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Introduzione

consideriamo un generico sistema dinamico non lineare stazionario

ẋ = f(x, u)
y = g(x)

con stato x ∈ IRn, ingresso u ∈ IRp, e uscita y ∈ IRq

problema di stabilizzazione via retroazione dallo stato

progettare una legge di controllo u = k(x) tale che il sistema ad anello chiuso

ẋ = f(x, k(x))

abbia uno stato assegnato xd come punto di equilibrio asintoticamente stabile

• xd è specificato del problema di controllo e rappresenta uno stato operativo desiderato
per il sistema: ad esempio, un assetto per un satellite, una postura nello spazio per un
manipolatore robotico, una temperatura per un sistema di climatizzazione

• non è detto che xd sia un punto di equilibrio del sistema ad anello aperto; deve però
diventarlo per il sistema ad anello chiuso

• nel seguito si assume che xd sia l’origine; infatti, è sempre possibile ricondursi a questo
caso effettuando la traslazione di coordinate z = x− xd
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• per un sistema lineare ẋ = Ax+ Bu, una retroazione dallo stato è u = K x; il sistema
ad anello chiuso diventa

ẋ = Ax+BK x = (A+BK)x

com’è noto, il problema di stabilizzazione via retroazione dallo stato è risolubile se la
coppia (A,B) è stabilizzabile, cioè se essa è completamente raggiungibile oppure se
eventuali autovalori non raggiungibili hanno parte reale negativa

• una retroazione del tipo u = k(x) viene definita statica perché è rappresenta un con-
trollore privo di memoria; si parla di retroazione dinamica quando il controllo è a sua
volta l’uscita di un sistema dinamico guidato dallo stato x:

ξ̇ = φ(ξ, x)
u = k(ξ)

• la retroazione dallo stato presuppone che tutte le componenti di x possano essere
misurate; quando ciò non è possibile, si ricorre alla retroazione dall’uscita, che può
essere statica (u = k(y)) o, più spesso, dinamica:

ξ̇ = φ(ξ, y)
u = k(ξ)

ad esempio, si pensi all’inclusione di un osservatore dello stato nel caso lineare
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Stabilizzazione mediante approssimazione lineare

idea di base

calcolare l’approssimazione lineare del sistema intorno all’origine e stabilizzarla attraverso
una retroazione lineare; per il criterio indiretto di Lyapunov, l’origine sarà localmente
asintoticamente stabile per il sistema non lineare

es: si consideri il sistema scalare

ẋ = a x2 + u

contenente il parametro a > 0; la sua approssimazione lineare intorno all’origine è ẋ = u,
che è ovviamente stabilizzata dalla retroazione lineare u = −k x, con k > 0

applicando questo controllo al sistema non lineare, esso diventa ad anello chiuso

ẋ = a x2 − k x (∗)
che, per il criterio indiretto di Lyapunov, ha nell’origine un pde asintoticamente stabile

• la proprietà di stabilità asintotica è locale: il sistema (∗) ha infatti un altro pde in
x = k/a, e diverge per x > k/a ⇒ la regione di attrazione è Ω = {x : x < k/a}

• per ottenere convergenza da qualsiasi insieme S = {x : |x| < r}, basta porre k > a r; la
stabilità è semiglobale, nel senso che modificando i parametri del controllore (qui k)
si può includere in Ω qualsiasi intorno dell’origine

• la stabilità ottenuta non è comunque globale, poiché una volta scelto k esistono stati
(qui {x : x > k/a}) da cui non si ha convergenza
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applichiamo il medesimo approccio al generico sistema stazionario non lineare

ẋ = f(x, u)

nell’ipotesi che (x = 0, u = 0) sia un equilibrio, cioè che l’origine sia un pde non forzato

l’approssimazione lineare del sistema intorno a (x = 0, u = 0) è

ẋ =
∂f(x, u)

∂x

∣∣∣∣
x=0,u=0

(x− 0) +
∂f(x, u)

∂u

∣∣∣∣
x=0,u=0

(u− 0) = Ax+Bu

se la coppia (A,B) risulta stabilizzabile, si può progettare una retroazione lineare dallo stato
u = K x tale che gli autovalori di (A+BK) hanno parte reale negativa, e l’approssimazione
lineare risulta dunque (globalmente ed esponenzialmente) asintoticamente stabile

⇒ u = K x rende l’origine (localmente) asintoticamente stabile per il sistema non lineare

