#### **Autonomous and Mobile Robotics**

Prof. Giuseppe Oriolo

# Motion Planning Probabilistic Methods

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI



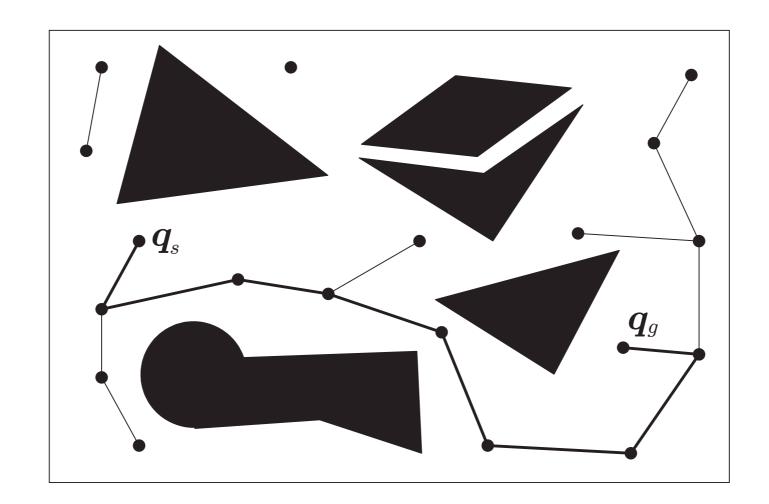
#### sampling-based methods

- build a roadmap of the configuration space  $\mathcal C$  by repeating this basic iteration:
  - extract a sample q of  ${\mathcal C}$
  - use forward kinematics to compute the volume  $\mathcal{B}(q)$  occupied by the robot  $\mathcal{B}$  at q
  - check collision between  $\mathcal{B}(\boldsymbol{q})$  and obstacles  $\mathcal{O}_1,...,\mathcal{O}_p$
  - if  $q \in \mathcal{C}_{\mathrm{free}}$ , add q to the roadmap; else, discard it
- preliminary computation of  $\mathcal{CO}$  is completely avoided: an approximate representation of  $\mathcal{C}_{\text{free}}$  is directly built as a collection of connected configurations (roadmap)
- different criteria for sampling lead to different methods: in general, randomized outperforms deterministic

#### PRM (Probabilistic Roadmap)

- basic iteration to build the PRM:
  - extract a sample q of  $\mathcal C$  with uniform probability distribution
  - compute  $\mathcal{B}(oldsymbol{q})$  and check for collision
  - if  $q \in \mathcal{C}_{\mathrm{free}}$ , add q to the PRM; else, discard it
  - search the PRM for "sufficiently near" configurations  $q_{
    m near}$
  - if possible, connect  $m{q}$  to  $m{q}_{\mathrm{near}}$  with a free local path
- the generation of a free path between q and  $q_{\rm near}$  is delegated to a procedure called local planner: e.g., throw a linear path and check it for collision
- ullet the chosen metric in  ${\cal C}$  plays a role in identifying  $oldsymbol{q}_{
  m near}$

narrow passages disconnected are scarcely sampled components C-obstacles are local paths never computed

