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Introduzione

consideriamo un generico sistema dinamico non lineare stazionario
f(z,u)

y = g(x)
con stato x € IR", ingresso u € IR?, e uscita y € IR?

x

problema di stabilizzazione via retroazione dallo stato

progettare una legge di controllo u = k(x) tale che il sistema ad anello chiuso

= f(z,k(z))

abbia uno stato assegnato x; come punto di equilibrio asintoticamente stabile

e 1, € specificato del problema di controllo e rappresenta uno stato operativo desiderato
per il sistema: ad esempio, un assetto per un satellite, una postura nello spazio per un
manipolatore robotico, una temperatura per un sistema di climatizzazione

e Non e detto che x4 sia un punto di equilibrio del sistema ad anello aperto; deve pero
diventarlo per il sistema ad anello chiuso

e nel seguito si assume che x,4 sia lI'origine; infatti, € sempre possibile ricondursi a questo
caso effettuando la traslazione di coordinate z =z — x4
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e per un sistema lineare x = Ax + Bu, una retroazione dallo stato € v = K z; il sistema
ad anello chiuso diventa

= Ax+ BKx = (A+ BK)x

com’é noto, il problema di stabilizzazione via retroazione dallo stato e risolubile se la
coppia (A, B) & stabilizzabile, cioe se essa € completamente raggiungibile oppure se
eventuali autovalori non raggiungibili hanno parte reale negativa

e una retroazione del tipo u = k(x) viene definita statica perché & rappresenta un con-
trollore privo di memoria; si parla di retroazione dinamica quando il controllo é a sua
volta l'uscita di un sistema dinamico guidato dallo stato x:

3 ¢(&; x)
u k(&)

e |la retroazione dallo stato presuppone che tutte le componenti di x possano essere
misurate; quando cid0 non & possibile, si ricorre alla retroazione dall’uscita, che puod
essere statica (u = k(y)) 0, piu spesso, dinamica:

3 (&, y)
U k(&)

ad esempio, si pensi all’inclusione di un osservatore dello stato nel caso lineare
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Stabilizzazione mediante approssimazione lineare

idea di base

calcolare I'approssimazione lineare del sistema intorno all’origine e stabilizzarla attraverso
una retroazione lineare; per il criterio indiretto di Lyapunov, l'origine sara localmente
asintoticamente stabile per il sistema non lineare

es: si consideri il sistema scalare

& = ax’ 4+ u
contenente il parametro a > 0; |la sua approssimazione lineare intorno all'origine € z = w,
che & ovviamente stabilizzata dalla retroazione lineare u = —kx, con kK > 0

applicando questo controllo al sistema non lineare, esso diventa ad anello chiuso
t=az’—kux (%)

che, per il criterio indiretto di Lyapunov, ha nell’origine un pde asintoticamente stabile

e la proprieta di stabilita asintotica & locale: il sistema (%) ha infatti un altro pde in
x = k/a, e diverge per x > k/a = |a regione di attrazione é Q ={z:z < k/a}

e per ottenere convergenza da qualsiasi insieme S = {x : |z| < r}, basta porre k > ar; la
stabilita € semiglobale, nel senso che modificando i parametri del controllore (qui k)
Si pud includere in €2 qualsiasi intorno dell’origine

e |a stabilita ottenuta non € comunque globale, poiché una volta scelto k esistono stati
(qui {x : x > k/a}) da cui non si ha convergenza m
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applichiamo il medesimo approccio al generico sistema stazionario non lineare

r = f(z,u)
nell'ipotesi che (x = 0,u = 0) sia un equilibrio, cioé che I'origine sia un pde non forzato

I'approssimazione lineare del sistema intorno a (z =0,u=20) &

. Of(x,u)
r= "7
oz

Of (x,u)

(u—0) = Ax + Bu
ou

x=0,u=0

(z —0) +

x=0,u=0

se la coppia (A, B) risulta stabilizzabile, si pud progettare una retroazione lineare dallo stato
u = K z tale che gli autovalori di (A+ BK) hanno parte reale negativa, e I'approssimazione
lineare risulta dunque (globalmente ed esponenzialmente) asintoticamente stabile