• se la coppia (A,B) risulta non stabilizzabile, non esiste una retroazione lineare che
stabilizza l’approssimazione lineare; non si può tuttavia escludere che esista una
retroazione in grado di stabilizzare il sistema non lineare, e neppure che questa possa
essere lineare

es: ẋ = u3, la cui approssimazione lineare è ẋ = 0, viene stabilizzato da u = −x

• se (A,B) è stabilizzabile, questo approccio fornisce anche una stima del dominio di
attrazione, poiché è facile scrivere una funzione di Lyapunov per il sistema non lineare
a partire dall’approssimazione lineare; a questo scopo, è utile il seguente risultato
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Teorema

un sistema lineare ẋ = Ax è asintoticamente stabile se e solo se, fissata comunque una
matrice Q simmetrica e definita positiva, la seguente equazione di Lyapunov

PA+ATP = −Q
ammette nell’incognita P un’unica soluzione simmetrica e definita positiva

dim (sufficienza) è un’applicazione del criterio diretto di stabilità di Lyapunov; infatti, presa
come candidata di Lyapunov la

V (x) =
1

2
xTP x

che è DP per ipotesi, si ha

V̇ = xTP ẋ = xTPAx =
1

2
(xTPAx+ xTPAx) =

1

2

(
xT(PA+ATP )x

)
= −

1

2
xTQx

che è DN per ipotesi (si è usata la xTPAx = (xTPAx)T = xTATP x)

nel caso in esame, essendo l’approssimazione lineare ad anello chiuso ẋ = (A + BK)x
asintoticamente stabile, essa ammette come funzione di Lyapunov la

V (x) =
1

2
xTP x

dove P è l’unica soluzione simmetrica e DP della corrispondente equazione di Lyapunov

P (A+BK) + (A+BK)TP = −Q
con Q arbitraria ma simmetrica e definita positiva (ad esempio, Q = I)

. . . e la V è una funzione di Lyapunov anche per il sistema non lineare!
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es: pendolo con attuatore al giunto

m

�
θ

τ

m`2 θ̈ + d θ̇ +mg ` sin θ = τ

ponendo x = (x1, x2) = (θ, θ̇) e τ = u l’equazione nello spazio di stato è

ẋ1 = x2

ẋ2 = −a sinx1 − b x2 + c u

dove a = g/`, b = d/m `2, c = 1/m `2 (a, b, c > 0)

supponiamo di voler stabilizzare il pendolo ad un angolo θd generico; il punto di equilibrio
desiderato è dunque xd = (x1d, x2d) = (θd,0)
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effettuiamo la trasformazione di coordinate z = x− xd = (x1 − θd, x2)

ż1 = z2

ż2 = −a sin(z1 + θd)− b z2 + c u

per rendere l’origine z1 = 0, z2 = 0 un punto di equilibrio non forzato, si ponga u = ufb +uff,
dove ufb è la componente di feedback e uff è la componente di feedforward

ufb = Kz si annulla automaticamente nell’origine, e quindi uff ha il compito di rendere tale
punto un equilibrio:

−a sin θd + c uff = 0 da cui uff =
a

c
sin θd = mg` sin θd

uff è cioè la coppia necessaria per bilanciare la coppia di gravità quando il pendolo è in θd

il sistema ad anello chiuso è quindi

ż1 = z2

ż2 = −a (sin(z1 + θd)− sin θd)− b z2 + c ufb

che ha finalmente z = 0, ufb = 0 come punto di equilibrio

l’approssimazione lineare del sistema è caratterizzata dunque dalle matrici

A =
∂f(z, ufb)

∂z

∣∣∣∣
z=0,ufb=0

=

(
0 1

−a cos(z1 + θd) −b

)∣∣∣∣
z=0,ufb=0

=

(
0 1

−a cos θd −b

)
B =

∂f(z, ufb)

∂ufb

∣∣∣∣
z=0,ufb=0

=

(
0
c

)
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la matrice di raggiungibilità è (
B AB

)
=

(
0 c
c −b c

)
è quindi possibile assegnare arbitrariamente gli autovalori ad anello chiuso dell’approssimazione
lineare; è facile verificare che la retroazione lineare

ufb = Kz =
(
k1 k2

)( z1

z2

)
= k1z1 + k2z2

rende a parte reale negativa gli autovalori di A+BK purché sia k1 <
a

c
cos θd e k2 <

b

c

⇒ in queste ipotesi, la coppia

u = ufb + uff = k1 z1 + k2 z2 +
a

c
sin θd = k1(θ − θd) + k2 θ̇ +mg` sin θd

rende (localmente) asintoticamente stabile il punto (θd,0) per il pendolo

• si noti l’interpretazione fisica del termine ufb, che ‘simula’ la presenza di una molla
angolare che richiama il pendolo nella posizione θd e di uno smorzatore viscoso che
dissipa energia

