
Action Theories over Generalized Databases
with Equality Constraints?

Fabio Patrizi and Stavros Vassos

Department of Computer, Control, and Management Engineering (DIAG)
Sapienza University of Rome

Rome, Italy
{patrizi,vassos}@dis.uniroma1.it

Abstract. In this work we focus on situation calculus action theories
over generalized databases with equality constraints, here called GFDBs,
which are able to finitely represent complete information over a possibly
infinite number of objects. We contribute with the following: i) we show
that GFDBs characterize the class of definitional KBs and that they are
closed under progression; ii) we show that temporal projection queries
are decidable for theories with an initial KB expressed as a GFDB, which
we call GFDB-BATs; iii) we extend the notion of boundedness to allow
for infinite objects in the extensions of fluents and prove that a wide
class of generalized projection queries is decidable for GFDB-BAT under
a restriction we call C-boundedness; iv) we show that checking whether
C-boundedness holds for a given bound is decidable. The proposed action
theories are to date the most expressive ones for which there are decidable
methods for computing both progression and generalized projection.

Introduction

Situation calculus basic action theories (BATs) [13] are well-studied logical theo-
ries that consist of a first-order knowledge base (KB) which describes the initial
state of a given domain, and a set of first-order axioms that specify how the
properties of the domain change under the effects of named actions. Two impor-
tant reasoning problems are studied in the context of variants of BATs: temporal
projection and progression. Projection is about predicting whether a condition
would hold in the resulting state if a series of actions were to be performed in
the initial KB, while progression is about updating the KB by a new description
that reflects the current state after actions have been performed.

If we think of a BAT as a database which also features some specified opera-
tions (or actions) that alter the data, solving the projection problem corresponds
to answering a query over the state of the database after some of these opera-
tions are consecutively performed, while the progression problem is to provide
a concrete representation of the resulting database state. It then becomes clear

? The authors acknowledge the support of the EU Project FP7-ICT 318338 (OP-
TIQUE) and the Sapienza Award 2013 “Spiritlets” project.

that these two problems are closely related. In particular, progression can be
used as a way to solve the projection problem in the following way: first update
the database according to the operations in question and then answer the query.

Nonetheless, this view is only helpful when the KB is a database. Solving
projection and progression becomes very tricky in the general case when we have
an unrestricted first-order specifications for the KB and the effects of actions.
As far as progression is concerned, for the general case it has been shown that
second-order logic may be required to capture the updated KB [9, 15]; a list of
some special cases where it becomes first-order is studied in [16]. Similarly, a few
cases have been studied such that projection is decidable, namely (i) the case
when the KB is a regular database as we discussed above [14], (ii) the case when
the KB is an open-world database of a particular form, in which case a sound
and sometimes complete method for projection is specified [12], (iii) the case of
a modified version of the situation calculus built using a two-variable fragment
of first-order logic [6] in which case projection is decidable, and, more recently,
(iv) the case of bounded theories that require that in all models and in every
situation there is a fixed upperbound on the number of positive atomic facts [3].

Notably, the case when the KB has the form of a generalized database with
constraints [7], which allows to specify relations with possibly infinitely many
tuples, has not been investigated. In this work we show that for a special type of
BATs whose KB is a generalized database with equality constraints projection
is decidable and a first-order progression can always be computed. We then look
into richer forms of projection that may refer to more than one possible evolution
of the initial KB, e.g., capturing invariants of the form “after execution of α
condition φ always holds” and specify a condition that also ensures decidability.
To the best of our knowledge these BATs are to date the most expressive ones
with an infinite domain and possibly infinite extensions for fluents for which
there are known decidable methods for computing both a first-order progression
and generalized projection.

Situation calculus basic action theories (BATs)

The situation calculus as presented by Reiter [13] is a three-sorted first-order
language L with equality (and some limited second-order features). The sorts
are used to distinguish between actions, situations, and objects.

A situation represents a world history as a sequence of actions. S0 is used to
denote the initial situation and sequences of actions are built using the function
symbol do, such that do(a, s) denotes the successor situation resulting from per-
forming action a in situation s. Actions need not be executable in all situations,
and the predicate Poss(a, s) states that action a is executable in situation s. We
will typically use a to denote a variable of sort action and α to denote a term
of sort action, and similarly s and σ for situations. A (relational) fluent is a
predicate whose last argument is a situation, and thus whose value can change
from situation to situation. We also assume a finite number of fluent and action
symbols, F and A, and an infinite number of constants C.

Often we need to restrict our attention to sentences in L that refer to a
particular situation. For example, the initial knowledge base (KB) is a finite set
of sentences in L that do not mention any situation terms except for S0. We
define Lσ to be the subset of L that does not mention any other situation terms
except for σ, does not mention Poss, and where σ is not used by any quantifier
[9]. When a formula φ(σ) is in Lσ we say that it is uniform in σ [13].