= u = K x rende |'origine (localmente) asintoticamente stabile per il sistema non lineare

e se la coppia (A, B) risulta non stabilizzabile, non esiste una retroazione lineare che
stabilizza "approssimazione lineare; non si puo tuttavia escludere che esista una
retroazione in grado di stabilizzare il sistema non lineare, e neppure che questa possa
essere lineare

es: = = u3, la cui approssimazione lineare & £ = 0, viene stabilizzato da v = —=x

e se (A, B) & stabilizzabile, questo approccio fornisce anche una stima del dominio di
attrazione, poiché e facile scrivere una funzione di Lyapunov per il sistema non lineare
a partire dall’approssimazione lineare; a questo scopo, e utile il seguente risultato
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Teorema

un sistema lineare x = Ax €& asintoticamente stabile se e solo se, fissata comunque una
matrice Q simmetrica e definita positiva, la seguente equazione di Lyapunov

PA+ ATP=—-Q

ammette nell'incognita P un'unica soluzione simmetrica e definita positiva

dim (sufficienza) & un'applicazione del criterio diretto di stabilita di Lyapunov; infatti, presa
come candidata di Lyapunov la

1
V(z) = 5 t'Px

che e DP per ipotesi, si ha

: 1 1 1
V=zgl'Pi=alPAx = 5(:{:TPA:L’ 4+ 2'PAz) = 5 (CCT(PA + ATP)CB) = —§CCTQCU

che & DN per ipotesi (si @ usata la 2" PAzxz = (zTPAx)T = 2T ATPx) m

nel caso in esame, essendo l|'approssimazione lineare ad anello chiuso z = (A 4+ BK)zx
asintoticamente stabile, essa ammette come funzione di Lyapunov la

1
V(x) = 5 t'Px

dove P e |'unica soluzione simmetrica e DP della corrispondente equazione di Lyapunov

P(A+ BK)+ (A4 BK)'P=—-Q
con @ arbitraria ma simmetrica e definita positiva (ad esempio, Q = 1)

...ela V e una funzione di Lyapunov anche per il sistema non lineare!

Oriolo: Stabilizzazione di sistemi non lineari via retroazione dallo stato 6



es. pendolo con attuatore al giunto

IR R

m€29+d9+mg€ Sind =1

ponendo z = (z1,z2) = (0,0) e 7 = u I'equazione nello spazio di stato &

1 11,

—aSinzy —bxo + cu

T2
dove a = g/¢, b=d/m¥¢?, c=1/m¥? (a,b,c > 0)

supponiamo di voler stabilizzare il pendolo ad un angolo 6,; generico; il punto di equilibrio
desiderato & dunque x4 = (x14, T24) = (64, 0)
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effettuiamo la trasformazione di coordinate z =z — x4y = (21 — 04, z2)

z1 22

—asin(z1+03) —bzx+ cu

22
per rendere |'origine z1 = 0,2z> = 0 un punto di equilibrio non forzato, si ponga u = wus, + usr,
dove um € la componente di feedback e u¢ € la componente di feedforward

usp, = Kz si annulla automaticamente nell’origine, e quindi ug ha il compito di rendere tale
punto un equilibrio:

. . a . :
—asinf; 4+ cug =0 da cui ufF = — SiNf; = m glsin by
C
uff € Cioeé la coppia necessaria per bilanciare la coppia di gravita quando il pendolo € in 6y

il sistema ad anello chiuso é quindi

Z1 Zo

—a (sin(z1 + Qd) — Sin Qd) — bz + cuspp

22
che ha finalmente z = 0, us, = 0 come punto di equilibrio

I'approssimazione lineare del sistema e caratterizzata dunque dalle matrici

A = 8f(za ufb) _ 0 1 . 0 1
a 0z |,—gu.—o \ —acos(zi+6s) —b )| _, _, \ —acosé; —b
B — Of(z,um) _ ( 0 )
8’U/fb Z=O,Ufb=0 ¢
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la matrice di raggiungibilita &
(0 ¢
(B AB)_(C _bc)

e quindi possibile assegnare arbitrariamente gli autovalori ad anello chiuso dell’approssimazione
lineare; & facile verificare che la retroazione lineare

<1
<2

ubeKz=<k1 kz)( )zklzl—l—kng

b
rende a parte reale negativa gli autovalori di A + BK purché sia k1 < 4 cosf, e ko < -
C C

