

Modeling Business Processes
with BPMN

Andrea Marrella

marrella@dis.uniroma1.it

Presentation Outline

2

• This seminar introduces business process modeling using the BPMN

(Business Process Model and Notation) standard.

• Visit http://www.bpmn.org/ for downloading the complete specification

of BPMN 2.0 and some interesting examples.

• Web site of the course : http://www.dis.uniroma1.it/~bpm

• Download slides at :

 http://www.dis.uniroma1.it/~marrella/teaching.html

• Reference Books :

Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo Reijers

Fundamentals of Business Process Management

 Stephen A. White PhD, Derek Miers

 BPMN Modeling and Reference Guide

 Thomas Allweyer

 BPMN 2.0 - Introduction to the Standard for Business Process

 Modeling

Topics

3

• Process Modeling

• BPMN Background

• Basic Concepts

• Advanced Concepts

• Conclusions

Business Processes

• Business Process [1] : “A business process consists of a set of

activities that are performed in coordination in an organizational and

technical environment. These activities jointly realize a business goal ”

– A business goal is the target that an organization aims to achieve by

performing correctly the related business process.

• Currently, business processes are the core of most information

systems

– production line of a car manufacturer, procedures for buying tickets on-

line…

• This requires that organizations specify their flows of work for the

orchestration of participants, information and technology for the

realization of products and services.

• In order to manage Business Processes, they have to be described

and documented in terms of process models.

 4

A first BPMN Example

5

Business process

concerning the book

loans service provided by

a library.

• A notation for graphic business process modeling defines

the symbols for the various process elements, their correct

meaning as well as their possible combinations.

• Thus, a notation is a standardized language for the

description of business processes.

The Process Life-Cycle

6

1. Process identification

2. Process discovery (as-is)

3. Process analysis

4. Process redesign (to-be)

5. Process implementation

6. Process monitoring/controlling

Process

Modeling

Tools

Process

Management

Systems

Process models are

important in various

stages of the process life

cycle.

The models produced will

look quite differently

depending on the reason

for modeling them in the

first place.

Purposes of Process

Modeling

7

Process

Implementation

Process

Analysis & Design

Process

Enactment &

Monitoring

Process

Evaluation

“TO BE”

Process Models

E
x

e
c

u
ta

b
le

P
ro

c
e

s
s

 M
o

d
e

ls

M
e

a
s

u
re

s
 f

o
r

Im
p

ro
v

e
m

e
n

t

 Process

 Metrics

Organizational

Analysis

T
a

rg
e

t
V

a
lu

e
s

“AS IS”

Process

Models

High-level Models

including

Communication,

simulation, activity-

based costing…

Detailed Models

including

Data types, conditions, data

mappings, fault handling…

Integration, testing,

deployment…

Executable Process

Models

8

• Executable Process Models carry the instructions on how work

should happen, who should do it, links to the other systems, etc.

• They provide a direct method of translating strategical and

tactical intent into operational processes.

• For being executed, process models have to meet very strict

demands, because they are not converted into a computer program

by a human being, but directly processed by a machine.

• Currently, many standards for executable process descriptions

have been established, such as:

– XPDL (XML Process Definition Language) [2]

– BPEL (Business Process Execution Language) [3]

 …but such descriptions have no graphical notations, and the main

range of application is the definition of automatic processes.

• YAWL (Yet Another Workflow Language) [7] is a modeling

language that allows for a graphical representation of executable

process models.

Process Management

Systems

• Process Management System (PMS) [1] : “A PMS is a

generic software system that is driven by explicit

process representations to coordinate the enactment of

business processes ”.

– A PMS is driven by a specific business process model.
9

PMS

It takes a process

model as input

It manages the

process routing

It assigns tasks

to proper participants

librarian

system

The Importance of

Process Modeling

• To model a process leads to a number of questions :

– Which steps are really necessary?

– Who should do them?

– Should they be kept in house or outsourced?

– How they should be done?

– What capabilities are needed?

– What results do we expect and how will they be monitored?

• While the answers to these questions are always

situation-specific…

• …without the backdrop of a commonly agreed

description of the business process in question, such

answers are often vague and wooly.

10

Modeling Languages for

Business Processes

11

R
e

p
r.