We will be dealing with a specific kind of L-theory, the so-called basic action
theory (BAT) D which has the following form:1

D = Dap ∪ Dss ∪ Duna ∪ D0 ∪Σ, where:

1. Dap is a set of action precondition axioms, one for each action function
symbol Ai∈A, of the form Poss(Ai(x), s) ≡ Πi(x, s), whereΠi(x, s) is in Ls.

2. Dss is a set of successor state axioms (SSAs), one per fluent symbol Fi ∈
F , of the form Fi(x, do(a, s)) ≡ Φi(x, a, s), with Φi(x, a, s) ∈ Ls. SSAs
characterize the conditions under which Fi has a specific value at situation
do(a, s) as a function of situation s and action a.

3. Duna is the set of unique-names axioms for actions: Ai(x) 6= Aj(y), and
Ai(x)=Ai(y) ⊃ x=y, for each pair of distinct symbols Ai and Aj in A.

4. D0 is uniform in S0 and describes the initial situation.
5. Σ is a set of foundational axioms which formally define legal situations and

an ordering by means of symbolv, also using a second-order inductive axiom.

Finally, we will typically restrict our attention to the case that distinct con-
stants are always interpreted into different objects. This unique-names restriction
can be captured by a set of axioms E consisting of the axioms of equality and
the set of sentences {ci 6= cj |ci, cj ∈ C, i 6= j} [8].

Generalized databases and query evaluation

A generalized database [7] is a first-order interpretation (finitely) represented as
constraints on the tuples of relations. Generalized databases are obtained by
including in each relation the (possibly infinite) set of tuples that satisfy the
corresponding constraints. Various classes of constraints are considered. In this
work we focus on equality constraints. Let us present basic definitions from [7]
in the context of the situation calculus language L we specified.

Definition 1. An equality constraint is a literal formula xθy or xθc, where
c ∈ C and θ is = or 6=. A generalized k-tuple over variables x1, . . . , xk is a
finite conjunction ψ of equality constraints whose variables are free and among
x1, . . . , xk. A generalized relation of arity k is a finite set R = {ψ1, . . . , ψq}, of
generalized k-tuples over x1, . . . , xk. The formula corresponding to a generalized
relation R is the disjunction ψ1∨· · ·∨ψq. We will use φR to denote the quantifier-
free formula corresponding to relation R.

1 For readability we often omit the leading universal quantifiers.

Generalized relations represent possibly infinite relations over the domain
of sort objects of L. In detail, let R = {ψ1, . . . , ψq} be a generalized relation of
arity k, and φR the formula corresponding to this relation. Then, R is associated
with the k-ary relation {c | c ∈ Ck, E |= φR(c)}. It is easy to see that any finite
relation can be represented as a generalized relation, while infinite relations exist
that are not captured by generalized ones.

The notion of generalized relation extends naturally to databases: a gener-
alized database is a finite set of generalized relations. Differently from standard
settings in databases, since generalized databases represent in general infinite
relations, answers to queries are in general infinite and cannot be represented by
means of finite relations. Nonetheless, it turns out that query answers over gen-
eralized databases can be represented as generalized relations with constraints,
thus providing a closed representation system.

First observe that we can characterize the answer to a query by replacing
the occurrences of relation atoms in the query by the formulas corresponding to
the relations of the generalized database. Let ϕ(x) be a first-order query over
the relation symbols R1, . . . , Rn and D a generalized database over the same
relations. Let ϕ[R1/φR1

, . . . , Rn/φRn
](x) be the first-order formula in L that is

the result of replacing every occurrence of Ri in ϕ by φRi
. This formula, denoted

here as ϕ′(x), is then a finite representation of the answer to query ϕ over D.
The second trick is to observe that ϕ′(x) can be represented as a finite set of

generalized tuples that characterize the isomorphism types of regular tuples in
the answer of the query. Kanellakis et al. [7] specify a procedure that first builds
all the (finitely many) generalized tuples ψ over x using only the constants
mentioned in ϕ′(x), and then checks which of these are consistent with ϕ′(x).
The set of the ones that are consistent is a generalized relation that (finitely)
represents the answer to ϕ(x) over D.

Kanellakis et al. [7] also show that following this procedure the answer to a
first-order query over a generalized database (with equality constraints) is com-
putable in LOGSPACE data complexity. Thus, this constitutes a notable case
of infinite databases for which an effective procedure exists to answer queries.

