϕ→ ψ iff (K,D) 6|= ϕ or (K,D) |= ψ;

(K,D) |= AXϕ iff for all K-runs r s.t. r(0) = D, (K, r(1)) |= ϕ;

(K,D) |= AϕUψ iff for all K-runs r s.t. r(0) = D, ∃k ≥ 0 s.t. (K, r(k)) |= ψ
and ∀j s.t. 0 ≤ j < k, (K, r(j)) |= ϕ;

(K,D) |= EϕUψ iff for some K-run r , r(0) = D, ∃k ≥ 0 s.t. (K, r(k)) |= ψ,
and ∀j s.t. 0 ≤ j < k, (K, r(j)) |= ϕ.

A formula ϕ is true in K, written K |= ϕ, if (K,D0) |= ϕ.

S satisfies ϕ, written S |= ϕ, if K |= ϕ.
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FO-CTL Semantics
Intuition

AXϕ:

AϕUψ:

EϕUψ:
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Verification of Artifact Systems
General Formulation

Model Checking problem for Artifact Systems:

Given S and ϕ, does S |= ϕ hold?

I Similar to Model Checking but technically more challenging
F Relational states
F Infinite state-space

Theorem

The MC problem for Artifact Systems is undecidable.

I BUT decidable over finite interpretation domains:
F by reduction to standard propositional case (propositionalise FO facts).
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Verification of Bounded Artifact Systems

Here we devise a notable case of decidability

If all the D-instances (states) of the system are bounded, then,
though infinite-state, model-checking the system is decidable.
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Bounded Artifact System

Definition (b-Bounded (Artifact) System)

Consider a system S = 〈D,U,D0,Φ〉, and a bound b ∈ N such that
b ≥ |D0|. S is b-bounded if its model Kb = 〈Σb,D0, τb〉 is such that

for every D ∈ Σb, |D| ≤ b
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Verification of Bounded Artifact Systems

We consider the following problem:

Model Checking of Bounded Artifact Systems:

Given a b-bounded artifact system S and a property ϕ, does
Kb |= ϕ?
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Verification of Bounded Artifact Systems
Cont.

As a result of the infinite interpretation domain, we still have:

Infinite branching

Infinite state-space

QUESTIONS:

Is the problem decidable?

+ How can we model-check a bounded system?

Non-trivial! (we cannot construct the (infinite) model)
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Abstract System

Definition

Given a b-bounded system S = 〈D,U,D0,Φ〉 and a property ϕ, the
(b, ϕ)-bounded Abstract System of S is the Artifact System
Ŝb,ϕ = 〈D, Û,D0,Φ〉, s.t. Û = CS,ϕ ∪ Ĉ , with:

CS,ϕ = const(ϕ) ∪
⋃
φ∈Φ const(φ)

Ĉ ∩ CS,ϕ = ∅
|Ĉ | = b + v , with v = maxφ∈Φ{|vars(φ)|}

Intuition:

Ŝb,ϕ analogous to S except for U 6= Û

Û contains:
I all constants mentioned in S and ϕ
I enough distinct abstract symbols to “fill” the bound and have “fresh”

actual parameters for action executions

Û is finite!
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Abstract System Verification

Obviously, Ŝb,ϕ |= ϕ is decidable, as Û is finite

But we want to check whether Kb |= ϕ

So, what is the relationship between Kb and Ŝb,ϕ?

Theorem

Consider a b-bounded system S with U infinite, and a FO-CTL
specification ϕ.a If Ŝb,ϕ is the (b, ϕ)-bounded abstract system of S then

Kb |= ϕ⇔ K̂b,ϕ |= ϕ,

where:

Kb is the model of S, and

K̂b,ϕ is the model of Ŝb,ϕ.

aIn fact for the whole FO µ-calc

21 / 40



Complexity

Upper bound:

O(2|Û|
a
+|Û||ϕ|)

Technique based on reduction to propositional CTL MC (viable as
abstract interpretation domain finite)

K̂b,ϕ-states propositionalised (single exponential wrt

|Û| = b + v + |CS,ϕ| but doubly wrt a)

Quantifiers eliminated from ϕ (single exponential in |ϕ|)

Observations:

Not far from similar results ([DSV07, DHPV09, BCD+11])

Some performing well in practice ([DSV07])

Non-optimal technique
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Abstract System Verification
Technique

K̂b,ϕ |= ϕ can be reduced to standard MC

We have an actual technique to model-check Kb!
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Data Abstraction

Kb |= ϕ⇔ K̂b,ϕ |= ϕ

What’s behind the scene?