 C
a

p
a

b
il

it
ie

s
 (

D
a

ta
 v

s
.
C

o
n

tr
o

l
F

lo
w

)

DECLARE [6]

Workflow Nets [5]

Artifact-centric

Business

Processes [4]

[7]

[8]

Topics

12

• Process Modeling

• BPMN Background

• Basic Concepts

• Advanced Concepts

• Conclusions

Business Process Modeling

Notation(BPMN)

13

• BPMN is the OMG standard for representing business

processes.

• There are many tool for designingn a BPMN process:

– Bizagi Process Modeller (it also provides an execution engine)

– JBPM (Eclipse plugin)

– Signavio

– TIBCO Business Studio (free download, quite large)

– IBM Websphere Business Modeler

– ARIS

– Oracle BPA

– Business Process Visual Architect (Visual Paradigm)

– Progress Savvion Business Modeller

Why BPMN?

14

• “The primary goal of BPMN is to provide a notation that

is readily understandable by all business users, from

the business analysts that create the initial draft of the

processes, to the technical developers responsible for

implementing the technology that will perform these

processes, and finally to the business people who will

manage and monitor those processes.”

• “The idea is to create a standardized bridge for the

gap between the business process design and

process implementation.” [BPMN 2.0 spec.]

The history of BPMN

15

In 2001 BPMI

(Business Process

Management Initiative)

developed BPML as an

XML process

execution language.

In 2004 BPMN 1.0 was

released to the public

and in 2006 it was

adopted as OMG

standard.

In Feb.2008 BPMN 1.1

was released to the

public, making the

meaning of the

notation more

explicit.

BPMN 1.2 does not

include any significant

graphical changes;

modifications were

merely editorial.

The vendors realized immediately there was

a need of a graphical representation for the

language oriented towards the needs of

business users. Not a notation that directly

represents the precise execution language

under development.

BPMN 1.2 vs BPMN 2.0

16

• BPMN 1.2 provides a mapping from a “valid” BPMN

diagram to BPEL, such that an engine can execute the

process.

– The 1.2 specification provides only contained verbal

descriptions of the graphic notations elements and modeling

rules. This leads to misleading and confusions in the translation

process.

• BPMN 2.0 beta 2 was introduced in June 2010.
– It represents the biggest revision of BPMN since its inception.

• BPMN 2.0 received a formal definition in the form of a

metamodel, that is a precise definition of the constructs

and rules needed for creating specific models.

What is a Metamodel?

17

BPMN 2.0 Metamodel

18

• Metamodelling provides a

number of benefits :

– It formalizes the definition of

models and entities.

– It formalizes the relationship

between elements.

– It enables interoperability.

• The new version’s specification

document has got comprehensive

UML class diagram that

graphically show the features of

the different BPMN constructs and

their relationships.

BPMN 1.2 vs BPMN 2.0

19

• The metamodel also has got additional language

constructs that cannot be represented in the graphic

models.
– Such constructs are required by process engines to capture the

necessary additional information for process execution.

• Moreover, the metamodel was the basis for the

development on an exchange format for BPMN models.
– Up to now, it was almost impossible to transfer BPMN models from one

tool into another.

– Some tools have got import and export interfaces for the exchange of

BPMN models by means of the XPDL format, but the use of XPDL for this

purpose is not widely accepted yet.

– Moreover, XPDL has not been implemented uniformly by all vendors, so

that in practice there are quite often problems with model exchange.

Current BPMN 1.2

problems

20

The absence of a formal

semantic makes the

translation process

misleading and confusing.

Solving BPMN 1.x

problems with BPMN 2.0

21

BPMN 2.0 has now its explicit

execution semantic, and it is

possible to directly execute

detailed BPMN models.

BPMN 2.0

22

• The typical modeler does not need to work with the

metamodel. Normally, s\he uses a modeling tool that

only allow the creation of models complying with the

specification, and thus with the metamodel.

• It is rather the vendors of modeling tools and process

engines who have to deal with the metamodel.

• BPMN 2.0 supports 3 different levels of process

modeling:
– Process Maps: simple flow charts of the activities.

– Process Descriptions: flow charts extended with additional

information, but not enough to fully define actual performance.

