
Software Impacts 14 (2022) 100435

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

A tool for compiling Declarative Process Mining problems in ASP
Francesco Chiariello a,∗, Fabrizio Maria Maggi b, Fabio Patrizi a

a Sapienza University of Rome, Italy
b Free University of Bozen-Bolzano, Italy

A R T I C L E I N F O

Keywords:
Process Mining
Business Process Management
Answer Set Programming

A B S T R A C T

We present a tool for compiling three problems from the Process Mining community into Answer Set
Programming: Log Generation, Conformance Checking, and Query Checking. For each problem, two versions
are addressed, one considering only the control-flow perspective and the other considering also the data
perspective. The tool can support companies in analyzing their business processes; it is highly flexible and
general, and can be easily modified to address other problems from Declarative Process Mining.
Code metadata

Current code version v1
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-176
Permanent link to Reproducible Capsule https://codeocean.com/capsule/1375188/tree/v1
Legal Code License Apache-2.0
Code versioning system used git
Software code languages, tools, and services used Python, clingo
Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual
Support email for questions chiariello@diag.uniroma1.it
1. Introduction

Process Mining (PM) is a research area at the intersection of Busi-
ness Process Management (BPM) and Data Mining. It aims to get
insights into business processes by analyzing event logs stored by
enterprise information systems. An event log is a collection of finite
sequences – or traces – of activities, each handling a different case. Such
traces may contain additional data attached to activities, in the form of
attribute values. We talk about control-flow perspective when focusing
on the activities occurring in a trace, and about data perspective when
also considering activity attributes and their respective values. A process
model is a specification of a process, whose executions generate traces
of interest. Such models can be provided in the form of executable
structures, such as Petri Nets or BPMN, or as formulas in a formal
language, such as declare [1] or ltl𝑓 [2], as in Declarative Process
Mining (DPM).

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: chiariello@diag.uniroma1.it (F. Chiariello), maggi@inf.unibz.it (F.M. Maggi), patrizi@diag.uniroma1.it (F. Patrizi).

We address three problems from DPM. Log Generation is the prob-
lem of generating logs consistent with an input process model, which
possibly satisfy further requirements, such as trace length. This problem
arises from the need for controlling data with the aim of experimentally
testing and validating specific aspects of PM techniques. Conformance
Checking is the problem of checking whether the traces of a log conform
to an input process model. This allows for checking whether a process
execution behaves as expected or not. It is indeed common that some
traces in an event log deviate from their nominal behavior, as the
results, e.g., of manual activities. Finally, Query Checking is the problem
of discovering some properties of a process, by checking candidate
template properties against the traces in the process event log. This
allows, e.g., for discovering a (possibly partial) process specification.

We have devised a tool for compiling instances of these three
problems into Answer Set Programming. Our implementation can cope
with both the control-flow and the data perspectives.
https://doi.org/10.1016/j.simpa.2022.100435
Received 5 October 2022; Received in revised form 23 October 2022; Accepted 25

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open acce
(http://creativecommons.org/licenses/by/4.0/).
October 2022

ss article under the CC BY license

https://doi.org/10.1016/j.simpa.2022.100435
https://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100435&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2022-176
https://codeocean.com/capsule/1375188/tree/v1
mailto:chiariello@diag.uniroma1.it
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:chiariello@diag.uniroma1.it
mailto:maggi@inf.unibz.it
mailto:patrizi@diag.uniroma1.it
https://doi.org/10.1016/j.simpa.2022.100435
http://creativecommons.org/licenses/by/4.0/


F. Chiariello, F.M. Maggi and F. Patrizi Software Impacts 14 (2022) 100435

s
a
c
p
s

t
p

2

r
c
e

Fig. 1. Schematic overview of the approach.
Answer Set Programming (ASP) [3] is a declarative approach for
olving combinatorial search problems. In ASP, a problem is modeled as
logic program, which is essentially a logical theory, and its solution(s)

orrespond to the answer sets, i.e., a specific class of models, of the
rogram itself. Answer sets can be obtained by feeding an ASP system,
uch as clingo1 or dlv,2 with the logic program (see Fig. 1).