BATs with generalized fluent databases (GFDBs)

Reiter [13] investigates the case where the initial knowledge base (KB) is a defi-
nitional theory with respect to the fluent atoms in S0, i.e., with S0 characterized
as follows:

∧
Fi∈F ∀xi.Fi(xi, S0) ≡ φi(xi), where φi(xi), called the definition for

Fi, is an unrestricted first-order formula mentioning no situations. When the
underlying language L includes only fluent predicates, as it is the case in this
paper, a KB in such form is called a definitional KBs.

Definitional KBs in L capture complete information for fluents under the
assumption of the unique-name axioms for constants and axioms for equality in
E . For example the following axiom states that there are exactly two atoms true
for In(x1, x2, S0), namely In(box, it1, S0) and In(box, it2, S0):

∀x∀y(In(x, y, S0) ≡ (x=box∧(y= it1 ∨y= it2))).

Nonetheless, the definition for a fluent can be any unrestricted first-order formula
built over the constants in C and equality, for example it could have the following
form that implies an infinity of ground atoms that are true in S0:

∀x∀y(In(x, y, S0) ≡ (x6=box∧(y= it1 ∨y= it2))).

Note that this definition can be rewritten as a formula that corresponds to a
generalized relation by distributing over the disjunction. Also, more complicated
definitions that include quantification do not actually add to the expressiveness,
as first-order theories of equality admit quantifier elimination [5].

We identify BATs over generalized databases as follows.

Definition 2. A set D0 of first-order sentences uniform in S0 is a generalized
fluent database (GFDB) iff it has the form

∧
Fi∈F ∀xi.F (xi, S0) ≡ φi(xi), where

φi(xi) is a formula that corresponds to a generalized relation over x, i.e., is a
disjunction of conjunctions of equality constraints. A basic action theory D is a
basic action theory over a generalized fluent database (BAT-GFDB) iff it also
includes the set of axioms E and D0 is a generalized fluent database.

Theorem 1. Let φ be a definitional KB. There exists a GFDB φ′ such that
E |= φ ≡ φ′.

As discussed in the previous section for such KBs there is also a decidable
LOGSPACE data complexity procedure for evaluating queries. Note also that
equivalence of GFDBs can also be decided, formed as an appropriate query. With
these tools available in the next sections we will proceed to show how solutions
for progression and projection can be obtained for BAT-GFDBs. We close this
section with a simple example of a GFDB-BAT.

0 1 2

2

1

0

3
Start

3

Fig. 1. Map of the grid domain.

Example 1. Figure 1 shows a space where an agent can move only along specified
lines. The agent starts in (2, 3) and can initially move only vertically, i.e., to any
position s.t. x = 2. After moving, the agent can change direction (at the next
move) only if it has stopped at a crossing point (marked with solid circles). For
instance, if the agent moves from (2, 3) to (2, 1), it cannot move next to, e.g.,
(0, 1). Instead, if the agent stops in (2, 2), it can then move along the x-axis
to, e.g., (10, 2). The crossing points are placed along the diagonal, i.e., points
s.t. x = y, and at (0, 2) and (1, 0). A BAT describing this domain is as follows:

– Action types: A = {moveTo(x, y)}

– Fluents: F = {At(x, y, s), Dest(x, y, s), Cross(x, y, s)}
– D0: At(x, y, S0) ≡ x = 2 ∧ y = 3, Dest(x, y, S0) ≡ x = 2

Cross(x, y, S0) ≡ (x = y) ∨ (x = 0 ∧ y = 2) ∨ (x = 1 ∧ y = 0)

– Dap: Poss(moveTo(x, y), s) ≡ Dest(x, y, s)

– Dss: Cross(x, y, do(moveTo(x′, y′), s)) ≡ Cross(x, y, s)
At(x, y, do(moveTo(x′, y′), s)) ≡ (x = x′ ∧ y = y′)

Dest(x, y, do(moveTo(x′, y′), s)) ≡ (Cross(x′, y′, s) ∧ (x = x′ ∨ y = y′))∨
∃x′′, y′′.At(x′′, y′′, s) ∧ [(x′ = x′′ ∧ y′ 6= y′′ ∧ x = x′)∨
(y′ = y′′ ∧ x′ 6= x′′ ∧ y = y′) ∨ (y′ = y′′ ∧ x′ = x′′ ∧Dest(x, y, s))]

Observe that the extension of fluent Dest is initially infinite. Indeed, according
to its definition, the fluent contains all possible tuples s.t. x = 2. Such tuples
represent the infinitely many possible destinations available to the agent in S0.

Progression of BAT-GFDBs

In order to do a one-step progression of the BAT D with respect to the ground
action α we need to replace D0 in D by a suitable set Dα of sentences uniform
in do(α, S0) so that the original theory D and the theory (D − D0) ∪ Dα are
equivalent with respect to how they describe the situation do(α, S0) and the
situations in the future of do(α, S0).