How did we get rid of an infinite number of elements and transitions?

We applied an abstraction process based on two formal notions:

1 Isomorphism between DB instances

2 Bisimulation between Kripke structures
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Data Abstraction
Isomorphic instances

Definition (C-isomorphic D-instances)

Two D-instances D and D̂, respectively over U and Û, are said
C -isomorphic, for C ⊆ U, Û, written D ∼C D, iff there exists a bijection
i : adom(D) ∪ C 7→ adom(D̂) ∪ C that is the identity on C , and such that
for every j = 1, . . . , n, and for every ~u ∈ adom(D)ai ,
D |= Pj (~u)⇔ D̂ |= Pj (i(~u)), where i(~u)

.
= 〈i(u1), . . . , i(uaj )〉.

In words: Instances obtained by uniformly renaming the elements not in C
E.g., for C = {1}, i(1) = 1, i(2) = a, i(3) = b, i(4) = c .
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Data Abstraction
Isomorphic instances (cont.)

Isomorphic instances have a notable (well-known) property:

Lemma

If D ∼C D̂ then for every FOL ϕ s.t. const(ϕ) ⊆ C , D |= ϕ⇔ D̂ |= ϕ.

The “coloured instance” satisfies ϕ iff all the instances isomorphic to it do

The “coloured” instance stands for infinitely many isomorphic instances

(isomorphism type):

I same values iff same colours

IDEA: No FO (sub-)formula from S or ϕ can distinguish two CS,ϕ-isomorphic
instances

Observation: for given b, only finitely many isomorphism types

26 / 40



Crux of the Result

Theorem

If D ∼CS,ϕ
D̂, every concrete transition 〈D,D ′〉 has an abstract

counterpart 〈D̂, D̂ ′〉 s.t. D ′ ∼CS,ϕ
D̂ ′, and viceversa.

Execution: α(~u) = 〈π(~v), ψ(~w)〉
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Crux of the Result
If-Part (Intuition)

Need to prove that there exist ~̂v , ~̂w , D̂ ′ s.t.
(i) D̂ |= π(~̂v), (ii) D̂ ⊕ D̂ ′ |= ψ(~̂w), and (iii) D ′ ∼CS,ϕ

D̂ ′

See ~u as a (1-tuple) relation

We can prove that there exists D̂ ′ and ~̂u, and a CS,ϕ-isomorphism
between

{D,D ′, ~u} and {D̂, D̂ ′, ~̂u}

This is enough, as π and ϕ are invariant wrt CS,ϕ-isomorphic
instances

28 / 40



Crux of the Result
If-Part (Intuition) Cont.

CS,ϕ-isomorphism between {D,D ′, ~u} and {D̂, D̂ ′, ~̂u}:

1 obtain ~̂u by renaming the elements in ~u according to i , k , and
preserving (in)equalities – Û contains enough elements

2 obtain D̂ ′ by renaming the elements in D ′ according to i and j
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Data Abstraction
Bisimilar Kripke Structures

Definition (C -bisimilar Kripke structures)

Given K = 〈Σ,D0, τ〉, K̂ = 〈Σ̂, D̂0, τ̂〉, and C , K and K̂ are C -bisimilar
(K ≈C K̂) iff there exists a relation R ⊆ Σ× Σ̂, called C (-preserving)
bisimulation, s.t. 〈D0, D̂0〉 ∈ R, and if 〈D, D̂〉 ∈ R then:

D ∼C D̂;

for all D ′ s.t. τ(D,D ′) there exists D̂ ′ s.t. τ̂(D̂, D̂ ′) and 〈D ′, D̂ ′〉 ∈ R;

for all D̂ ′ s.t. τ̂(D̂, D̂ ′) there exists D ′ s.t. τ(D,D ′) and 〈D ′, D̂ ′〉 ∈ R.

Example
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Data Abstraction
Bisimilar Kripke Structures (cont.)

Lemma

If K ≈C K̂, for every FO-CTL (µ-calc) sentence ϕ such that const(ϕ) ⊆ C ,

K |= ϕ⇔ K̂ |= ϕ.