= in queste ipotesi, |la coppia
w = usp + ur = k1 21 4+ ko 2o 4+ = sinfy = k1(0 — 04) + ko 6 + m glsin 6,
C

rende (localmente) asintoticamente stabile il punto (64,0) per il pendolo

e Si noti l'interpretazione fisica del termine us,, che ‘simula’ la presenza di una molla
angolare che richiama il pendolo nella posizione 6; e di uno smorzatore viscoso che
dissipa energia

e il dominio di attrazione dipendera in modo cruciale dalla scelta di k1 e k»; € possibile
stimarne I'estensione usando come candidata di Lyapunov del sistema non lineare una
funzione di Lyapunov per |'approssimazione lineare
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ponendo per esempioa=c=1,b=0, =n/2 e k1 = k= —1 si trova

_ (0 1
A—|—BK_<_1 _1)

e la corrispondente equazione di Lyapunov (per Q = I)

P11 P12 0 1 4 0O -1 pi1 pr2 \ _( -1 O
P12 D22 -1 -1 1 -1 P12 D22 0O -1
ammette la soluzione simmetrica e definita positiva

o= (35 7)

quindi si pud usare come funzione di Lyapunov per il sistema non lineare la

1 3/2 1/2
V(x)ZExT( 1§2 { )x

a questo punto si determina I'insieme dove V(z) & DN, e si prende una qualunque curva di
livello contenuta in tale insieme; la regione interna a questa curva di livello costituisce una
stima del dominio di attrazione per il controllore (lineare) considerato
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Stabilizzazione mediante linearizzazione esatta: cenni

la principale limitazione della tecnica di stabilizzazione mediante |'approssimazione lineare
consiste nel fatto che |la convergenza é garantita solo all'interno di un dominio di attrazione,
che puO essere piu 0 meno grande; questo pud non essere accettabile in pratica

es: per il sistema scalare

:i:=a:132—|—u

abbiamo visto che la retroazione lineare u = —kx, con k£ > 0O, rende I'origine asintoticamente
stabile, con regione di attrazione Q = {z : x < k/a}

si consideri pero la seguente legge di controllo non lineare

u= —azx’—kzx

che cancella il termine non lineare ax? e conduce al seguente sistema ad anello chiuso
r = —kzx

il sistema e esattamente lineare, e I'origine € dunque un punto di equilibrio globalmente
asintoticamente stabile

la legge di controllo ha due componenti: una (—a:cz) ha il compito di linearizzare esatta-
mente la dinamica ad anello chiuso, e I'altra (—kxz) quello di stabilizzare tale dinamica =
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es: riprendiamo in esame il pendolo con attuatore alla base

zZ1 = 2o
2o = —asin(z1+6y) —bz+cu

in cui abbiamo gia effettuato la trasformazione di coordinate z = =z — x4y = (21 — 04, 22)
necessaria a spostare il punto di equilibrio desiderato nell’origine

I'ispezione della seconda equazione differenziale, che & l'unica a contenere termini non
lineari, suggerisce la seguente scelta per u

w="2sin(z + 04) + —
C C

la dinamica ad anello chiuso diventa lineare e completamente raggiungibile

zZ1 = 2o

—bzy+ v

22
e dunque possibile stabilizzarla globalmente all’origine attraverso il ‘nuovo’ ingresso v

v =~Fk12z1+ ko2

con ki1 e ko scelti in modo da assegnare autovalori arbitrari; si ha quindi

w="sin0+ = (kr(0 — 04) + k20)
& &

in cui tutti i termini sono in retroazione (in particolare, all’equilibrio il primo termine diventa
automaticamente la coppia necessaria per bilanciare la gravita) n
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allora & naturale chiedersi

quanto & generale lI'idea di cancellare le non-linearita attraverso |la retroazione? esiste una
proprieta strutturale dei sistemi che garantisce tale possibilita?

siamo certamente in grado di farlo se I'equazione di stato ha la seguente struttura

= f(x,u) = Az + BB(z) (u— a(x))

con B(x) matrice non singolare in un dominio che contiene I'origine (si noti che i due esempi
visti in precedenza hanno esattamente tale struttura)

infatti basta porre
u=ca(x) + B_l(a:)v

per ottenere il sistema lineare
r=Ax+ Bv

che pud essere stabilizzato ponendo v = Kax (se la coppia (A, B) & stabilizzabile); la
retroazione complessiva é

u=oqa(z) + 8 ()K=«

si noti che essa € non lineare!
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se il modello del sistema non ha la struttura suddetta, pud darsi che possa essere portato
in tale forma mediante una trasformazione di coordinate

es: per il sistema

r1 = aSinxzo
To = —:I:%—I—u

e evidente che non e possibile cancellare Ia non-linearita asin xz»> attraverso u