Lin and Reiter [9] gave a model-theoretic definition for the progression Dα of
D0 wrt α and D that achieves this goal. Finding such a Dα is a difficult task and
it has been shown that second-order logic may be required in the general case
[9, 15]. Nonetheless, for the definitional KBs, and as a result also for the special
case of generalized fluent databases, there is a very simple way to progress.

Theorem 2 ([9]). Let D0 be
∧
Fi∈F ∀xi.Fi(xi, S0) ≡ φi(xi), and for all Fi∈F ,

let Dss include an SSA of the form Fi(xi, do(a, s)) ≡ Φi(xi, α, S0). For each
Fi∈F , let Φ′

i(xi, α, S0) be the sentence obtained by replacing every occurrence of
atoms Fj(o, S0) in Φi(xi, α, S0) by φj(o), and Dα be

∧
Fi∈F ∀xi.Fi(xi, do(a, s)) ≡

Φ′
i(xi, α, S0). Then, Dα is a progression of D0 wrt α and the theory D.

Observe that this is very similar to the first trick we discussed when we
reviewed the work on generalized databases and query evaluation [7], where
we replaced the occurrences of relation atoms in the query by the formulas
corresponding to the relations of the generalized database. It is interesting to
look into how this method works when D0 is a generalized fluent database, that
will illustrate how the second trick can also be of use.

Note that since each Φi(xi, α, S0) in the SSAs is in general unrestricted, e.g.,
may include quantifiers, Dα is not guaranteed to be in the form of a generalized
fluent database even though D0 is. The point in using a form like the generalized
fluent database is that it allows us to perform query evaluation using the methods

and existing technologies in constraint databases instead of performing more
general theorem proving. Therefore, we want progression to preserve the form of
D0. The method of Theorem 2 does well in preserving the form of a definitional
KB but does not preserve the form in the case of a generalized fluent database.

This is how the second trick becomes useful. The idea is to consider general-
ized tuples as the “base” formulas that we use to express any generalized fluent
relation. This is similar to a regular database where we would update D0 into a
Dα such that for every fluent a finite list of tuples is specified. Theorem 1 then
provides a way to transform, by means of quantifier elimination, the resulting
Dα of Theorem 2 into the form of a generalized fluent database.

Theorem 3. Let D be a BAT over a generalized fluent database and α a ground
action. Then there exists a first-order progression Dα of D0 wrt α and D that is
in the form of a generalized fluent database.

As a consequence, we can iteratively progress a BAT-GFDB and express the
state corresponding to any ground situation as a generalized fluent database.

Example 2. The following theory Dα is the progression of the initial GFDB D0

of Example 1, wrt action α = moveTo(2, 2) (and theory D):

At(x, y, do(α, S0)) ≡ x = 2 ∧ y = 2, Dest(x, y, do(α, S0)) ≡ x = 2 ∨ y = 2

Cross(x, y, do(α, S0)) ≡ (x = y) ∨ (x = 0 ∧ y = 2) ∨ (x = 1 ∧ y = 0)

Notice that, similarly to the initial situation, after executing α in S0, the agent
still has an infinite set of destinations available: all those s.t. x = 2 or y = 2.

Finally, since every definitional KB can be expressed as a GFDB, this anal-
ysis also illustrates a subtle detail about the way we understand progression.
Both a progression Dα according to Theorem 2 and a progression D′

α according
to Theorem 3 qualify as logically correct progressions of D0 and are logically
equivalent (under the assumption of E). Nonetheless, Dα is more of a logical
specification of the changes that need to be made due to action α and D′

α more
of a materialized update of these changes into a practical normal form.

Another way to look at it is that the progression procedure of Theorem 2
is purely syntactic (linear to the size of D0) and does not involve any form
of evaluation; in a sense, the fluents are not updated to a new truth value but,
rather, the new truth values are still specified with respect to the initial situation.
Theorem proving is then needed in order to reason over the specification, even for
a simple look-up query for a given atom. Even though this logical specification
may in fact be beneficial in some cases, in practice we expect that materializing
the update into a GFDB normal form (that explicitly lists the generalized tuples
for each fluent) would offer similar advantages as updates do in regular databases.

Projection over BAT-GFDBs

The (simple) projection problem is the task of predicting whether a condition
holds at a particular time in the future after a series of ground actions have been
executed [13]. The following is a straightforward result.

Theorem 4. Let D be a BAT-GFDB, α1, . . . , αn a sequence of ground actions,
and φ(s) a first-order formula uniform in s. Then determining whether or not
the following holds is decidable: D |= φ(do(αn, · · · do(α1, S0))) .

This is not a new result and can be proven by means of regression and the
fact that E is decidable. Our previous analysis also shows that simple projection
queries over a BAT-GFDB can be decided by iteratively progressing D0 wrt
α1, . . . , αn according to Th. 3 and then evaluating the query over the resulting
GFDB following the method of [7]. Depending on the type of queries, and the
frequency that actions occur, either approach may be preferred under conditions.