– Process Models: flow charts extended with enough information so that

the process can be analyzed, simulated, and/or executed.

Topics

23

• Process Modeling

• BPMN Background

• Basic Concepts

• Advanced Concepts

• Conclusions

BPMN Basic Elements

24

• 4 basic elements, that usually cover the 80% of

modeling needs.

It is an atomic

unit of work that

has a duration.

Events represent

things that happen

instantaneously.

Elements that

control the flow

of execution of

the process.

Arcs impose temporal

constraints between

flow objects.

Connecting Activities

25

• The sequence flow defines the order of flow objects in a process (activities,

events and gateways). Each activity can have one or more incoming

sequence flow and one or more outgoing sequence flow.

• Typically, an activity tends to have a single incoming and a single outgoing

sequence flow.

• Each process must have always at least a start event (a circle with a thin

border), that shows where a process instance can start, and a end event (a

circle with a thick border), for indicating when a process instance completes.

• Starting from a process model, an organization runs a number of independent

instances of this process.

Send

Invoice

Receive

Payment

Accept

Payment

Activity Behaviour

26

• Once a process instance has been created, we use the notion of token to

identify the progress (or state) of that instance.

• A token is a “theoretical object” used to create a descriptive “simulation” of

the behavior associated to each BPMN element (it is not currently a formal

part of the BPMN specification).

• A token is created in the start event, traverses the sequence flow and is

destroyed in a end event. That is, there is no time associated with the token

travelling down a sequence flow.

A first example: an order

management process

27

Check stock

availability

Reject order

Confirm order

Send invoice

Ship goods

Start event End event.

BPMN adopts

the implicit

termination

semantics.

Activities

X

+ +
Exclusive

Gateways

Parallel

Gateways
These activities

can be executed

concurrently.

These activities are

mutually

exclusives.

Purchase

order

received

Order

rejected

Order

fulfilled

A bit more on gateways

28

• A gateway implies that there is a gating mechanism that

either allows or disallows passage of tokens through the

gateway.

• As tokens arrive at a gateway, they can be merged

together on input, or split apart on output depending on

the gateway type.

• A split gateway represents a point where the process

flow diverges, while a join gateway represents a point

where the process flow converges.
• Splits have one incoming sequence flow and multiple outgoing

sequence flows (representing the branches that diverge).

• Joins have multiple incoming sequence flows (representing the

branches to be merged) and one outgoing sequence flow.

Types of gateways

29

• Exclusive Gateways (XOR)

– Indicates locations within a business process where the

sequence flow can take two or more alternative paths.

– Only one of the paths can be taken.

– Depicted by a diamond shape that may contain a marker

that is shaped like an “X”.

– We use a XOR-join to merge two or more alternative

branches that may have previously been forked with a

XOR-split.

• Parallel Gateways (AND)

– Provide a mechanism to synchronize parallel flows

(AND-join) and to create parallel flows (AND-split), with

activities that can be executed concurrently.

– Depicted by a diamond shape that must contain a marker

that is shaped like a plus sign.

Exclusive Gateways –

Splitting Behaviour

30

• Exclusive gateways are locations

within a process where there are

two or more alternative paths.

• The criteria for the decision, which

the exclusive gateway represents,

exist as conditions on each of the

outgoing sequence flow.

• When a token arrives at an

exclusive gateway, there is an

immediate evaluation of the

conditions that are on the gateway’s

outgoing sequence flow. One of

those conditions must always

evaluate to true.

Default Conditions

31

• One way for the modeler to

ensure that the process does

not get stuck at an exclusive

gateway is to use a default

condition for one of the

outgoing sequence flow.

• The default condition can

complement a set of standard

conditions to provide an

automatic escape

mechanism in case all the

standard conditions evaluate to

false.

• The default is chosen if all the

other sequence flow conditions

turn out to be false.

The default condition has

the meaning of “otherwise”,

and it can be left unlabeled.

Exclusive Gateways –

Merging Behaviour

32

• When a token arrives at the exclusive gateway, there is no evaluation of

conditions (on the incoming sequence flow), and immediately moves down

the outgoing sequence flow.

Exercise

33

• As soon as an invoice is received from a customer, it

needs to be checked for mismatches.