• il dominio di attrazione dipenderà in modo cruciale dalla scelta di k1 e k2; è possibile
stimarne l’estensione usando come candidata di Lyapunov del sistema non lineare una
funzione di Lyapunov per l’approssimazione lineare
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ponendo per esempio a = c = 1, b = 0, θd = π/2 e k1 = k2 = −1 si trova

A+BK =

(
0 1
−1 −1

)
e la corrispondente equazione di Lyapunov (per Q = I)

(
p11 p12

p12 p22

)(
0 1
−1 −1

)
+

(
0 −1
1 −1

)(
p11 p12

p12 p22

)
=

(
−1 0
0 −1

)
ammette la soluzione simmetrica e definita positiva

P =

(
3/2 1/2
1/2 1

)
quindi si può usare come funzione di Lyapunov per il sistema non lineare la

V (x) =
1

2
xT

(
3/2 1/2
1/2 1

)
x

a questo punto si determina l’insieme dove V̇ (x) è DN, e si prende una qualunque curva di
livello contenuta in tale insieme; la regione interna a questa curva di livello costituisce una
stima del dominio di attrazione per il controllore (lineare) considerato
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Stabilizzazione mediante linearizzazione esatta: cenni

la principale limitazione della tecnica di stabilizzazione mediante l’approssimazione lineare
consiste nel fatto che la convergenza è garantita solo all’interno di un dominio di attrazione,
che può essere più o meno grande; questo può non essere accettabile in pratica

es: per il sistema scalare

ẋ = a x2 + u

abbiamo visto che la retroazione lineare u = −k x, con k > 0, rende l’origine asintoticamente
stabile, con regione di attrazione Ω = {x : x < k/a}

si consideri però la seguente legge di controllo non lineare

u = −a x2 − k x

che cancella il termine non lineare a x2 e conduce al seguente sistema ad anello chiuso

ẋ = −k x
il sistema è esattamente lineare, e l’origine è dunque un punto di equilibrio globalmente
asintoticamente stabile

la legge di controllo ha due componenti: una (−a x2) ha il compito di linearizzare esatta-
mente la dinamica ad anello chiuso, e l’altra (−k x) quello di stabilizzare tale dinamica
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es: riprendiamo in esame il pendolo con attuatore alla base

ż1 = z2

ż2 = −a sin(z1 + θd)− b z2 + c u

in cui abbiamo già effettuato la trasformazione di coordinate z = x − xd = (x1 − θd, x2)
necessaria a spostare il punto di equilibrio desiderato nell’origine

l’ispezione della seconda equazione differenziale, che è l’unica a contenere termini non
lineari, suggerisce la seguente scelta per u

u =
a

c
sin(z1 + θd) +

v

c

la dinamica ad anello chiuso diventa lineare e completamente raggiungibile

ż1 = z2

ż2 = −b z2 + v

è dunque possibile stabilizzarla globalmente all’origine attraverso il ‘nuovo’ ingresso v

v = k1 z1 + k2 z2

con k1 e k2 scelti in modo da assegnare autovalori arbitrari; si ha quindi

u =
a

c
sin θ +

1

c

(
k1(θ − θd) + k2θ̇

)
in cui tutti i termini sono in retroazione (in particolare, all’equilibrio il primo termine diventa
automaticamente la coppia necessaria per bilanciare la gravità)

Oriolo: Stabilizzazione di sistemi non lineari via retroazione dallo stato 12



allora è naturale chiedersi

quanto è generale l’idea di cancellare le non-linearità attraverso la retroazione? esiste una
proprietà strutturale dei sistemi che garantisce tale possibilità?

siamo certamente in grado di farlo se l’equazione di stato ha la seguente struttura