We now proceed to show a major result about the decidability of richer pro-
jection queries over BAT-GFDBs that may also quantify over future situations.
A generalized version of the projection problem is when φ may refer to any
number or combination of future situations. For instance, referring to Ex. 1, the
formula ∀s.do(moveTo(2, 2), S0) v s ⊃ ∃xy.Dest(x, y, s) states that after exe-
cuting action moveTo(2, 2) in the initial situation, the agent has an available
destination in any future situation.

We consider the language Lp of generalized projection queries ϕ. Lp is defined
on top of the language Ln, whose formulas φ are as follows: φ := x = c | x =
y | F (x, s) | F (x, σ) | ¬φ | φ ∧ φ | ∃x.φ, for F a fluent symbol, c a constant,
and σ a ground situation term. Lp formulas are defined as: ϕ := φ | ¬ϕ | ϕ∧ϕ |
∃s.σvs ∧ ϕ, where φ ∈ Ln is any formula uniform in s or in a ground situation
term σ, whose free variables (if any) are only of sort situation.

We also consider a class of BAT-GFDBs which we call C-bounded. To de-
fine it, let TV be the (finite) set of all generalized tuples ψ that use equality
constraints with (only variable) symbols from the finite set of variables V , and
s.t. ψ does not contain multiple occurrences of some equality constraint. Notice
that since generalized tuples are conjunctions (thus multiple occurrences of a
conjunct do not change their semantics), TV essentially contains all the possible
generalized tuples one can build using symbols from V .

Definition 3. Let D be a BAT-GFDB and B a natural number. A ground situ-
ation term σ is said to be constant-bounded by B in D (or simply C-bounded) iff
for every fluent F (x, s) ∈ F , it is the case that D |=

∨
Ψ∈2TV ∃y.F (x, σ) ≡

∨
ψ∈Ψ ψ,

where: V is partitioned into X and Y , with X the set of variables occurring in
x, Y any set of variable symbols such that |Y | = B, and y are the free variables
of ψ coming from Y . D is said to be constant-bounded by a finite bound B,
C-bounded by B for short, iff every ground situation term of D that is executable
is also C-bounded by B.

Notice that Ψ above is a set of generalized tuples, thus the formula
∨
ψ∈Ψ ψ is a

generalized relation. Intuitively, Definition 3 requires that the definition of each
fluent in σ is a generalized relation mentioning at most B distinct constants. An
example of C-bounded BAT-GFDB is provided by the action theory of Ex. 1.

For this class of theories, we have the following result.

Theorem 5. Given a BAT-GFDB D that is C-bounded by some B, and a gener-
alized projection query sentence ϕ in Lp, it is decidable to check whether D |= ϕ.

The rest of this section details the proof of this theorem.

Definition 4. A (labelled) transition system over GFDBs (for a GFDB-BAT
D), GFDB-TS for short, is a tuple T = (Q, q0,→, L), where:

– Q is the GFDB-TS’s (nonempty) set of nodes2;
– q0 ∈ Q is the GFDB-TS’s initial node;
– → ⊆ Q × Act × Q is the GFDB-TS’s transition relation, for Act the set of

all ground action terms of D; we interchange the notations (q, α, q′) ∈ →
and q

α−→ q′;
– L is the GFDB-TS’s labelling function, associating each node q with a gen-

eralized fluent database L(q).

We associate each ground situation term σ = do([α1, . . . , αn], S0) with the node

qσ s.t. q0
α1−→ · · · αn−1−→ qσ, if it exists.

In Def. 4, the label L(q) of a generic node q is a GFDB, thus uniform in S0

as required by the corresponding definition. Such GFDBs should be intuitively
understood as defining the state of the situation obtained by executing, from S0,
the ground actions labeling a path from q0 to q, while moving the “S0 point of
reference” to be the current situation.

Besides the standard semantics of Lp over action theories, we define an al-
ternative semantics over GFDB-TSs.

Definition 5. Given a GFDB-TS T , an Lp formula ϕ, and a node q of T , we
define when T satisfies ϕ at node q, written T, q |= ϕ, as follows:

– for ϕ = φ ∈ Ln, T, q |= ϕ, iff
• φ is uniform in s, i.e., of the form φ(s), and E , L(q) |= φ(S0), i.e., treated

as a local query over node q; or
• φ is uniform in σ, qσ exists, and T, qσ |= φ[σ/s], i.e., reduced to the

previous case as a a unique base case;
– the semantics of the connectives ¬, ∧ is as standard;
– T, q |= ∃s.σ v s ∧ ϕ, for σ = do([α1, . . . , αn], S0), if for some σ′ =

do([α1, . . . , αn, . . . , αm], S0) s.t. m ≥ n, it is the case that qσ′ is defined
and T, qσ′ |= ϕ[s/σ′];

When ϕ is a sentence, T is said to satisfy ϕ, written T |= ϕ iff T, q0 |= ϕ.

