
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Imitation Learning over Heterogeneous Agents with Restraining Bolts

Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, Fabio Patrizi
DIAG - Università di Roma “La Sapienza”, Italy

lastname@diag.uniroma1.it

Abstract
A common problem in Reinforcement Learning (RL) is that
the reward function is hard to express. This can be overcome
by resorting to Inverse Reinforcement Learning (IRL), which
consists in first obtaining a reward function from a set of ex-
ecution traces generated by an expert agent, and then making
the learning agent learn the expert’s behavior –this is known
as Imitation Learning (IL). Typical IRL solutions rely on a
numerical representation of the reward function, which raises
problems related to the adopted optimization procedures.
We describe an IL method where the execution traces gener-
ated by the expert agent, possibly via planning, are used to
produce a logical (as opposed to numerical) specification of
the reward function, to be incorporated into a device known as
Restraining Bolt (RB). The RB can be attached to the learn-
ing agent to drive the learning process and ultimately make
it imitate the expert. We show that IL can be applied to het-
erogeneous agents, with the expert, the learner and the RB
using different representations of the environment’s actions
and states, without specifying mappings among their repre-
sentations.

Introduction
Inverse Reinforcement Learning (IRL) consists in estimat-
ing a reward function from a set of traces captured during
the execution of an agent’s policy. IRL can be used in many
application domains to implement forms of Imitation Learn-
ing (IL). In IL, an expert agent executes a possibly optimal
policy, generating a set of execution traces which are ex-
ploited by a learning agent to reconstruct the reward func-
tion, in turn used to learn a (possibly optimal) policy that
imitates the expert behavior. Providing examples of the (op-
timal) policy is a very convenient way to specify goals for
the learning agent, in contrast to defining a reward func-
tion, which is typically cumbersome. Interestingly, expert
and learner may be different kinds of agents, e.g., human and
robot, executing tasks in different ways, i.e., with different
action and perception abilities. Unfortunately, this prevents
an off-the-shelf application of the IRL approach as, in the
classical IRL setting, the expert and the learner must share
the representation space (e.g., states and actions).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, expert and learner may have different capa-
bilities representations of states and actions; thus, the learner
cannot interpret the traces generated by the expert. To deal
with this, we exploit the idea of Restraining Bolt (RB) (De
Giacomo et al. 2019): a device, with its own sensors, that
can be attached to a Reinforcement Learning (RL) agent, to
constrain its behavior and make it fulfill desired temporal
high-level goals. Such goals are expressed as formulas of
linear-time temporal logic over finite traces, LDLf (De Gia-
como and Vardi 2013), over a set of fluents, generally differ-
ent from the features used by the RL agent.

We consider a setting where the expert agent executes its
policy, producing desired and undesired traces at its own
representation level. From these traces, we obtain a deter-
ministic finite-state automaton (DFA) accepting all the posi-
tive (desired) traces and rejecting all the negative (undesired)
ones. The DFA thus represents (an approximation of) the ex-
pert’s behavior. Then, based on a well-known equivalence
between LDLf and DFAs (De Giacomo and Vardi 2013), the
DFA is incorporated into a RB attached to the RL agent, to
make it learn a (possibly optimal) policy that imitates the
expert’s behavior.

The ability of the RB to guide learning for a RL agent,
when both use different representations and with no explicit
mapping between them, has been proven in (De Giacomo et
al. 2019). Here, we exploit that result to implement an IL
procedure where the specification of the transferred behav-
ior is provided at a higher level wrt the states of the MDP.
In other words, the low-level traces generated by the expert
are transformed into high-level traces from the RB sensors.
Once the high-level behavior is learned, this can be trans-
ferred to an agent with different capabilities. This process
can be seen as IRL at the RB representation level: instead of
estimating the reward function, we reconstruct the DFA as-
sociated with the goal formula and then use it for learning.

The main advantage of this setting is a higher modular-
ity, as agents and RBs can be combined to form complex IL
systems with minimal effort. Indeed, as discussed in (De Gi-
acomo et al. 2019), a RL agent can be extended to receive
signals from a RB in a domain-independent way, by sim-
ply extending its state with an integer variable to store (an
encoding of) the current state of the RB’s DFA.