In addition, we also provide process models and event logs for
esting the tool, which consists of a set of scripts for converting each
roblem instance into an ASP program.

. Description

As common in Declarative Problem Solving, to guarantee elabo-
ation tolerance [4] we split a problem into two parts: the problem
lass and the problem instance. We encode each problem class consid-
red here (i.e., Log Generation,3 Conformance Checking,4 and Query

Checking5) into an ASP program. Furthermore, we provide scripts
for converting process models (represented as .decl file) and event
logs (represented as .xes files), representing, together, the problem
instance, into ASP. We then input the problem class and the problem
instance to the ASP system clingo, which returns the solutions to the
original problem. Notice that an instance may have zero, one, or many
solutions. In the case of Log Generation, we also provide a script for
converting the obtained answer sets into a .xes file, i.e., the standard
representation formalism for event logs.

Finally, observe that while we take as input a .decl file, thus
handling only declare constraints, one can in principle consider any ltl𝑓
formula [2], by simply converting it into an automaton (using one of
the available tools like Lydia6 or LTLf2DFA78 and then representing it
in ASP in the same way we handle declare.

As a usage example, consider the files contained in https://github.
com/fracchiariello/process-mining-ASP and Conformance Checking.
This problem takes as input a process model and an event log. We can
solve the problem by providing clingo the corresponding input files,
together with the ASP encoding of Conformance Checking:

clingo conformance_encoding.lp 2012_80.lp BPI_
Challenge_2012.asp templates.lp

where: BPI_Challenge_2012.asp is the event log (taken from
the Business Process Intelligence Challenge, BPI 2012,9) 2012_80.lp

1 https://github.com/potassco/clingo
2 https://dlv.demacs.unical.it/home
3 https://codeocean.com/capsule/8240890/tree/v1
4 https://codeocean.com/capsule/2601782/tree/v1
5 https://codeocean.com/capsule/0075725/tree/v1
6 https://github.com/whitemech/lydia
7 https://github.com/whitemech/LTLf2DFA
8 http://ltlf2dfa.diag.uniroma1.it/
9
 https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204

2

is the process model, and templates.lp contains the automata of
the declare templates.

Scripts are written in Python and use only standard libraries, with
the exception of pm4py,10 here used to read .xes files. For the
requirements of the ASP system used we invite the reader to check the
relative page.

3. Impact

The software has been used in [5], where it has been tested on
synthetic and real-life logs taken from various BPI challenges.

The tool for Log Generation has been integrated into RuM11[6], a
state-of-the-art desktop application for solving several PM tasks. Such
integration has provided advantages to both our tool and RuM. From
the perspective of our (command-line) tool, RuM brings the benefit of
an intuitive GUI, which greatly improves usability. From the perspec-
tive of RuM, our tool facilitates the extension of the Log Generation
functionality to constraints beyond those available in declare. Indeed, in
the previous version, such constraints had to be specified in a counterin-
tuitive way by resorting to the Alloy12[7] language, which is essentially
First-order logic; with our tool, instead, they can be specified directly
in ltl𝑓 , which provides a much more natural way of expressing them.
More importantly, with the newly integrated ASP-based approach, RuM
exhibits significantly better time performance.

Concerning Conformance Checking, compared with the state-of-the-
art tool Declare Analyzer [8], our approach exhibits slightly worse
execution-time performance but has the advantage of greater flexibility.
Indeed, Declare Analyzer is an ad-hoc tool specifically tailored for the
limited set of constraints provided by declare, while our tool does not
suffer from such a limitation and can deal with any constraint expressed
in ltl𝑓 .

Wrt the Query Checking problem, since this problem cannot be
currently solved by existing tools, our Query Checking tool can be used
as a basis to extend state-of-the-art PM tools (e.g., RuM or ProM13) with
this novel process analysis functionality.

As for potential applications, since event logs are the basis for any
PM algorithm, our Log Generation tool can be used for testing other PM
techniques in a controlled environment, i.e., where specific features of
the input log can be tuned as desired. The Conformance Checking and
Query Checking tools could instead be used by companies interested in
checking whether their event logs adhere to a process model, or finding
the properties of the process underlying an event log.