Si consideri pero la seguente trasformazione di coordinate

z1 = X1
zo> = aSinxzy = 11
Si ha
zZ1 = 2o
Z> = aCOS .’,UQ(—.’,U% + u)

ora e possibile cancellare la non-linearita con la retroazione

1
U=+ ——nmw
a COS T2

che & ben definita per —n/2 < o < 7w/2
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Si osservi che la trasformazione di coordinate z = T'(z) & ben posta, poiché pud essere
invertita come segue

r1 = =z
. (72
ro = arcsin <—>
a

nell'insieme —a < zo < a

inoltre, sia la trasformazione T'(-) che la sua inversa T-!(.) sono derivabili con derivata
continua = si dice che T'(-) & un diffeomorfismo n

le proprieta dell’esempio appena visto possono essere estrapolate nella seguente definizione

un sistema non lineare

= f(z,u)
si dice linearizzabile ingresso-stato se esiste un diffeomorfismo z = T'(x), definito su un
dominio D, che contenga |'origine, che mette il sistema nella forma

2= Az+ BB(x) (u — a(x))
con la matrice 8(x) non singolare in D,

i sistemi linearizzabili ingresso-stato possono essere dunque efficacemente controllati (ad
esempio, stabilizzati in modo globale) attraverso una trasformazione di coordinate e una
retroazione statica dallo stato che ha una funzione duplice: (1) cancellare le non-linearita
(2) controllare il sistema linearizzato
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e esiste anche la possibilita di linearizzare ingresso-stato un sistema attraverso una
trasformazione di coordinate e una retroazione dinamica dallo stato; la classe dei
sistemi che possono essere linearizzati con tale procedura € piu ampia di quelli dei
sistemi linearizzabili con retroazione statica

e Nnel caso in cui il problema di controllo sia formulato a livello delle uscite del sistema
(ad esempio, nei problemi di inseguimento di uscite di riferimento), si pud cercare di
ottenere una linearizzazione ingresso-uscita, utilizzando anche in questo caso una
trasformazione di coordinate e una retroazione statica o dinamica dallo stato

e UNO svantaggio di questo approccio € che |la cancellazione delle non-linearita richiede
la conoscenza esatta dei parametri del modello; ad esempio, nel caso del sistema
¢ = az’+u la legge di controllo calcolata mediante linearizzazione esatta (slide 11) era

u= —azx’—kzx

che contiene il parametro a; invece, la legge di controllo calcolata mediante I'approssima-
zione lineare (slide 4) era

u= —kx
= per i controllori progettati attraverso il metodo della linearizzazione esatta esiste un

potenziale problema di robustezza rispetto a variazioni dei parametri, che deve essere
analizzato con cura
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e un altro svantaggio del metodo basato sulla linearizzazione esatta € che pud condurre
alla cancellazione di termini non lineari ma benefici per la stabilizzazione
es: si consideri il sistema scalare non lineare
t=ar—bx®+u a,b>0
un controllore basato sulla filosofia della linearizzazione esatta € il seguente

u=—kx+bx3 k> a

in realta, il termine —bax3 & interpretabile come una forza di richiamo non lineare,
che spinge lo stato verso l'origine; infatti, il semplice controllore lineare

u= —kx k>a
conduce al sistema ad anello chiuso

it =—(k—a)zr —ba>
I'origine & GAS, e le traiettorie convergono piu rapidamente che per t = —(k—a)xr =
una conseguenza di questa cancellazione inutile, legata alla natura matematica (e non
fisica) della filosofia di sintesi basata sulla linearizzazione esatta, & tipicamente uno

sforzo di controllo piu elevato (nell’esempio, il controllore v = —kz + bz assume
valori assoluti molto pitu grandi di « = —kx quando si & lontani dall'origine)

= Spesso conviene progettare il controllore mediante il criterio diretto di Lyapunov
(che si presta meglio a una interpretazione fisica), senza alcun tipo di linearizzazione
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