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idea di base

• nessuna hyp sulla FdT del processo P(s), che potrà anche 
contenere poli con Re [ ]>0; si avrà quindi in generale n+

F Q 0  

• in questa situazione, la condizione m'   >   0 (criterio di Bode) 
non è né necessaria né sufficiente per la AS del SdC

• una metodologia `classica’ basata sull’uso di FdT come modelli 
e del luogo delle radici come strumento principale

z

u y

—+

e/kdr

1/kd

P(s)G(s)

• di conseguenza, il progetto non viene sviluppato in frequenza 
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• imporre la collocazione dei poli di W(s) consente di soddisfare 
anche specifiche sul regime transitorio:

• la specifica sulla stabilità asintotica del sistema retroazionato 
viene soddisfatta imponendo che la FdT W(s) di quest’ultimo 
abbia tutti i poli a Re [ ]<0

poli W(s) qui: 
modi convergenti con

costante di tempo
¿ ∙ 1/a  

poli W(s) qui: 
modi convergenti con

smorzamento
³ ¸ sin Ã   

convergenza
sufficientemente

rapida 

contenuto
oscillatorio

limitato
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• il controllore viene in questo caso progettato nella forma

• al termine si può aumentare il guadagno di R(s) per soddisfare 
specifiche a regime sull’errore ek o sulla risposta al disturbo yz

• i poli nell’origine sh (h  = 0,1,2…) vengono usati per conseguire 
il tipo richiesto o a ottenere astatismo rispetto ai disturbi

• la funzione compensatrice R(s) ha il compito di modificare la 
F(s) per garantire che i poli di W(s) appartengano alla zona 
desiderata (AS + precisione regime transitorio)

• se necessario, in G(s) vengono inseriti elementi risonanti puri 
per riproduzione (reiezione) di riferimenti (disturbi) sinusoidali

(cfr: Progetto in frequenza, slide 4)
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• lo strumento fondamentale di progetto nel dominio di Laplace 
è il luogo delle radici (LdR), ovvero il luogo geometrico dei poli 
di W(s) al variare di k

• annullando DW(s) si ottiene la seguente equazione del LdR  

luogo delle radici
+

—

r y

W(s)

F(s)

(ELR)
grado n

hyp: retroazione unitaria
      (non restrittiva)
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che, in quanto uguaglianza tra numeri complessi, implica due 
uguaglianze tra numeri reali

• la CdM dà                                   

• (ELR) si può riscrivere come

condizione
di modulo (CdM)

condizione
di fase (CdF)

utile per la graduazione del LdR 
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• la CdF si può riscrivere come                                   

per k > 0 
(luogo positivo)

per k < 0 
(luogo negativo)

poiché non contengono k, queste condizioni possono essere 
usate direttamente per il tracciamento del LdR, o per derivare 
delle regole che consentano un tracciamento qualitativo

• il tracciamento qualitativo è utile per                                   

- schizzo a mano di luoghi semplici o parametrici
- verifica di luoghi ottenuti al computer
- previsione dell’effetto di azioni compensatrici
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regole di tracciamento del LdR
• (ELR) è un’equazione polinomiale a coefficienti reali, di grado n  

e parametrica in k, quindi si hanno le seguenti proprietà di base: 
- a ogni valore di k corrispondono n radici di (ELR), cioè n  
punti del LdR, che possono essere reali o complesse coniugate

- ogni radice al variare di k descrive un ramo del LdR 
- il LdR è una curva continua al variare di k  
- il LdR è una curva simmetrica rispetto all’asse reale

un ramo del luogo positivo
(movimento di una radice
per k che va da 0 a 1) 

Im

Re

punti del luogo
per k = k

—

un esempio
di luogo positivo

per n = 2
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(da (ELR) per k  = ±1, notando che il grado si abbassa di n—m e le 
corrispondenti radici “perse” divergono all’infinito)

• R3: per k  ! +1  (LdR+) e per k  ! —1  (LdR-):
m rami del luogo convergono sugli zeri z1,…,zm    di     F(s)

n—m rami del luogo divergono all’infinito lungo asintoti

• R1: i poli p1,…,pn   di F(s) sono punti del LdR (cioè poli di W(s)) 
per k = 0

(da (ELR))

• R2: appartengono al luogo positivo (LdR+) i punti dell’asse reale 
che lasciano a destra un numero totale dispari di poli e zeri di 
F(s); il resto dell’asse reale appartiene al luogo negativo (LdR-)

(dalla CdF, versione sdoppiata; 0 si considera pari)
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• R4: gli asintoti sono n — m semirette per il LdR+ e altrettante per 
il LdR-; esse formano una stella regolare centrata in (s0,0), con

centro degli 
asintoti

n — m = 1 n — m = 3

n — m = 2 n — m = 4

grado relativo

asintoti

LdR+

LdR-
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• se per un valore k di k   l’equazione (ELR) ammette una radice s 
di molteplicità µ  >  1, s è un punto singolare del LdR

— —

—
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• in s si incontrano 2µ rami del luogo, µ entranti e µ uscenti