ẋ = f(x, u) = Ax+B β(x) (u− α(x))

con β(x) matrice non singolare in un dominio che contiene l’origine (si noti che i due esempi
visti in precedenza hanno esattamente tale struttura)

infatti basta porre

u = α(x) + β−1(x)v

per ottenere il sistema lineare

ẋ = Ax+B v

che può essere stabilizzato ponendo v = K x (se la coppia (A,B) è stabilizzabile); la
retroazione complessiva è

u = α(x) + β−1(x)K x

si noti che essa è non lineare!
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se il modello del sistema non ha la struttura suddetta, può darsi che possa essere portato
in tale forma mediante una trasformazione di coordinate

es: per il sistema

ẋ1 = a sinx2

ẋ2 = −x2
1 + u

è evidente che non è possibile cancellare la non-linearità a sinx2 attraverso u

si consideri però la seguente trasformazione di coordinate

z1 = x1

z2 = a sinx2 = ẋ1

si ha

ż1 = z2

ż2 = a cosx2(−x2
1 + u)

ora è possibile cancellare la non-linearità con la retroazione

u = x2
1 +

1

a cosx2
v

che è ben definita per −π/2 < x2 < π/2
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si osservi che la trasformazione di coordinate z = T (x) è ben posta, poiché può essere
invertita come segue

x1 = z1

x2 = arcsin
(z2

a

)
nell’insieme −a < z2 < a

inoltre, sia la trasformazione T (·) che la sua inversa T−1(·) sono derivabili con derivata
continua ⇒ si dice che T (·) è un diffeomorfismo

le proprietà dell’esempio appena visto possono essere estrapolate nella seguente definizione

un sistema non lineare

ẋ = f(x, u)

si dice linearizzabile ingresso-stato se esiste un diffeomorfismo z = T (x), definito su un
dominio Dx che contenga l’origine, che mette il sistema nella forma

ż = Az +Bβ(x) (u− α(x))

con la matrice β(x) non singolare in Dx

i sistemi linearizzabili ingresso-stato possono essere dunque efficacemente controllati (ad
esempio, stabilizzati in modo globale) attraverso una trasformazione di coordinate e una
retroazione statica dallo stato che ha una funzione duplice: (1) cancellare le non-linearità
(2) controllare il sistema linearizzato
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• esiste anche la possibilità di linearizzare ingresso-stato un sistema attraverso una
trasformazione di coordinate e una retroazione dinamica dallo stato; la classe dei
sistemi che possono essere linearizzati con tale procedura è più ampia di quelli dei
sistemi linearizzabili con retroazione statica

• nel caso in cui il problema di controllo sia formulato a livello delle uscite del sistema
(ad esempio, nei problemi di inseguimento di uscite di riferimento), si può cercare di
ottenere una linearizzazione ingresso-uscita, utilizzando anche in questo caso una
trasformazione di coordinate e una retroazione statica o dinamica dallo stato

• uno svantaggio di questo approccio è che la cancellazione delle non-linearità richiede
la conoscenza esatta dei parametri del modello; ad esempio, nel caso del sistema
ẋ = ax2 +u la legge di controllo calcolata mediante linearizzazione esatta (slide 11) era

u = −a x2 − k x
che contiene il parametro a; invece, la legge di controllo calcolata mediante l’approssima-
zione lineare (slide 4) era

u = −k x

⇒ per i controllori progettati attraverso il metodo della linearizzazione esatta esiste un
potenziale problema di robustezza rispetto a variazioni dei parametri, che deve essere
analizzato con cura
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• un altro svantaggio del metodo basato sulla linearizzazione esatta è che può condurre
alla cancellazione di termini non lineari ma benefici per la stabilizzazione

es: si consideri il sistema scalare non lineare

ẋ = a x− b x3 + u a, b > 0

un controllore basato sulla filosofia della linearizzazione esatta è il seguente

u = −k x+ b x3 k > a

in realtà, il termine −b x3 è interpretabile come una forza di richiamo non lineare,
che spinge lo stato verso l’origine; infatti, il semplice controllore lineare

u = −k x k > a

conduce al sistema ad anello chiuso

ẋ = −(k − a)x− b x3

l’origine è GAS, e le traiettorie convergono più rapidamente che per ẋ = −(k − a)x

una conseguenza di questa cancellazione inutile, legata alla natura matematica (e non
fisica) della filosofia di sintesi basata sulla linearizzazione esatta, è tipicamente uno
sforzo di controllo più elevato (nell’esempio, il controllore u = −k x + b x3 assume
valori assoluti molto più grandi di u = −k x quando si è lontani dall’origine)

⇒ spesso conviene progettare il controllore mediante il criterio diretto di Lyapunov
(che si presta meglio a una interpretazione fisica), senza alcun tipo di linearizzazione
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