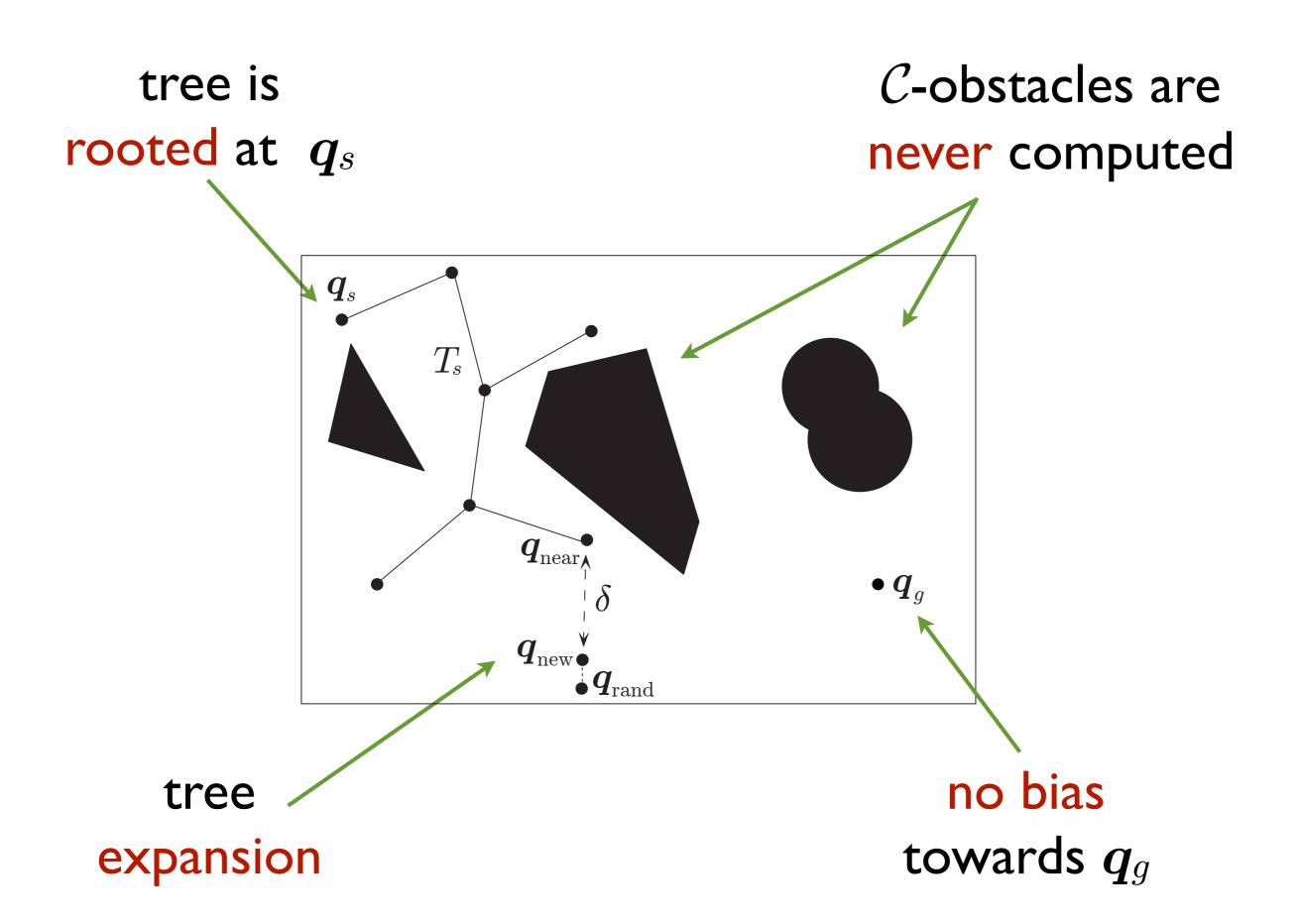


- construction of the PRM is arrested when
   l.connected components become less than a threshold, or
   a maximum number of iterations is reached
- if  $q_s$  and  $q_g$  can be connected to the same component, a solution can be found by graph search; else, enhance the PRM by performing more iterations