That is, C -bisimilar Kripke structures cannot be distinguished by FO-CTL
formulas using only constants from C . Thus

If K̂ is finite-state, we are able to check whether K |= ϕ

(In this case each K̂ transition abstracts infinitely many K-transitions)

31 / 40



Back to the Abstract System

Lemma

Consider a b-bounded S = 〈D,U,D0,Φ〉, and a FO-CTL formula ϕ.
Let:

Ŝb,ϕ = 〈D, Û,D0,Φ〉 be the (b, ϕ)-bounded abstract system of S
Kb be the model of S
K̂b,ϕ be the model of Ŝb,ϕ

Then
Kb ≈CS,ϕ

K̂b,ϕ

Proof by induction:

base case: D0 is CS,ϕ-isomorphic wrt itself

induction step: crux of the result shown above

Given a b-bounded S and ϕ,

Kb |= ϕ⇔ K̂b,ϕ |= ϕ
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Application to the General Case
Preservation Theorem

What if S is unbounded? (Apart from undecidability)

Observation: for fixed b, the (b, ϕ)-bounded abstract system Sb,ϕ

corresponds to an (infinite) fragment of S

Preservation theorem for the existential fragment FO-ECTL.

ϕ ::= φ | ϕ ∨ ϕ | ϕ ∧ ϕ | EXϕ | EϕUϕ

Theorem

Given S, b ≥ |D0|, and a FO-ECTL formula ϕ, if K̂b,ϕ |= ϕ then S |= ϕ.

Observe we can iterate on b
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Application to Deployed Systems
What if S is unbounded?

Actual machines are memory-bounded

Executed artifact systems cannot exceed the memory bound

We can verify the artifact system up to a given bound

Technically requires an additional step, but conceptually same approach as
for bounded systems
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Conclusion

Problem originating in the context of Business Processes

Related to verification of database-driven systems (cf. ICDT 09)

Contribution to scarcely investigated field (verification of processes in
presence of data)

Abstraction-based approach to bounded verification
I Decidability
I Actual technique, complete wrt bounded version
I Practically relevant: any system runs on an actual, memory-bounded

machine

Partial solution to general case:
I satisfied FO-ECTL properties preserved from abstract bounded to

concrete unbounded system

High complexity, but:
I comparable to similar work (sometime good practical performance)
I current technique non-optimal, space for improvements

F e.g., CEGAR [CGL94] applied to the abstract system?
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Future Directions

1 Quantification across modal operators (bounded case)
I AG EF ∀x∃y .P(x , y) 4
I AG ∀x EF∃y .P(x , y)? Ongoing

F Decidabile? We conjecture so! (FO-CTL with active-domain
quantification)

F Complexity? (at least) double exponential

2 Extension to MAS, in the context of Quantified Interpreted
Systems [BL09, BLP11]

I Agents capture the actors that execute the actions
I Epistemic operators: K (Ongoing), C , D

3 Transfer results to settings with similar (low-level) semantics:
I E.g., Situation Calculus Ongoing.

4 Unbounded systems: what for formulas practically relevant?
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Questions?

37 / 40



Bibliography
Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Riccardo De Masellis, and Paolo Felli.

Foundations of Relational Artifacts Verification.
In Proc. of BPM, 2011.
To appear.

Francesco Belardinelli and Alessio Lomuscio.

Quantified Epistemic Logics for Reasoning About Knowledge in Multi-Agent Systems.
Artificial Intelligence, 173(9-10):982–1013, 2009.

Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi.

A Computationally-Grounded Semantics for Artifact-Centric Systems and Abstraction Results.
In Proc. of IJCAI, 2011.

Edmund M. Clarke, Orna Grumberg, and David E. Long.

Model Checking and Abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.

Model Checking.
The MIT Press, 2000.

David Cohn and Rick Hull.

Business Artifacts: A Data-Centric Approach to Modeling Business Operations and Processes.
IEEE Data Eng. Bull., 32(3):3–9, 2009.

Alin Deutsch, Rick Hull, Fabio Patrizi, and Victor Vianu.

Automatic Verification of Data-centric Business Processes.
In Proc. of ICDT, 2009.

Alin Deutsch, Liying Sui, and Victor Vianu.

Specification and Verification of Data-Driven Web Applications.
J. Comput. Syst. Sci., 73(3):442–474, 2007.

38 / 40



Model Checking
In one slide

Problem: check wether a finite-state transition-system satisfies a temporal
specification[CGP00]

Linear-time: the system defines (infinite-length) runs

E.g., LTL: �♦hold , ¬�♦tail

Branching-time: the system defines an (infinite-depth) tree

E.g., CTL: AG (hold → EX (head) ∧ EX (tail))
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Model Checking
(Well... two!)

Model Checking for finite systems is very well understood
The main challenge is efficiency, not decidability.

CTL:
I Check whether the property holds over the generated tree
I PTIME-complete

LTL:
I Check whether the property holds over the generated runs
I PSPACE-complete

CTL∗:
I Mixes the above
I PSPACE-complete
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