10 https://pm4py.fit.fraunhofer.de/
11 https://rulemining.org/
12 https://alloytools.org/
13 https://www.promtools.org/doku.php

https://github.com/fracchiariello/process-mining-ASP
https://github.com/fracchiariello/process-mining-ASP
https://github.com/fracchiariello/process-mining-ASP
https://github.com/potassco/clingo
https://dlv.demacs.unical.it/home
https://codeocean.com/capsule/8240890/tree/v1
https://codeocean.com/capsule/2601782/tree/v1
https://codeocean.com/capsule/0075725/tree/v1
https://github.com/whitemech/lydia
https://github.com/whitemech/LTLf2DFA
http://ltlf2dfa.diag.uniroma1.it/
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://pm4py.fit.fraunhofer.de/
https://rulemining.org/
https://alloytools.org/
https://www.promtools.org/doku.php


F. Chiariello, F.M. Maggi and F. Patrizi Software Impacts 14 (2022) 100435
Finally, we observe that Conformance Checking is an essential
building block for many fundamental PM problems, which ultimately
reduce to checking conformance of an event log wrt to a process model;
moreover, our approach being declarative, the encoding can be easily
modified and tailored for other problems. Therefore, in the future, our
tool may be used as an essential component to develop new approaches
for more complex problems, such as Process Discovery and Process
Model Repair [9].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

Work partly supported by the ERC Advanced Grant WhiteMech (No.
834228), the EU ICT-48 2020 project TAILOR (No. 952215), the EU
ICT-49 2021 project AIPlan4EU (No. 101016442), and the UNIBZ, Italy
project CAT.
3

References

[1] Wil M.P. van der Aalst, Maja Pesic, Helen Schonenberg, Declarative workflows:
Balancing between flexibility and support, Comput. Sci. Res. Dev. 23 (2) (2009)
99–113.

[2] Giuseppe De Giacomo, Moshe Y. Vardi, Linear temporal logic and linear dynamic
logic on finite traces, in: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence,
IJCAI/AAAI, 2013.

[3] Ilkka Niemelä, Logic programs with stable model semantics as a constraint
programming paradigm, Ann. Math. Artif. Intell. 25 (3–4) (1999) 241–273.

[4] John McCarthy, Elaboration tolerance, in: Progress, 1999.
[5] Francesco Chiariello, Fabrizio Maria Maggi, Fabio Patrizi, ASP-based declarative

process mining, in: Proc. of the 36th AAAI Conference on Artificial Intelligence,
AAAI 2022, 2022.

[6] Anti Alman, Claudio Di Ciccio, Dominik Haas, Fabrizio Maria Maggi, Alexander
Nolte, Rule mining with RuM, in: Boudewijn F. van Dongen, Marco Montali,
Moe Thandar Wynn (Eds.), 2nd International Conference on Process Mining, ICPM
2020, Padua, Italy, October 4-9, 2020, IEEE, 2020, pp. 121–128.

[7] Daniel Jackson, Software Abstractions: Logic, Language, and Analysis, MIT Press,
2012.

[8] Andrea Burattin, Fabrizio M. Maggi, Alessandro Sperduti, Conformance checking
based on multi-perspective declarative process models, Expert Syst. Appl. 65
(2016) 194–211.

[9] Dirk Fahland, Wil M.P. van der Aalst, Model repair - aligning process models to
reality, Inf. Syst. 47 (2015) 220–243.

http://refhub.elsevier.com/S2665-9638(22)00119-1/sb1
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb1
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb1
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb1
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb1
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb2
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb2
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb2
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb2
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb2
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb3
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb3
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb3
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb4
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb5
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb5
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb5
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb5
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb5
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb6
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb6
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb6
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb6
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb6
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb6
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb6
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb7
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb7
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb7
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb8
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb8
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb8
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb8
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb8
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb9
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb9
http://refhub.elsevier.com/S2665-9638(22)00119-1/sb9

	A tool for compiling Declarative Process Mining problems in ASP
	Introduction
	Description
	Impact
	Declaration of Competing Interest
	Acknowledgments
	References