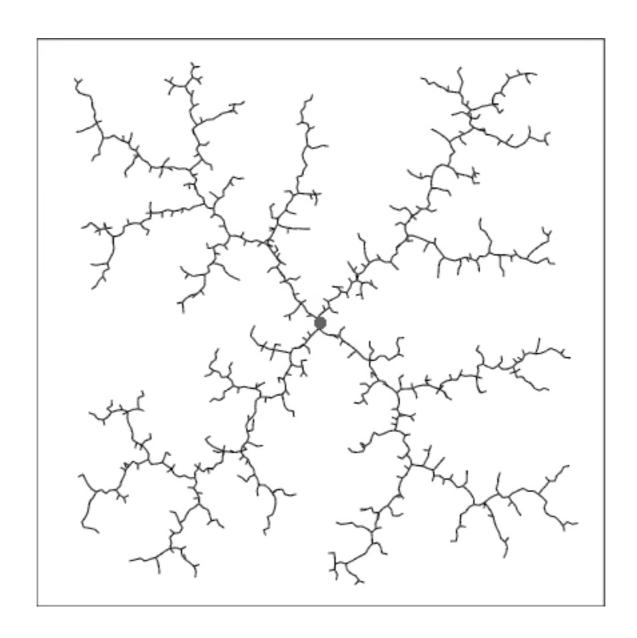
- the PRM method is probabilistically complete, i.e., the probability of finding a solution whenever one exists tends to 1 as the execution time tends to  $\infty$ ; and is multiple-query (new queries enhance the PRM)
- the main advantage is speed; the time PRM needs to find a solution in high-dimensional spaces can be orders of magnitude smaller than previous planners
- narrow passages are critical; heuristics may be used to design biased (non-uniform) probability distributions aimed at increasing sampling in such areas

#### RRT (Rapidly-exploring Random Tree)

- basic iteration to build the tree  $T_s$  rooted at  $q_s$ :
  - generate  $q_{\mathrm{rand}}$  in  $\mathcal C$  with uniform probability distribution
  - search the tree for the nearest configuration  $oldsymbol{q}_{ ext{near}}$
  - choose  $m{q}_{\mathrm{new}}$  at a distance  $\delta$  from  $m{q}_{\mathrm{near}}$  in the direction of  $m{q}_{\mathrm{rand}}$
  - check for collision  $m{q}_{
    m new}$  and the segment from  $m{q}_{
    m near}$  to  $m{q}_{
    m new}$
  - if check is negative, add  $oldsymbol{q}_{\mathrm{new}}$  to  $T_s$  (expansion)
- ullet the chosen metric in  ${\cal C}$  plays a role in identifying  $oldsymbol{q}_{
  m near}$
- $T_s$  rapidly covers  $\mathcal{C}_{\mathrm{free}}$  because the expansion is biased towards unexplored areas (actually, towards larger Voronoi regions)

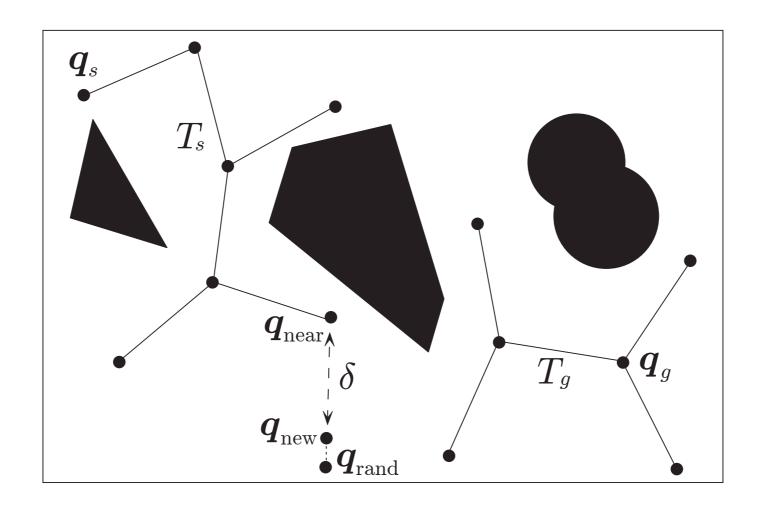


#### RRT in empty 2D space



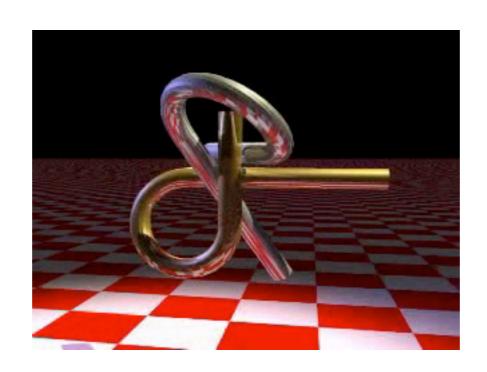
quickly explores all areas, much more efficiently than other simple strategies, e.g., random walks