517



Summarizing, our contribution is an IL technique for
agents with completely different state-action representa-
tions. The technique is based on the use of a RB to spec-
ify a high-level behavior and does not require any explicit
mapping between the different representations.

Related work
Most IRL solutions model the reward function in parametric
form (e.g., a weighted sum of reward features) and use some
optimization or regression method to optimize the parame-
ter values (see (Arora and Doshi 2018) for a recent survey of
IRL solutions). The main issue with these approaches is that
the optimization problem is essentially ill-posed, as many re-
ward functions exist (including that with all null values) that
can explain the observations, and defining metrics for their
comparison is difficult (Ng and Russell 2000). E.g., two re-
ward functions differing only in one state-action pair may
produce considerably different behaviors. Although these
solutions solve several issues in IRL, estimating numeri-
cal reward functions from execution traces remains an open
problem. This paper aims, instead, at synthesizing the re-
ward function at a logical level (the RB’s representation
level), avoiding numerical optimization and regression, thus
overcoming their respective limitations. The proposed ap-
proach allows also for dealing with non-Markovian rewards.

Two broad classes of approaches, passive and active, exist
to learn a (temporal) formula/DFA from sets of positive and
negative traces. In passive approaches the formula/DFA is
learned from a fixed set of positive and negative traces. Ex-
amples include (Camacho and McIlraith 2019) and (Heule
and Verwer 2010). In the former, an LTLf formula satisfied
by all positive traces and by no negative trace is generated.
In the latter, the problem is compiled into SAT and then,
by exploiting the SAT technology, a minimum-size DFA
(wrt number of states) accepting all positive and no nega-
tive traces is obtained. In active learning, the set of traces is
produced as the result of an interaction between the learner
and the expert. The distinctive feature of this approaches is
the fact that the expert knows the target formula/automaton
(which is not the case in this work). Angluin’s L∗ algo-
rithm (Angluin 1987) (and later extensions) offers an ex-
ample of this. While our work is agnostic to the learning
technique, which is used in a black-box fashion, we resort to
active learning, specifically Angluin’s technique, using some
care to overcome the fact that the expert does not know the
target formula/automaton.

Problem definition
A Restraining Bolt (RB) is a tuple RB = 〈L, {(ϕi, ri)}mi=1〉
where each ϕi is an LDLf formula over a set of fluents L and
each ri is a reward value. Fig. 1 illustrates the basic RB set-
ting. This is a standard RL scenario, with the environment,
the RL agent, its features and the reward function, extended
with the RB, i.e., a device that observes the environment and,
based on its own fluents, offers rewards to the agent. Fluents
constitute the RB’s representation of the environment state
and need not match the RL agent features (and typically they
do not). Formulas ϕi specify the behaviors that should be re-

Figure 1: The RB setting

Figure 2: Trace generation for RB-IRL

warded, each with its respective ri. As known (De Giacomo
and Vardi 2013) LDLf formulas can be equivalently repre-
sented as DFAs. We use this representation. RBs were intro-
duced in (De Giacomo et al. 2019), to constrain an agent’s
behavior to fulfill high-level (i.e., fluent-based) goals. We
refer to that work for further details.

We use RBs to address the problem of transferring a task
from an expert to a learner agent. The task is represented by
a formula ϕ in a RB or, more precisely, by the corresponding
DFA Q. As a result, we consider RBs of the form 〈L, Q, r〉,
where Q is a DFA representing an LTLf /LDLf formula and
r is a reward value associated with the accepting states of Q.

Consider now an expert agent defined on an MDP Me =
〈Se, Ae, T re, Re〉. The agent can execute optimal policies of
a given target task represented by a DFA Q, but cannot make
the corresponding reward function explicit; in other words,
the agent knows how to accomplish the task but cannot de-
scribe it. As the agent executes the policy, some traces are
produced, some of which are desirable (posiive) and some
other are not. The expert can correctly classify the traces as
positive or negative, based on its own state representation.