• The check may result in either of these three options:
– i) there are no mismatches, in which case the invoice is posted;

– ii) there are mismatches but these can be corrected, in which case

the invoice is re-sent to the customer; and

– iii) there are mismatches but these cannot be corrected, in which

case the invoice is blocked.

• Once one of these three activities is performed the

invoice is parked and the process completes.

Solution

34

Parallel Gateways –

Splitting Behaviour

35

• When a token arrives at a parallel gateway,

there is no evaluation of any conditions on

the outgoing sequence flow.

• The parallel gateway will create parallel

paths.

• This means that the gateway will create a

number of tokens that are equal to the

number of outgoing sequence flow. One

token moves down each of those outgoing

sequence flow.

Parallel Gateways –

Merging Behaviour

36

• To synchronize the flow, the parallel gateway will wait for a token to arrive

from each incoming sequence flow.

• When the first token arrives, there is no evaluation of a condition for the

incoming sequence flow, but the token is “held” at the gateway and does

not continue.

• When all the tokens are arrived, then they are merged and one token moves

down the outgoing sequence flow.

Exercise

37

• Once the boarding pass has been received, passengers proceed

to the security check. Here they need to pass the personal

security screening and the luggage screening. Afterwards, they

can proceed to the departure level.

Exercise

38

• Describe the behavior of this process.

Solution

39

Only two of three paths will be

used at any one time. Thus, the

Process will be stuck waiting for

the third path

Inclusive gateways

40

• Inclusive Gateways (OR)

– Sometimes we may need to take one or more branches

after a decision activity.

– To model situations where a decision may lead to one or

more options being taken at the same time, we need to

use an inclusive (OR) split gateway.

– An OR-split is similar to the XOR-split, but the

conditions on its outgoing branches do not need to be

mutually exclusive, i.e. more than one of them can be

true at the same time.

– When we encounter an OR-split, we thus take one or

more branches depending on which conditions are true.

Inclusive Gateways –

Splitting Behaviour

41

• Inclusive gateways support decisions where

more than one outcome is possible at the

decision point.

• Inclusive gateway with multiple outgoing

sequence flows creates one or more paths

based on the conditions on those sequence

flow.

• In terms of token semantics, this means that

the OR-split takes the input token and

generates a number of tokens equivalent

to the number of output conditions that

are true.

• Every condition that evaluates to true will

result in a token moving down that sequence

flow.

• At least one of those conditions must

evaluate to true.

Inclusive Gateways –

Merging Behaviour

42

• When the first token arrives at the gateway, the

gateway will “look” upstream for each of the

other incoming sequence flow to see if there is a

token that might arrive at a later time.

• Thus, the gateway will hold the first token that

arrived in the upper path until the other token

from the lower path arrives.

• When all the expected tokens have arrived at

the gateway, the process flow is synchronized

(the incoming tokens are merged) and then a

token moves down the gateway’s outgoing

sequence flow.

Exercise

A company has two warehouses that store different

products: Amsterdam and Hamburg.

When an order is received, it is distributed across these

warehouses: if some of the relevant products are

maintained in Amsterdam, a sub-order is sent there;

likewise, if some relevant products are maintained in

Hamburg, a sub-order is sent there.

Afterwards, the order is registered and the process

completes.

A first solution

Some activities represented in

the process model have to be

duplicated.

A second solution

This process works also for

empty orders (i.e., for orders that

do not contain neither

Amsterdam nor Hamburg

products)

A third solution with OR

gateways

What type should we

assign to this join?

47

What type should we

assign to this join?

48

Let us try an AND-join to match the preceding AND-split.

We recall that an AND-join waits for a token to arrive from

each incoming branch. While the token from the branch with

activity “C” will always arrive, the token from the branch with

activities “B” and “D” may not arrive if this is routed to “E” by

the XOR-split.

So if activity “D” is not executed, the AND-join will wait

indefinitely for that token, with the consequence that the

process instance will not be able to progress any further.

This behavioral anomaly is called deadlock and should be

avoided.

What type should we

assign to this join?

49

Let us try an XOR-join. We recall that the XOR-join works as a

pass-through by forwarding to its output branch each token that

arrives through one of its input branches.

In our example this means that we may execute activity “F” once

or twice, depending whether the preceding XOR-split routes the

token to “E” (in this case “F” is executed once) or to “D” (“F” is

executed twice).