Every BAT-GFDB D induces an infinite GFDB-TS, as defined below.

Definition 6. The induced GFDB-TS of a BAT-GFDB D is the GFDB-TS
TD = (Q, q0,→, L) (over D), s.t.:

– Q is the set of all D’s ground situation terms;
– q0 = S0;

– q
A(c)−→ q′ iff q′ = do(A(c), q);

2 We use node instead of state to avoid confusion with the states associated with
situations in action theories.

– L(q) is a generalized database such that:
• if q = q0 then L(q) = D0;
• if q 6= q0 and there exists q′ s.t. q′

A(c)−→ q, then L(q′) is the progression of
L(q) wrt A(c) and D, where do(A(c), q) is replaced by S0.

Our first result shows that, as far as generalized projection queries are concerned,
the induced GFDB-TS can be used as an alternative representation of D.

Lemma 1. Let D be a BAT-GFDB and TD the corresponding induced GFDB-
TS. Then, for any generalized projection query ϕ that is a sentence in Lp, we
have that D |= ϕ iff TD |= ϕ.

Proof. By induction on the structure of ϕ.

Thus, one can check whether D |= ϕ using TD. Obviously, this does not imply
decidability, as both the situation terms and the state space of TD are in general
infinite. We show next how to circumvent this problem when D is a BAT-GFDB
C-bounded by a bound B.

Starting from D and ϕ, we construct a finite GFDB-TS T̂D,ϕ that is indis-
tinguishable from TD, by ϕ. To this end, fix a finite set of constants H ⊆ C,
s.t. CD ∪ Cϕ ⊆ H and |H| ≥ B · |F|+ |CD ∪ Cϕ|+NA, where: CD and Cϕ are the
set of constants respectively occurring in D and ϕ, and NA is the largest number
of parameters in the action types of D. The construction of T̂D,ϕ is shown in
Algorithm 1, where Progr(D0, A(c)) denotes the result of progressing an initial
theory D0 w.r.t. a ground action A(c), which we assume to be a GFDB (see
Th. 3). The symbol ≡E represents logical equivalence between theories, under E .

The procedure inductively builds a GD-TS for D, by applying, at every step,
all the executable actions obtained from the action types of D and the constants
in H. Applying an action A(h) consists in progressing (line 10) the labeling DB of
the current node q (initially q0) w.r.t. A(h), provided it is executable according
to the labeling L(q) (line 9), then replacing, in the obtained progression, the
situation term do(A(h), S0) by S0. If the obtained progression P is not logically
equivalent (under E) to any GFDB labeling some node of (the current) Q, then a
fresh node q′ is added to Q, with labeling L(q) = P (lines 11–15); if instead some
node q′ exists with L(q′) logically equivalent to P , then q′ is simply retrieved
from Q (line 17), and no new node is added. In either case, a transition from q
to q′ under the executed action is added to→ (line 15). Every time a fresh node
is added to Q, it is stored in the set Front, containing the nodes of Q to be
expanded. Initially, Front = {q0}. The algorithm returns when Front is empty.

Lemma 2. Algorithm 1 terminates on any C-bounded BAT-GFDB D and gen-
eralized projection query ϕ.

Proof. Follows from the facts: H is finite; checking E , L(q) |= Poss(A(h), S0)
is decidable as L(q) is a GFDB; checking P ≡E L(q) is decidable, P and L(q)
being GFDBs; for a given (finite) set of fluents F and a finite set H of constants,
there exist only finitely many equivalence classes of logically equivalent (under
E) GFDBs that can be defined using only constants from H.

Algorithm 1 (Constructs T̂D,ϕ)

1: procedure BuildT̂ (D, ϕ)
2: Q := {q0};
3: → := ∅;
4: L(q0) := D0;
5: Front := {q0};
6: while Front 6= ∅ do
7: for all q ∈ Front do
8: Front := Front \ {q};
9: for all A(h) s.t. A ∈ A, h ∈H and E , L(q) |= Poss(A(h), S0) do

10: P := Progr(L(q), A(h))[do(S0, A(h))/S0];
11: if ¬∃q′ ∈ Q s.t. P ≡E L(q′) then
12: let q′ a fresh node;
13: Q := Q ∪ q′;
14: L(q′) := P ;
15: Front := Front ∪ {q′};
16: else
17: let q′ ∈ Q be s.t. L(q′) ≡E P ;
18: end if
19: → :=→∪ (q,A(h), q′);
20: end for
21: end for
22: end while
23: return (Q, q0,→, L);
24: end procedure

The following result, together with Lemma 1, proves that one can use T̂Dϕ,
instead of the infinite TD, to check D |= ϕ.

