Elective in Robotics 2014/2015

Analysis and Control of Multi-Robot Systems

Introduction to the Course

Dr. Paolo Robuffo Giordano

CNRS, Irisa/Inria Rennes, France

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Organization

Lecturer:

Dr. Paolo Robuffo Giordano

CNRS, Irisa/Inria, Rennes, France prg@irisa.fr
http://www.irisa.fr/lagadic/team/Paolo.Robuffo_Giordano.html

Course Web-site:

http://www.dis.uniroma1.it/~oriolo/mrs/

Schedule:

28/4/2015: **15:45-17:15**; **17:30-19:00** (room A4)

29/4/2015: **15:45-17:15**; **17:30-19:00** (room A4)

5/5/2015: **15:45-17:15**; **17:30-19:00 (room A4)**

6/5/2015: **15:45-17:15**; **17:30-19:00 (room A4)**

Organization

- Goals of the course:
 - Provide some theoretical tools for analyzing and synthetizing cooperative behaviors in multi-robot systems
 - Use these tools to illustrate some recent applications
 - In simulation
 - With real experiments (quadrotor UAVs)
- Topics of the course:
 - Algebraic Graph theory
 - Decentralized Control and Estimation
 - Consensus-like protocols
 - Graph Connectivity and Graph Rigidity
 - Passivity Theory
 - Port-Hamiltonian modeling
 - Formation Control

Multi-Robot Systems

Multi-Robot Systems are systems composed of multiple interacting dynamic units.

biologically inspired...

shimmering of giant honeybees
Kastberger G, Schmelzer E, Kranner I (2008)
Social Waves in Giant Honeybees Repel
Hornets. PLoS ONE 3(9): e3141.

synchronizing fireflies
Buck, J and Buck, E
(1968) Mechanism of Rhythmic Synchronous Flashing of Fireflies.
Science 22 159(3821):1319-1327.

Multi-Robot Systems

Multi-Robot Systems are systems composed of multiple interacting dynamic units.

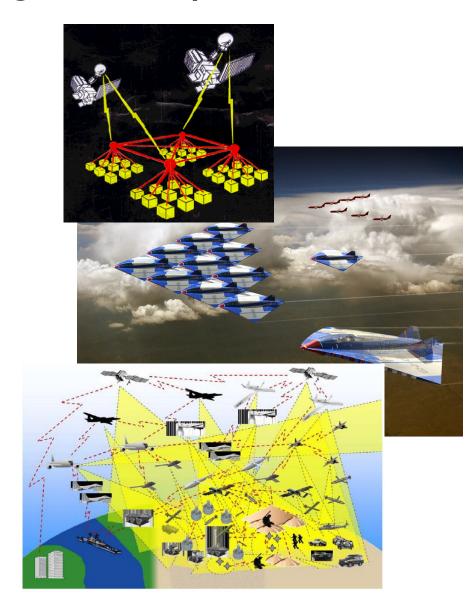
Synchronization

An agreement by multiple systems on a common state

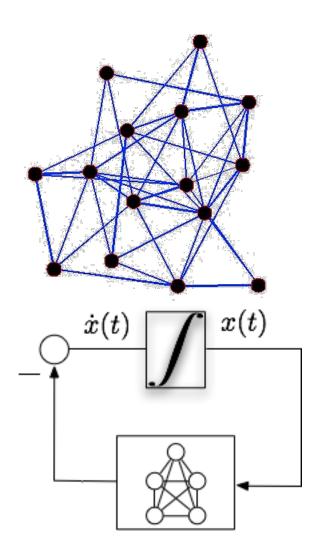
Coordination

Managing of multiple interacting systems to achieve a team objective

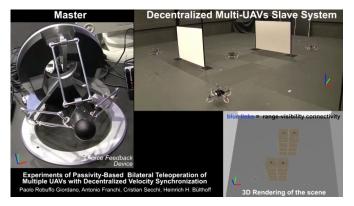
Multi-Robot Systems

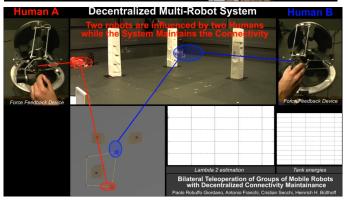

Multi-Robot Systems are systems composed of multiple interacting dynamic units.