While this solution may work, we have the problem that we do not

know whether activity “F” will be executed once or twice, and we

may actually not want to execute it twice. Moreover, if this is

the case, we would signal that the process has completed twice,

since the end event following “F” will receive two tokens. And this,

again, is something we want to avoid.

What type should we

assign to this join?

50

The only join type left to try is the OR-join.

An OR-join will wait for all incoming active branches to complete. If the

XOR-split routes control to “E”, the OR-join will not wait for a token from

the branch bearing activity “D”, since this will never arrive.

Thus, it will proceed once the token from activity “C” arrives. On the

other hand, if the XOR-split routes control to “D”, the OR-join will wait for

a token to also arrive from this branch, and once both tokens have

arrived, it will merge them into one and send this token out, so that “F”

can be executed once and the process can complete normally.

When should we use

an OR-join?

Since the OR-join semantics is not simple, the presence of

this element in a model may confuse the reader.

Thus, we suggest to use it only when it is strictly required.

Clearly, it is easy to see that an OR-join must be used

whenever we need to synchronize control from a

preceding OR-split. Similarly, we should use an AND-join

to synchronize control from a preceding AND-split and an

XOR-join to merge a set of branches that are mutually

exclusive.

When?

Process

Which?

Data / Service / Product

What?

Function

Who?

Organization

Process Modelling Viewpoints

Organisational Elements in

Process Models

Two basic abstractions:

• Resource: Anything or anyone involved in the performance of

a process activity. It can be a human actor, an equipment (e.g.

a printer) or a software system.

– The resource perspective of a process is interested in active resources.

• Resource class: Set of resources with shared characteristics,

e.g. Clerks, Managers, Insurance Officers

A resource class may represent either a:

• Role (skill, competence, qualification)

Classification based on what a resource can do or is expected

to do (e.g., a clerk is a role).

• Group (department, team, office, organizational unit)

Classification based on the organization’s structure (e.g., the

administration department in an organization).

Resource Modelling in BPMN

• In BPMN, resource classes are captured using:
– Pools

• represent independent organizational entities in a collaborative
business process diagram, e.g., Customer is independent from
the Supplier.

• Independent means they do not share any common system that
allows them to communicate implicitly. Hence, they have to
communicate explicitly through the use of messages.

– Lanes

• represent multiple resource classes in the same organizational
space (i.e., in the same pool) and sharing common systems.

• The Sales Department and the Marketing Department of the same
company may be represented in the same pool, but in different
lanes. They can communicate directly.

• Clerks and Managers can be modelled in two separate lanes, but in
the same pool representing the bank.

– The clerk creates a new loan application...

– A manager evaluates the loan application...

55

Lanes and Pools – Notation

Message Flows

56

• Thus, message flow is only used in

collaborations diagrams with two or

more pools.

• Sequence flow cannot cross a pool

boundary - i.e., a Process is fully

contained within a pool.

• Message flow defines the messages/communications between two

separate participants (shown as pools) of the diagram.

• Message flow must always occur between two separate pools and

cannot connect two objects within a single pool.

Order Management

Process with Pools
C

u
s
to

m
e

r
S

u
p

p
lie

r

Check stock

availability

Confirm order

Reject order

Send invoice

Ship goods

Place

purchase

order

Purchase

order

Order Rejection Notification

Order confirmation

notification

Invoice

Make

payment

Shipment notification

Order Management Process

with Lanes

Lanes

59

• Lanes often represent organization

roles (e.g., Manager, Administration,

Associate, etc), but can represent any

desired classification (e.g., underlying

technology, organizational

departments, company products, etc).

• Sequence flow can cross Lane

boundaries.

• Message flow is not used within or

across lanes of a pool.

• Lanes can be nested.

• Lanes create sub-partitions for the objects within a pool.

• These partitions are used to group process elements (showing how

they are related), or which roles have responsibility for carrying out

the activities.

Pools – black box

60

• A pool is not required to contain a process. Known as a “black

box”, these pools do not show activities or sequence flow inside its

boundary.

• In this example, the “Customer” Pool is a black box (as far as

Mortgage Co is concerned, they have no knowledge of the Processes

of their Customer).