On the other hand, the traces can also be seen from the RB
perspective, through the RB sensors. Thus, from each state,
the fluents can be extracted to produce the corresponding
representation in the RB space. Notice the expert does not
know anything about fluents, in particular, it cannot inter-
pret them, as belonging to a different representation space.
In fact, the expert is not even aware of the RB. This sce-
nario is illustrated in Figure 2. Let T be a set of fluent
traces collected while observing the behavior of the expert.
The problem we address in this paper is that of reconstruct-
ing a DFA QT that is consistent with T , i.e., that accepts
all of its positive traces and none of its negative. The ap-
proach proposed in this paper allows for generating a new
RB RB = 〈L, QT , r〉, where QT is the DFA built from T ,
and r is a reward value associated with the accepting states
of QT . After the training phase, the generated RB can be
placed on a learner agent to drive the learning process of a
behaviour imitating the expert’s.

518



Figure 3: RB’s DFA learning setting

Consider a learner agent defined on Ml =
〈Sl, Al, T rl, Rl〉, with Trl and Rl unknown, equipped
with the RB that encodes the behavior of the expert agent in
performing the given task. The system MRB

l = 〈Ml, RB〉
can be used to learn an optimal policy driven by RB, as
explained in (De Giacomo et al. 2019). In this way, the
behavior of the learner agent imitates that of the expert,
when considering the evolution at the RB level.

Notice again that the state representations of Se and Sl,
as well as the set of actions Ae and Al, may be completely
different (e.g., states may come from different sets of state
variables), as long as they allow to solve the task. Moreover,
no explicit mapping between them is required.

Solution method
The core problem of our approach is extracting the DFA (or
the formula) from the set T of (positive and negative) traces,
to be incorporated in the RB used by the learning agent to
learn the expert’s behavior. This is illustrated in Fig. 3. No-
tice that the target DFA is unknown, even to the expert. As a
result, the best we can hope for is to come up with an approx-
imation. For this reason, we search for a DFA that accepts all
positive and no negative traces, according to T .

Since we aim at generalizing over the data T , the obtained
DFA must accept more traces than exactly the positive ones,
and possibly reject more than the negative ones. As typical
in learning, in order to guarantee a certain degree of gen-
eralization, some bias must be introduced. One reasonable
approach is to check smaller DFAs (in terms of number of
states) first. This is motivated by the intuition that smaller
DFAs are less selective and tend to accept more traces than
those with a large number of states. As a result, we expect
them to generalize better than large ones.

As discussed, several approaches exist for extracting a
DFA from a set of labelled traces. In our case, any is a rea-
sonable candidate. For simplicity, we have selected L∗ (An-
gluin 1987). The choice was due to the following reasons.
Firstly, the algorithm returns a DFA (not a formula) that can
be used as-is when executing the RB –in the case of a for-
mula, instead, this should be translated into its equivalent
DFA representation first. Secondly, the algorithm produces
increasingly larger DFAs, thus satisfying the generalization
requirement discussed above –though it is not guaranteed to
return the minimal DFA. Thirdly, the technique has been im-
plemented in a reliable software framework, LearnLib, ac-
tively tested and maintained, which has proven extremely
convenient for the implementation step1. We remark that our
approach is agnostic to the specific DFA/formula extraction
technique.

1https://learnlib.de

The algorithm works as follows. The learner poses mem-
bership queries (“is this a positive trace?”) and equivalence
queries (“is this the target formula/automaton?”) to the ex-
pert, which answers respectively with a “yes/no” and a “yes”
or a counterexample (“no, because this trace should be/not
be accepted”). The learner uses membership queries to pro-
duce a candidate DFA. Once done with this, the learner asks
the expert whether the candidate solution is the target DFA.
If the expert answers “yes”, the DFA has been found and no
other work is required; if the expert answers “no”, it also
returns a counterexample which is used by the learner, to-
gether with possible additional membership queries, to pro-
duce a new candidate solution to be checked for equivalence,
and so on. The algorithm is shown to terminate and find the
target DFA in polynomial time wrt both the size of the min-
imal DFA equivalent to the target DFA and the maximum
length of any returned counterexample (Angluin 1987).