• eventuali poli o zeri multipli di F(s), rispettivamente punti del 
LdR per k=0 e k=±1, sono   senz’altro punti singolari

punto regolare
(µ  =  1)

punto singolare
(qui µ  =  2)
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• dividendo quest’ultima per                                           si ha

12

• i punti singolari devono risolvere per k reale il sistema 

• eliminando k tra le due si ottiene l’equazione dei punti singolari

che ha grado n+m—1

che, per come è ricavata, non fornisce poli e zeri multipli di F(s) 

(EPS/1)

(EPS/2)
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• R6: in un punto singolare del LdR, radice di (ELR) di molteplicità 
µ  >  1, si incontrano 2µ rami del luogo, alternativamente entranti 
e uscenti; le tangenti a questi rami nel punto singolare formano 
una stella regolare

• R5: il LdR contiene al più n+m—1 punti singolari, da ricavarsi 
risolvendo (EPS1) o (EPS2) e prendendo le radici corrispondenti 
a k reali attraverso (ELR); se si è usata (EPS2), a questi punti 
vanno aggiunti eventuali poli o zeri multipli di F(s)

µ  = 2 µ  = 3
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algoritmo di tracciamento del LdR

1. marcare la posizione di poli (£) e zeri (°) di F(s) 

2. assegnare a LdR+ e LdR- l’asse reale (R2) 

3. tracciare gli asintoti (R4) e i rami che convergono a essi (R3)

4. determinare i versi dei rami secondo il movimento delle radici 
per k  che va da —1 a +1: 

• LdR+ esce dai £, entra negli ° e va agli asintoti

• LdR- esce dagli °, entra nei £ e viene dagli asintoti

5. se necessario, calcolare i punti singolari (R5) e l’andamento 
del LdR nell’intorno di tali punti (R6)

6. determinare eventuali valori critici di k (per i quali il LdR 
attraversa l’asse immaginario) applicando il CdR a DW(s)
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progetto con il LdR
z

u y

—+

r
P(s)G(s)

• il controllore viene progettato nella forma

con h  fissato all’inizio del progetto (tipo e/o astatismo); se 
necessario, in G(s) vengono aggiunti elementi risonanti puri 

• per iniziare, assumiamo che la funzione compensatrice R(s) 
debba solo garantire che i poli di W(s) abbiano Re[  ] <  0 (AS) 

• ulteriori specifiche (entità errore, transitorio): dopo
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• i restanti n  — m rami (qui n indica il numero di poli di F(s)) 
convergeranno sugli asintoti del LdR+; questi ultimi giacciono 
interamente nel semipiano sinistro solo in due casi:
a. n — m = 1 

b. n — m = 2 e s0 < 0

ˆ
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• si assuma che P(s) sia priva di zeri a Re [ ] ¸   0 (processo a fase 
minima), cosicché gli (eventuali) zeri sono nel semipiano sinistro

• la FdT del processo modificato F(s) = P(s)/sh  ha gli stessi zeriˆ

• per k  ! +1 , m rami del LdR+ (e cioè m poli di W(s)) 
convergeranno sugli zeri (R3), e quindi nel semipiano sinistro

• la stabilizzazione dei sistemi a fase minima consiste dunque nel 
ricondursi a uno di questi due casi e successivamente usare un 
k sufficientemente grande  
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stabilizzazione di processi a fase minima: algoritmo

1. porre R(s) = kR e verificare se esistono valori di kR per cui il 
sistema retroazionato è AS (LdR+CdR); altrimenti proseguire 

2. se n  — m  > 2, riportare il grado relativo a 2 aggiungendo      
n  — m  — 2 zeri in R(s)

3. (ora n  — m  = 2) se:

a. s0 < 0: scegliere un kR  abbastanza elevato (CdR) da 
garantire AS

b. s0 ¸ 0: spostare il centro degli asintoti nel semipiano
        sinistro aggiungendo in R(s) una coppia polo-zero, e poi  
        scegliere un kR  abbastanza elevato (CdR) da garantire AS

4. se necessario, recuperare la realizzabilità del controllore G(s) 
aggiungendo poli sufficientemente `lontani’
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• al passo 2: gli zeri eventualmente aggiunti devono essere nel 
semipiano sinistro per preservare la proprietà di fase minima

• se la F(s) = P(s)/sh ha n  — m = 1, oppure n  — m = 2 e s0 < 0, 
l’algoritmo si arresterà certamente al passo 1

ˆ

• al passo 2: se possibile, scegliere gli zeri da aggiungere in modo 
da ottenere un centro degli asintoti nel semipiano sinistro

note sull’algoritmo

• al passo 3b: con la coppia polo-zero nella forma            si ha 

e si dovrà quindi scegliere p sufficientemente maggiore di z, 
oltre che z > 0 per preservare la proprietà di fase minima

¯ ¯
¯

spostamento del
centro degli asintoti
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• al passo 4: nel caso generale il controllore assume la forma 

se questa risulta essere impropria (dunque irrealizzabile) si 
può rendere propria aggiungendo un numero opportuno di 
poli nella forma 1 + ¿s, con ¿ sufficientemente piccolo