- to introduce a bias towards  $q_g$ , one may grow two trees  $T_s$  and  $T_g$ , respectively rooted at  $q_s$  and  $q_g$  (bidirectional RRT)
- alternate expansion and connection phases: use the last generated  $q_{\rm new}$  of  $T_s$  as a  $q_{\rm rand}$  for  $T_g$ , and then repeat switching the roles of  $T_s$  and  $T_g$



- bidirectional RRT is probabilistically complete and single-query (trees are rooted at  $q_s$  and  $q_g$ , and in any case new queries may require significant work)
- as an alternative, one may adopt arepsilon-greedy exploration, to balance exploration ( $q_{
  m rand} = {
  m random}(q)$ ) and exploitation ( $q_{
  m rand} = q_{
  m g}$ )
- many variations to basic RRT are possible: e.g., one may use an adaptive stepsize  $\delta$  to speed up motion in wide open areas
- RRT can be modified to address many extensions of the canonical planning problem, e.g., moving obstacles, nonholonomic constraints, manipulation planning

#### a benchmark problem: the Alpha Puzzle



- 6-dof configuration space + narrow passages
- solved by bidirectional RRT in few mins (average)
- in practice, this problem is not solvable by classical methods such as retraction or cell decomposition

#### RRT: extension to nonholonomic robots

ullet motion planning for a unicycle in  $\mathcal{C}=\mathrm{R}^2{ imes}SO(2)$ 

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix} v + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \omega$$

- linear paths in  ${\cal C}$  such as those used to connect  ${m q}_{
  m near}$  to  ${m q}_{
  m rand}$  are not admissible in general
- one possibility is to use motion primitives, i.e., a finite set of admissible local paths, produced by a specific choice of the inputs (kinodynamic RRT)

• for example, one may use (Dubins car)

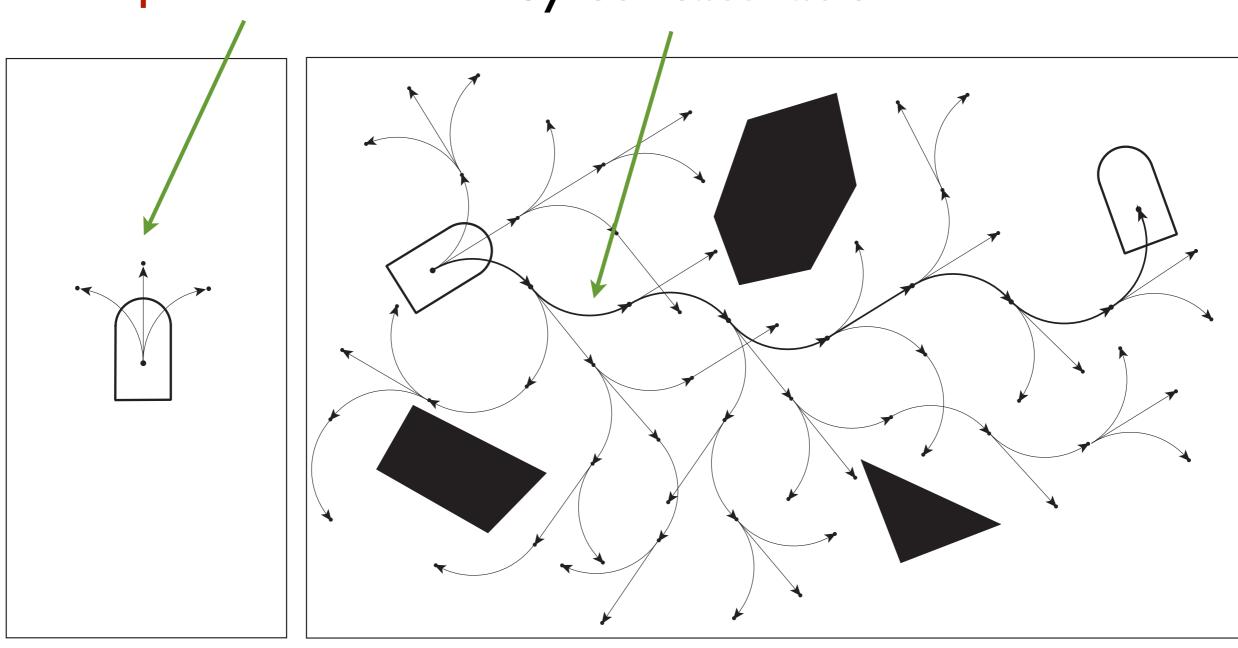
$$v = \bar{v}$$
  $\omega = \{-\bar{\omega}, 0, \bar{\omega}\}$   $t \in [0, \Delta]$ 