Unfortunately, in our case, the expert executes the pol-
icy offline, thus cannot be asked whether a certain trace is
positive or negative, and, more critically, does not know the
target DFA, thus cannot perform the equivalence check. As a
consequence, the expert cannot act as the oracle required by
L∗ to answer the queries. Nonetheless, using the dataset T ,
the oracle can be simulated in such a way that L∗ generates
a suitable approximation of the target DFA. This is done as
follows: when a membership query is posed, the (simulated)
oracle answers “no”, if the input trace is classified as nega-
tive in T , otherwise it answers “yes”; when an equivalence
check is to be performed, the oracle answers “yes ” if the
candidate DFA accepts all positive traces and no negative
trace from T , and “no” otherwise, returning also one of the
traces that made the test fail.

As it can be easily seen, with this trick we can simulate
the required oracle and thus apply the algorithm. Also, by
the choices above, the returned DFA is an approximation of
the (unknown) target DFA, in the sense discussed above. No-
tice that we are potentially accepting all traces that are not
explicitly forbidden by T . Obviously, this is not the only op-
tion and other are possible (e.g., classify randomly the traces
not in T ), yet it is a possible way to achieve a generalization
wrt the data set.

Case studies
We showcase our approach in three scenarios: BREAK-
OUT (De Giacomo et al. 2019), SAPIENTINO (De Giacomo
et al. 2019) and MINECRAFT (Icarte et al. 2018) (see Fig-
ure 4). For each scenario, we proceeded as follows.

Firstly, we fixed a restraining bolt in LTLf /LDLf , repre-
senting the target task, and we played a simplified version
the game (that we call variant A), recording its traces (pro-
jected on fluents only) and labeling the good or bad accord-
ing to the satisfaction of the formula. In this way, we gen-
erate an “expert behavior” that can be used later for assess-
ing the quality of the policy learned. Then, we used the col-
lected traces to generate a DFA that captures the expert’s
behavior, using the LearnLib implementation of Angluin’s
algorithm, as described in the previous section. Such a DFA
typically is not the same as the LTLf /LDLf formula but it is
close enough. Next, the learner learns a policy in the more

519



Figure 4: Experimental scenarios: BREAKOUT, SAPI-
ENTINO, MINECRAFT

complex game (variant B) using the learned DFA as the re-
straining bolt, using the same approach described in (De
Giacomo et al. 2019). Finally, to assess policy learned we
simulate its execution together with the original LTLf /LDLf

DFA checking when we reach its final states.
Notice that for each scenario, the features and the actions

in variant A and variant B are different. In particular, in vari-
ant A actions are stronger making the game easier. Notice
that there must be a relationship (but not an isomorphism)
between the actions in the two variants for making the ap-
proach effective in practice, but such a relationship can be
quite loose and can remain unexpressed. Note also that ac-
tions are not used in the alphabet to progress the DFA and
hence are not part of the reward given by the restraining bolt.
This allows us to have different actions in the two variants.
What is crucial for our approach to work is to have enough
good and bad high-level traces to learn an accurate DFA.
Once we get DFA, we assign a reward to the final states,
and apply the restraining bolt techniques (De Giacomo et
al. 2019).

We next describe each, scenario together with the cor-
responding variants and the target task. In all cases, the
generated DFA was consistent with the target task and
the learner was able to learn the task. The code can be
found at https://github.com/whitemech/Imitation-Learning-
over-Heterogeneous-Agents-with-Restraining-Bolts.
Breakout. This is the popular Atari game where a brick wall
must be destroyed. In the original version, bricks can be re-
moved by hitting them with a ball driven by a paddle placed
at the bottom of the screen, that can move only horizontally.
As variant A, we considered the game where there is no
ball and the paddle can fire bullets to break the bricks. In
this case, the state representation of the expert consists in
the paddle position only. Notice that the brick configuration
is not accessible to the agent (and neither is, consequently,
the configuration of columns). As variant B, instead, we
used the original version. In this variant, the learner can hit
the ball with the paddle (but cannot fire) and can access the
ball velocity and position. The target task is: all bricks must
be removed, completing the columns from left to right, i.e.,
all the bricks in column i must be removed before complet-
ing any other column j > i. This task can be expressed with
an LDLf formula, using a fluent to represent the state of each
column (completed or not).