• infatti si ha la seguente proposizione: 

se                                  è AS, lo è anche

purché 0 < ¿ < ¿max

dim dal CdN, considerando che un polo nella forma 1 + ¿s non modifica
       il ddN nell’intorno del punto critico se ¿  è abbastanza piccolo

• per il calcolo di ¿max si può usare il CdR 
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• un processo a fase minima avente grado relativo n  — m   può 
sempre essere stabilizzato con un controllore di dimensione 
n  — m — 1

20

implicazioni dell’algoritmo di stabilizzazione

• un processo a fase minima può sempre essere stabilizzato con 
un controllore asintoticamente stabile (stabilizzabilità forte)

- infatti: se l’obiettivo è solo la stabilizzazione, si ha h = 0, e il 
controllore che risulta dalla successione dei passi 1-4 ha 
appunto a tale dimensione

- infatti: se l’obiettivo è solo la stabilizzazione, si ha h = 0, e il 
controllore risulta dalla successione dei passi 1-4, che 
prevedono l’aggiunta di poli esclusivamente nel semipiano 
sinistro
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• in presenza di una richiesta del tipo | kF | ¸ …, proveniente da
specifiche sull’entità dell’errore (o della risposta al disturbo) a
regime, il valore di kR dovrà essere sufficientemente grande da 
soddisfare anche questa (oltre che garantire la AS)

• se, invece della semplice AS, si richiedono poli con Re[  ] ∙  —a 
(cfr: slide 3), sia gli eventuali zeri aggiunti dall’algoritmo (su cui 
convergono altrettanti poli di W(s)) che il centro degli asintoti 
dovranno rispettare la stessa condizione, e il valore minimo di 
kR  andrà calcolato applicando il CdR al polinomio DW(s — a)

• se, invece della semplice AS, si richiedono poli con ³ ¸ sin Ã 
(cfr: slide 3), gli eventuali zeri aggiunti dall’algoritmo dovranno 
rispettare la stessa condizione, e il valore minimo di kR  andrà 
calcolato applicando il CdR al polinomio DW(s  e j 

Ã)·DW(s  e —j 
Ã)

specifiche aggiuntive
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progetto per assegnazione dei poli
z

u y

—+

r
P(s)G(s)

• se la P(s) ha degli zeri a Re [ ]>0 (processo a fase non minima), 
l’algoritmo di stabilizzazione non può essere applicato

• il LdR può essere ancora utilizzato per verificare se è possibile 
risolvere il problema con un semplice guadagno (solo passo 1)

• se questo non è possibile, però, il LdR non fornisce indicazioni 
utili per la stabilizzazione (se non in casi molto semplici)

• in questo caso la soluzione può essere ricercata procedendo in 
modo algebrico, in particolare scegliendo G(s) in modo che i 
poli del sistema retroazionato coincidano con dei valori assegnati
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• dato il processo

23

con n > m, si ponga il controllore nella forma parametrica

• il grado r e i 2r+1 coefficienti cr—1,…,c0,dr,…,c0 vanno scelti 
in modo da imporre che il denominatore di W(s)

coincida con il polinomio desiderato D*
W(s)
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• poiché DW(s) è monico e ha grado n+r, anche D*
W(s) dovrà 

esserlo; quindi, per imporre l’identità dei due polinomi basterà 
eguagliare i coefficienti del termini di grado n+r—1,…,0

24

• si ottiene quindi un sistema di n+r equazioni lineari nelle 2r+1 
incognite cr—1,…,c0,dr,…,c0

• il sistema ammette un’unica soluzione se n +r = 2r +1, cioè se

r  = n  — 1

quindi: dato un processo con P(s) di ordine n, si può usare un 
controllore con G(s) semplicemente propria e di ordine n —1 
per assegnare a piacere gli 2n —1 poli del sistema retroazionato

• essendo n  —  1   ̧   n  —  m  —  1, il controllore risultante avrà ordine
sempre maggiore o uguale a quello del controllore stabilizzante 
(cfr: slide 20) e potrà avere zeri e/o poli nel semipiano destro
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• questo metodo si può utilizzare anche nel caso in cui la G(s) 
debba avere dei poli fissi (nell’origine per tipo e/o astatismo, o 
immaginari per riproduzione di riferimenti sinusoidali); si pone

25

dove D
f
G(s) e D

l
G(s) sono rispettivamente la parte fissa di 

G(s), di grado nfG, e quella libera, di grado nlG

• procedendo come prima e uguagliando il numero di equazioni a 
quello delle incognite si trova 2nlG+n

f
G+1 = n+n

l
G+n

f
G, cioè

n
l
G  = n —1

che generalizza il risultato precedente

• i parametri liberi sono quindi gli nlG coefficienti di D
l
G(s) (che è 

monico) e gli nlG+n
f
G+1 coefficienti di NG(s)
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• in conclusione, si può fare un confronto tra i due metodi di 
progetto nel dominio di Laplace analizzati fin qui

26

progetto 
con il LdR

progetto 
per assegnazione dei poli

algoritmico per
processi a fase minima sempre algoritmico

controllore di
ordine minimo

controllore di
ordine fisso

poli di W(s)
lungo i rami del LdR

poli di W(s)
in posizioni arbitrarie