resulting in 3 possible paths in forward motion

- the algorithm is the same with the only difference that  $q_{\rm new}$  is generated from  $q_{\rm near}$  selecting one of the possible paths (either randomly or as the one that leads the unicycle closer to  $q_{\rm rand}$ )
- if  $q_g$  can be reached from  $q_s$  with a collision-free concatenation of primitives, the probability that a solution is found tends to 1 as the time tends to  $\infty$

## solution path made by concatenation

primitives



## optimal motion planning

- PRM or RRT do not allow to optimize a cost function (length of the path, distance from the obstacles,...)
- running the algorithm for a longer time (or multiple times in succession) may improve the solution, but optimality is not guaranteed; indeed, one can prove that, whatever the cost function, the probability of finding an optimal solution is 0
- ullet one may seek optimal paths using  $A^{\star}$  (or variants) on a previously computed gridmap representation, but running time grows exponentially with its dimension and optimality is only ensured up to grid resolution

#### the RRT\* algorithm

- idea: consider the cost needed to reach a vertex
- new basic iteration to build the tree  $T_s$  rooted at  $q_s$ :
  - generate  $q_{\mathrm{rand}}$  in  $\mathcal C$  with uniform probability distribution
  - search the tree for the nearest configuration  $m{q}_{ ext{near}}$
  - choose  $m{q}_{
    m new}$  at a distance  $\delta$  from  $m{q}_{
    m near}$  in the direction of  $m{q}_{
    m rand}$
  - check for collision  $q_{
    m new}$  and the segment from  $q_{
    m near}$  to  $q_{
    m new}$
  - if check is negative, add  $q_{\text{new}}$  to  $T_s$  (expansion):
    - ullet identify  $Q_{
      m near}$ , the vertexes of  $T_s$  within distance r from  $oldsymbol{q}_{
      m new}$
    - choose parent: parent of  $q_{\rm new}$  is the vertex in  $Q_{\rm near}$  which allows to reach  $q_{\rm new}$  with minimum cost (rather than  $q_{\rm near}$ )
    - rewire: for each vertex in  $Q_{\rm near,}$  redefine its parent as  $q_{\rm new}$  if this reduces the cost to reach the vertex

#### RRT\*: definition of $Q_{\mathrm{near}}$

• r (size of the ball around  $q_{\text{new}}$ ) depends on the current size n of the tree  $T_s$  as well as on the dimension d of the configuration space C

$$r(n) = \gamma \left(\frac{\log n}{n}\right)^{1/(d+1)} \text{volume of } \mathcal{C}_{\text{free}}$$
 
$$\gamma > \gamma* = 2\left(1 + \frac{1}{d}\right)^{\frac{1}{d}} \left(\frac{\mu(\mathcal{C}_{\text{free}})}{\zeta_d}\right)^{\frac{1}{d}} \text{volume of unit ball in } \mathbb{R}^d$$