Sapientino. SAPIENTINO is an educational game for 5-
8 y.o. children where a small mobile robot must be pro-
grammed to visit specific cells in a 5x7 grid. Some cells con-
tain concepts that must be matched by the children (e.g., a
colored animal, a color, the first letter of the animal’s name),

while other cells are empty. The robot executes sequences
of actions given in input by children with a keyboard on the
robot’s top side. During execution, the robot moves on the
grid and executes an action (actually a beep) to announce
that the current cell has been reached (this is called a visit of
a cell).

As variant A, we took the scenario where the (ex-
pert) robot can move omni-directionally (actions: up, down,
left, right). As variant B, we took the scenario where the
(learner) robot can move differentially (actions: forward,
backward, turn left, turn right). In both variants, the robot
cannot see its position on the grid, nor can sense colors
and/or concepts on the cells. The target task is: visit a se-
quence of colors in a given order without bad beeps between
the visits.

Minecraft. In this scenario, an agent has to accomplish a
task consisting in a sequence of get resource and use tool
actions. A requirement to get resources and use tools is that
the robot be on the cell associated with the resource or tool.

In variant A, the expert is endowed with ”teleporting”
capabilities (e.g. ”go to a resource/tool”). In variant B, the
learner can move only on the grid using differential drive,
similarly variant B of SAPIENTINO.

Results of learning variant B tasks are similar to the ones
presented in (De Giacomo et al. 2019) and are thus not re-
ported here.

Conclusions
We have shown an approach based on the use of Restraining
Bolts to perform Imitation Learning in a scenario where het-
erogeneous agents are involved, i.e., where, in particular, the
expert and the agent do not share the same state representa-
tion nor a mapping between them. We do so by applying an
approach based on Inverse Reinforcement Learning, where
the behavior of the expert agent is learned and represented as
a DFA that is then incorporated in a RB, in turn used by the
learner at training time. Interestingly, the DFA constitutes a
logical representation of the reward function, thus avoiding
a number of problems arising when a numerical representa-
tion is adopted. We have performed experiments on several
use-cases to show the effectiveness of our approach. Despite
the differences in the state-action representation space, in all
cases our approach was successful in transferring a task from
the expert to the learner.

Future directions include testing different approaches to
the generation of the DFA from a set of traces, as well as
other approximation criteria.

Acknowledgments
Work supported in part by European Research Council un-
der the European Union’s Horizon 2020 Programme through
the ERC Advanced Grant WhiteMech (No. 834228), by
the EU Horizon 2020 research and innovation program un-
der AI4EU project (grant N. 825619), and by the Sapienza
Project DRAPE: Data-awaRe Automatic Process Execution.

520



References
Angluin, D. 1987. Learning regular sets from queries and
counterexamples. Inf. Comput. 75(2):87–106.
Arora, S., and Doshi, P. 2018. A survey of inverse reinforce-
ment learning: Challenges, methods and progress.
Camacho, A., and McIlraith, S. A. 2019. Learning inter-
pretable models expressed in linear temporal logic. In Pro-
ceedings of the Twenty-Ninth International Conference on
Automated Planning and Scheduling, ICAPS 2018, Berke-
ley, CA, USA, July 11-15, 2019, 621–630.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In IJCAI.
De Giacomo, G.; Iocchi, L.; Favorito, M.; and Patrizi, F.
2019. Foundations for restraining bolts: Reinforcement
learning with ltlf/ldlf restraining specifications. In Proceed-
ings of the Twenty-Ninth International Conference on Auto-
mated Planning and Scheduling, ICAPS 2018, Berkeley, CA,
USA, July 11-15, 2019., 128–136.
Heule, M., and Verwer, S. 2010. Exact DFA identifica-
tion using SAT solvers. In Grammatical Inference: Theo-
retical Results and Applications, 10th International Collo-
quium, ICGI 2010, Valencia, Spain, September 13-16, 2010.
Proceedings, 66–79.
Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.; and McIlraith,
S. A. 2018. Teaching multiple tasks to an RL agent using
LTL. In AAMAS, 452–461.
Ng, A. Y., and Russell, S. J. 2000. Algorithms for inverse re-
inforcement learning. In Proceedings of the Seventeenth In-
ternational Conference on Machine Learning (ICML 2000),
Stanford University, Stanford, CA, USA, June 29 - July 2,
2000, 663–670.

521