Lemma 3. For any BAT-GFDB D C-bounded by some bound B and generalized
projection query ϕ that is a sentence in Lp, we have that: TD |= ϕ iff T̂D,ϕ |= ϕ.

Proof. (Sketch) Given two GFDBs D0 and D′
0, and a set C ⊆ C of constants,

write D0 ≈C D′
0, if there exists a bijection γ : CD0

∪ C → CD′0 ∪ C that is the
identity on C, s.t. for the theory D′′

0 obtained from D0 by renaming all of its
constants c as γ(c), it is the case that D′′

0 ≡E D′
0. (This intuitively means that D0

and D′
0 are logically equivalent up to renaming of the constants not mentioned in

C.) Then, let TD = (Q, q0,→, L), T̂D,ϕ = (Q̂, q̂0, →̂, L̂), and CD,ϕ = CD∪Cϕ. The

proof is based on proving that (*) for any q ∈ Q and q̂ ∈ Q̂ s.t. L(q) ≈CD,ϕ
L̂(q̂),

TD, q |= ϕ iff T̂D,ϕ, q̂ |= ϕ. Since L(q0) ≈CD,ϕ
L̂(q̂0) (see Algorithm 1), this

implies that TD, q0 |= ϕ iff T̂D,ϕ, q̂0 |= ϕ, i.e., TD |= ϕ iff T̂D,ϕ |= ϕ. The proof of
(*), omitted for space reasons, is by induction on the structure of ϕ.

To complete the proof of Theorem 5, it remains to show that checking whether
T̂D,ϕ |= ϕ is decidable.

Lemma 4. Given a C-bounded BAT-GFDB D and a generalized projection query
ϕ that is a sentence in Lp, checking whether T̂D,ϕ |= ϕ is decidable.

Proof. (Sketch) To perform the check, we use the following recursive procedure
(the cases of boolean connectives ¬, ∧ and ∨ are as standard):

1: procedure CheckT̂ (q, ϕ)
2: if ϕ = φ ∈ Ln and φ is uniform in s then
3: return T̂D,ϕ, q |= ϕ;
4: end if
5: if ϕ = φ ∈ Ln and φ is uniform in σ then
6: if qσ does not exist in Q then
7: return false;
8: else
9: return CheckT̂ (qσ, ϕ[σ/s]);

10: end if
11: end if
12: if ϕ = ∃s.do([α1, . . . , αn], S0) v s ∧ φ then

13: for all paths q0
α1−→ · · · αn−→ qn+1

αn+1−→ · · ·
αm−1−→ qm s.t. in the suffix

qn+1
αn+1−→ · · ·

αm−1−→ qm, no node occurs more than once do
14: if CheckT̂ (qm, ϕ[s/σ′]) == true, for σ′ = do([α1, . . . , αm−1], S0) then
15: return true;
16: end if
17: end for
18: return false;
19: end if
20: end procedure

(Termination and correctness proofs omitted for brevity.)

Lemmas 1, 2, 3 and 4 prove, together, Th. 5. By exploiting Th. 5 we can
prove the following notable result.

Theorem 6. Given a BAT-GFDB D and a natural number B, checking whether
D is C-bounded by B is decidable.

Proof. (Sketch) From D, a theory D′, C-bounded by B by construction, can be
derived that matches D up to the situations (if any) that violate C-boundedness,
and s.t. the situations preceding a violation are marked with distinguished facts.
This can be done because the formula ϕ(s) =

∨
Ψ∈2TV ∃y.F (x, s) ≡

∨
ψ∈Ψ ψ,

which, for appropriate V , expresses that s is C-bounded by B, is regressable.
We can then prove that D |= ∀s.ϕ(s) iff D′ |= ∀s.ϕ′(s), with ϕ′(s) expressing that
situation s is not marked with any of the distinguished facts discussed above.
Since D′ is C-bounded, by Th. 5, D′ |= ϕ′ is decidable. Thus, so is D |= ϕ.

Related work

Our work relates definitional KBs and BATs over them to the work in databases
and, in particular, constraint query languages (CQL). The representation of
infinitely many tuples we use here shares a lot of similarities with the work in
database theory about finitary representations of infinite query answers [1], and
the more general approach of CQL of [7] that is our main inspiration.