Semi-Autonomous Haptic Teleoperation Control Architecture of Multiple Unmanned Aerial Vehicles

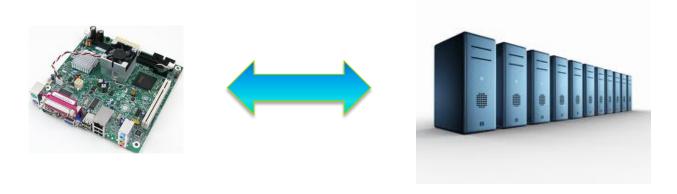

D. J. Lee**, A. Franchi*, H. II Son*, H. H. Bülthoff*, P. Robuffo Giordano*

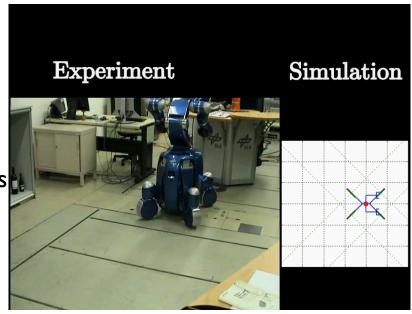
"Experiments with 4 quadrotor UAVs"


- Modeling of multi-robot systems
 - Dynamics
 - Interconnections
- Analysis of multi-robot systems
 - Stability and performance
 - Convergence
- Applications of multi-robot systems
 - Formation Control
 - Localization
 - Bilateral Shared Control


- Graph Theory
 - Algebraic graph theory
- Consensus and Agreement Protocols
 - undirected/directed communication
- Networks as Systems
 - graph theory ⇔ systems theory

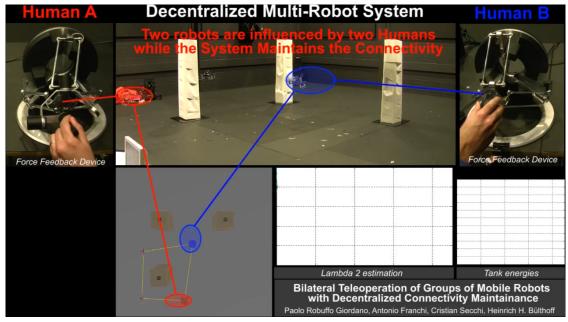
- Exploit energy-based techniques:
 - passivity
 - port-Hamiltonian modeling
- Passivity:
 - general and powerful framework
 - linear/nonlinear setting
 - related to I/O stability
- Port-Hamiltonian modeling
 - approach to model interconnected systems
 - based on the "energy flows"
 - strong link with passivity
- Applications
 - formation control of UAVs
 - connectivity maintenance
 - navigation and exploration





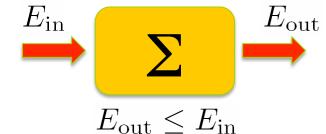
Networked Dynamic Systems

- <u>Decentralization</u>: <u>limited</u> sensing/communication and/or computing power
- Every agent must elaborate the gathered information to run its local controller
- The controller complexity is related to the amount of needed information
- If the whole state is needed, the complexity (~ computing power) increases with the number of agents
 - May easily become infeasible
 - And would need to know the whole state...


- Another example of coordination
- The wheels must "coordinate" their orientations and spinning motion
- The result is a coordinate displacement of the "shared" platform chassis

- However, this is not exactly what we're aiming at!
- **Centralization**: this system is completely centralized
 - The wheels have no "independent brain"
 - A single central unit knows the whole state and commands the wheel actions
 - No constraints on sensing and commucation
 - What if instead of 4 wheels, there were 100 wheels? The controller (and communication) complexity grows with the number of components

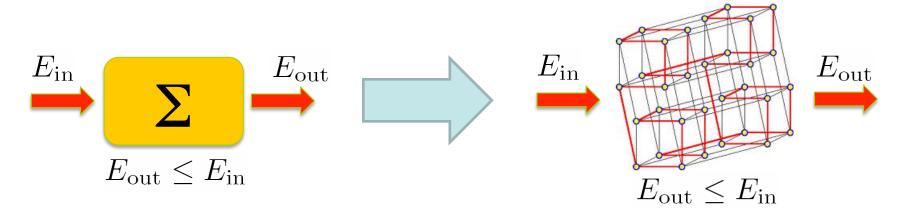
- In this example, no central unit is present
- Every agent has "its own brain"
- Relative communication and sensing depends on the current state
 - within some range
 - in visibility (no occlusions)


- The complexity of each agent controller doesn't depend on the number of agents
- Of course:
 - harder to design
 - harder to analyze
 - but closer to how nature works!

Passivity

- Passivity: intuitively, something that does not produce internal energy
- A generic nonlinear system $\begin{cases} \dot{x} &= f(x) + g(x)u \\ y &= h(x) \end{cases}$ is said to be passive if there exists a storage function $V(x) \in \mathcal{C}^1: \mathbb{R}^n \to \mathbb{R}^+$

such that $\dot{V} \leq y^T u$ or equivalently


$$V(x(t)) \le V(x(t_0)) + \int_{t_0}^t y^T(s)u(s)ds$$

Current energy is at most equal to the initial energy + supplied energy from outside

This condition can be interpreted as "no internal generation of energy"

Passivity: Internal Structure

• An intuition: proper interconnections of passive systems are passive

- Is this a general fact?
- Can we reduce a passive system into the "proper interconnection" of atomic passive sub-systems?
- Is there a network structure behind passivity?
 - •... network structure -> multi-robot
 - •... network structure + passivity -> port-Hamiltonian Modeling