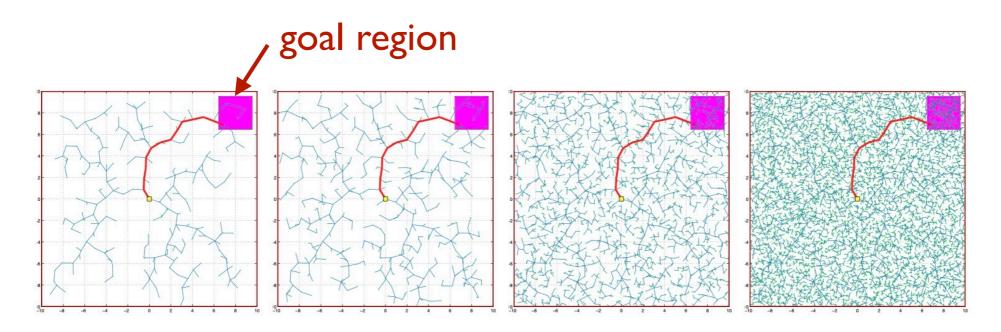
ullet in practice, choose  $\gamma$  'large enough'

#### asymptotic optimality

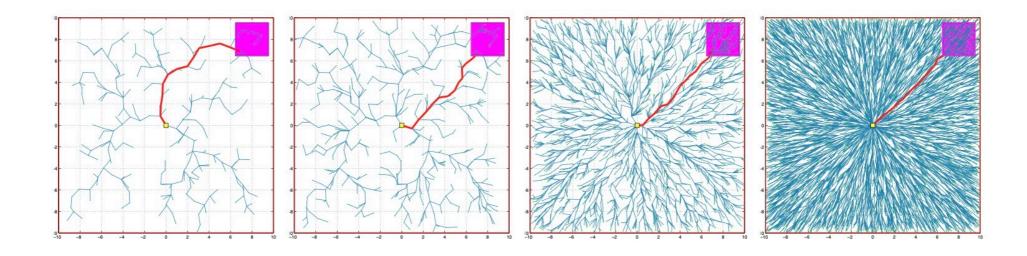
- the choose parent and rewire steps reduce the cost (if possible) of the vertexes in the tree, while still guaranteeing probabilistic completeness
- RRT\* is asymptotically optimal: the probability of finding an optimal solution tends to 1 as the number of vertices of the tree (equivalently, the execution time) tends to  $\infty$