Proper KBs [8] also generalize regular databases by allowing possibly infinite
sets of positive or negative ground facts to be expressed, as well as tuples to
be undefined (incomplete information). This provides enough expressive power
to make theorem proving, in general, undecidable with proper KBs, even for
queries about S0. This is overcome in [8] by an approximate reasoning method
which is always logically sound, but also complete only under specific conditions.
The case of a KB as a generalized database with equality constraints, instead, is
less expressive, as it captures only complete information, but effective, and logi-
cally correct methods exist for query answering, projection, and progression. In
particular, wrt (possibly generalized) projection queries, our approach can deal
with full first-order queries over S0 and any projected ground future situation,
as well as generalized projection queries of a particular form. In contrast, the
approach of [8] can guarantee completeness only under some constraints on the
first-order queries [11], that limit their expressivity.

The case of bounded action theories of [3] is the only one in the literature that
investigates conditions under which generalized projection queries can be decided
over BATs. They require a finite upperbound on the number of positive atomic
facts for all models and situations, and look into queries that can be expressed
over BATs using a first-order variant of the µ-calculus [4]. Our work extends this
work in the case where fluents may have infinite extensions, concisely represented
by means of equality constraints. We are able then to prove similar results for
a wide class of general projection queries. Finally, the two-variable variant of
situation calculus language in [6] allows richer forms of incomplete information
in the initial KB, but is bound by the limitation of using only two variables, e.g.,
not being able to express reachability relations.

Conclusions and future work

In this paper we looked into situation calculus action theories over generalized
fluent databases with equality constraints (GFDB), connecting the situation
calculus with constraint query languages. We showed that GFDBs characterize
the class of definitional KBs and that for action theories over such KBs (BAT-
GFDBs), the KBs are closed under progression. We proved that simple projection
queries over BAT-GFDBs are decidable in general. Also, extending the notion
of boundedness proposed in [3], we introduced the notion of C-boundedness and
showed that, under this, a wide class of generalized projection queries that in-
clude quantification over situations is decidable. Finally, we proved decidability
of checking C-boundedness of a BAT-GFDB for some bound.

For future work we want to consider other constraints, in particular extend-
ing GFDBs to include linear orderings. We believe that this work can provide the
ground for specifying action theories that capture topological properties and rea-
son effectively over rich temporal aspects relating to projection and progression.
We also intend to look into controlled ways to express incomplete information
similar to the extensions of proper KBs in [10] and [2]. We believe that the latter
can be used to include a practical form of incomplete information.

References

1. Chomicki, J., Imieliński, T.: Finite representation of infinite query answers. ACM
Trans. Database Syst. 18(2), 181–223 (1993)

2. De Giacomo, G., Lespérance, Y., Levesque, H.J.: Efficient Reasoning in Proper
Knowledge Bases with Unknown Individuals. In: Proc. of IJCAI’11. pp. 827–832
(2011)

3. De Giacomo, G., Lespérance, Y., Patrizi, F.: Bounded Situation Calculus Action
Theories and Decidable Verification. In: Proc of KR’12 (2012)

4. Emerson, E.A.: Model Checking and the Mu-calculus. In: Descriptive Complexity
and Finite Models. pp. 185–214 (1996)

5. Enderton, H., Enderton, H.B.: A Mathematical Introduction to Logic, Second Edi-
tion. Academic Press (2001)

6. Gu, Y., Soutchanski, M.: Decidable Reasoning in a Modified Situation Calculus.
In: Proc. of IJCAI ’07. pp. 1891–1897 (2007)

7. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint Query Languages. Journal
of Computer and System Sciences 51(1), 26–52 (1995)

8. Levesque, H.J.: A Completeness Result for Reasoning with Incomplete First-Order
Knowledge Bases. In: Proc. of KR’98 (1998)

9. Lin, F., Reiter, R.: How to Progress a Database. Artificial Intelligence 92(1-2),
131–167 (1997)

10. Liu, Y., Lakemeyer, G., Levesque, H.J.: A Logic of Limited Belief for Reasoning
with Disjunctive Information. In: Proc. of KR’04. pp. 587–597 (2004)

11. Liu, Y., Lakemeyer, G.: On the Expressiveness of Levesque’s Normal Form. J.
Artif. Int. Res. 31(1), 259–272 (2008)

12. Liu, Y., Levesque, H.J.: Tractable Reasoning with Incomplete First-Order Knowl-
edge in Dynamic Systems with Context-Dependent Actions. In: Proc.of IJCAI’05
(2005)

13. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

14. Reiter, R.: The Projection Problem in the Situation Calculus: A Soundness and
Completeness Result, with an Application to Database Updates. In: Proc. of
AIPS’92. pp. 198–203 (1992)

15. Vassos, S., Levesque, H.J.: How to progress a database III. Artificial Intelligence
195, 203–221 (2013)

16. Vassos, S., Patrizi, F.: A Classification of First-Order Progressable Action Theories
in Situation Calculus. In: Proc. of IJCAI’13 (2013)