## RRT\* in empty 2D space

• RRT

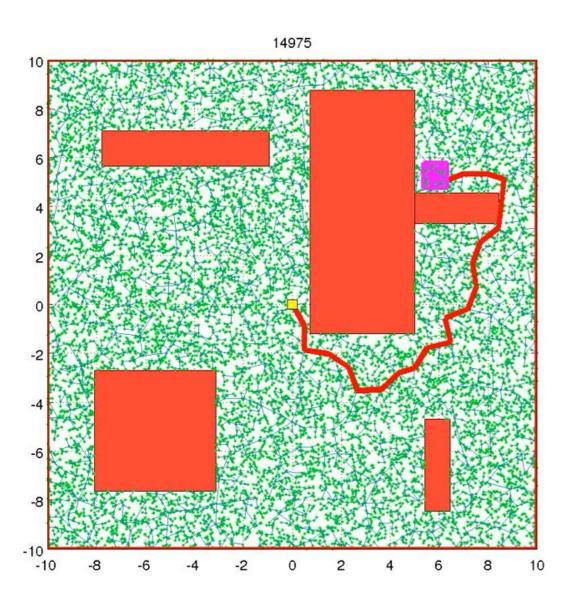


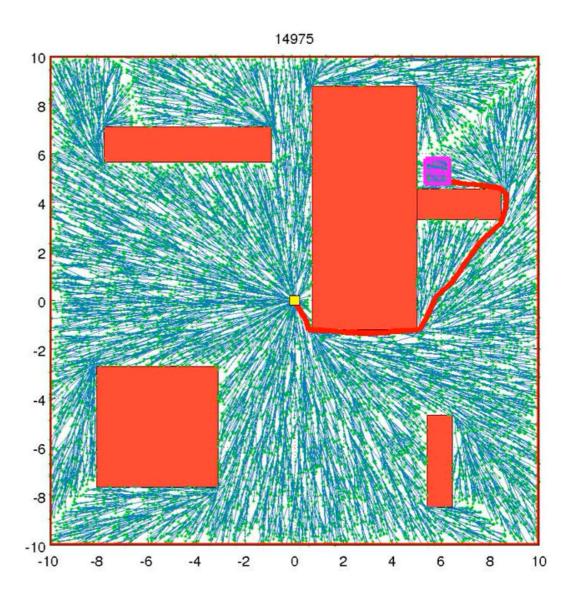
• RRT\*



#### RRT\* in 2D space with obstacles

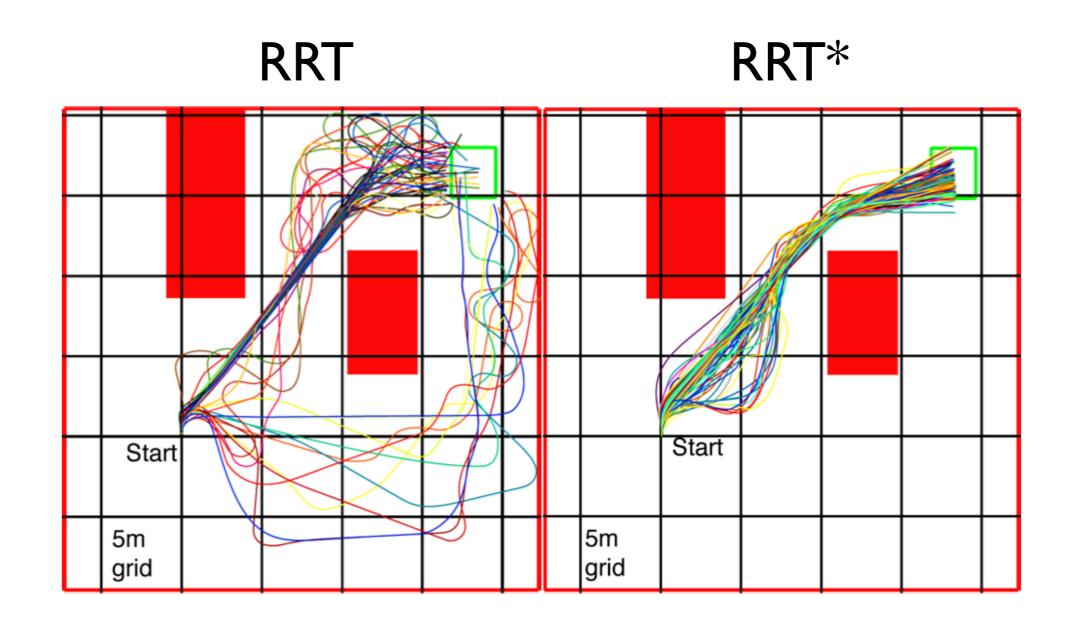
RRT\*





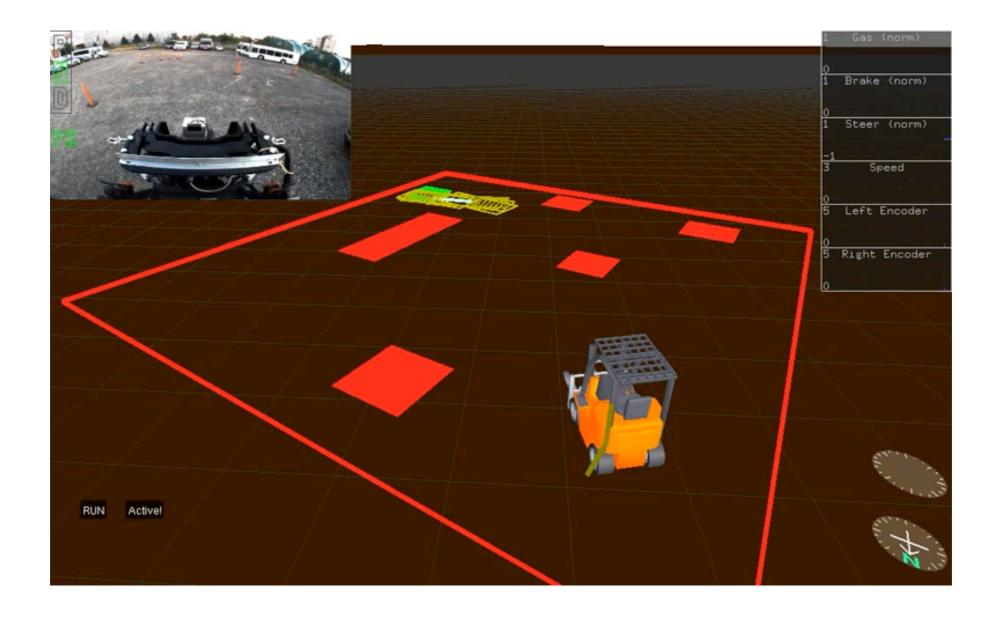
#### **RRT\* for Dubins car**

application to autonomous driving for a forklift



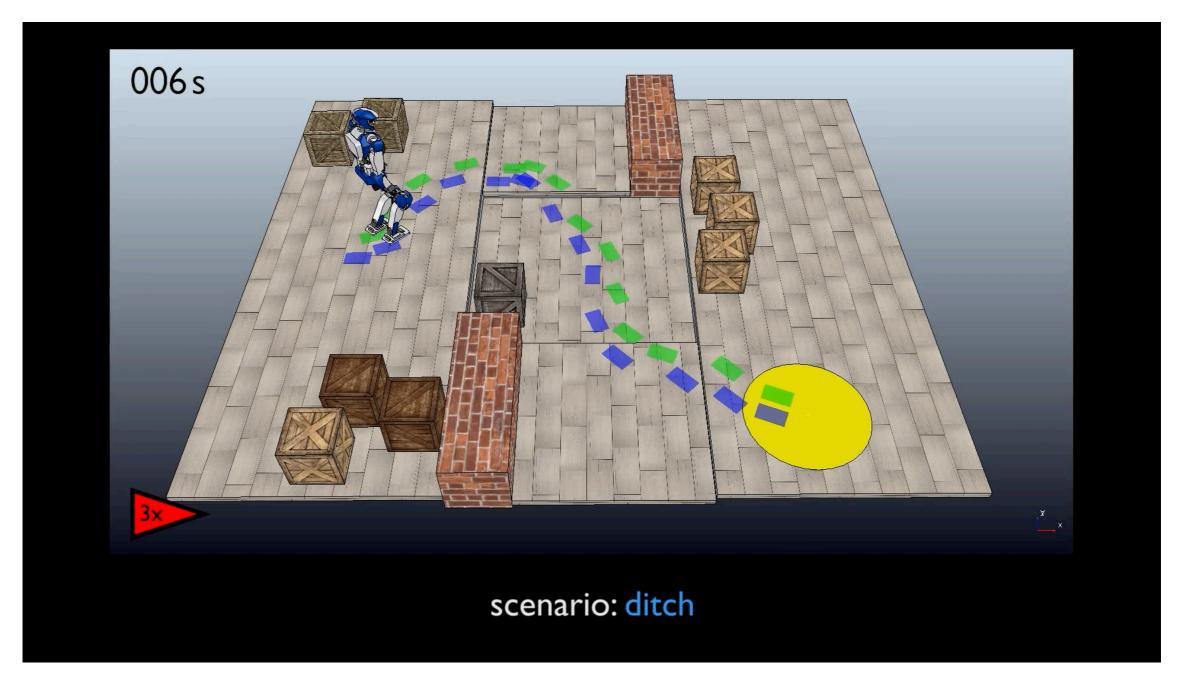
## anytime RRT\*

 finds an initial solution quickly and then improves it during plan execution by leveraging the asymptotic optimality property of RRT\*



#### RRT\*-based footstep planning in humanoids

 generate a sequence of footsteps that leads a humanoid robot to a goal region in a world of stairs



#### RRT\*-based footstep planning in humanoids

 the use of different cost functions leads to footstep plans with different characteristics