When the Pool is

black box,

Message Flow

connects to its

boundary.

Artifacts

61

• Artifacts provide a mechanism to capture additional information

about a process. This information does not directly impact the flow

chart characteristics of a process.

• Three different kinds of artifacts are available :

Groups, Text Annotations, Data Objects.

• Modelers and tool vendors can extend BPMN

through the addition of new types of artifacts.

Groups cannot be
interrupted by
Intermediate
Events

A Group is used to

surround a group of

flow objects in order

to highlight and/or

categorize them.

A Text Annotation provides

the modeler with the ability

to add further descriptive

information or notes about a

process or its elements.

Data Artifacts

• Data Objects are a mechanism to show
how data is required or produced by
activities.

– They are depicted by a rectangle that has its
upper-right corner folded over.

– Represent input and output of a process activity.

• Data Stores are containers of data objects
that need be persisted beyond the duration
of a process instance.

• Process activities can read/write data
objects from from/to data stores.

• Associations are used to link artifacts such
as data objects and data stores with flow
objects (e.g. activities and, sometimes,
events).

Data

Object

Directed association

Undirected association

Data

Store

Data Objects

63

• Data objects are used to show how data and documents are used

within a Process as inputs and outputs of activities.

• Data objects may also have “states” that depict how the object

(document) is updated within the Process. The state is usually shown

under the name of the data object and is placed between brackets.

 • By using the state of a data object and

placing it within multiple locations within

a diagram, the modeler can document

the changes that a data object will go

through during the Process.

• Data flow represents the movement of

data objects from into and out of

activities.

• In BPMN, data flow is decoupled from

the sequence flow.

Extending the Order Mgt Process

Check stock

availability

Confirm order

Reject order

Send invoice

Ship goods
Set PO to approved

Set PO to rejected

Purchase

Order

• Input data objects are required for an activity to be executed. Even

if a token is available on the incoming arc of that activity, the latter

cannot be executed until all input data objects are also available.

Exercise

Insert data objects in the following process

model :

Solution

Book Information

Customer Info

Books DB

Insert data objects in the following process

model :

New Data Objects in

BPMN 2.0

67

• A Collection Data Object represents a collection of

information, e.g., a list of order items.

• A Data Input is an external input for the entire process. A

kind of input parameter.

• A Data Output is data result of the entire process. A kind

of output parameter.

• A Data Store is a place where the process can read or

write data, e.g., a database or a filing cabinet. It persists

beyond the lifetime of the process instance.

BPMN Elements – Recap

Flow Objects

Gateway

Event

Activity

Connections

Message

Flow

Association

Artifacts

Text Annotation

Data

Object

Swimlanes

P
o

o
l

L
a

n
e

Data

Store

Topics

69

• Process Modeling

• BPMN Background

• Basic Concepts

• Advanced Concepts

• Conclusions

Categories of Processes

• BPMN 2.0 supports four main categories of Processes
1. Orchestration : They represent a specific business or organization’s

view of the process. It describes how a single business entity (i.e., a

process participant, such as a buyer, seller, shipper, or supplier) goes

about things. A BPMN diagram may contain more than one

orchestration. If so, each orchestration appears within its own pool.

Each orchestration can only represent one participant.

2. Collaboration : It is merely a collection of participants and their

interaction.

3. Choreography : They

represent the expected

behavior between two or

more business participants.

4. Conversation : The logical

relation of message

exchanges.

Specialized types of tasks

71

• There are 7 specialized types of tasks (with different

markers):

• None : A generic or undefined task.

• User : A task where a human performer carries out the

task with the assistance of a software application.

• Receive : Waits for a message to arrive from an external

participant (relative to the Business Process). Once

received, the Task is complete.

• Send : Dispatches a message to an external participant.

• Service : Links to some sort of service, which could be a

web service or an automated application.

• Script : Performs a modeler-defined script.

• Manual : A non-automated task that a human performer

undertakes outside of the control of the workflow or PMS

engine.

Receive

Send

User

Service

Script

Manual

BPMN Activities

72

• An activity is work that is performed within a

business process.

• It can take some time to perform, and involves

one or more resources from the organization.

• It usually requires some type of input and

produces some sort of output.

• An activity can be atomic (known also as a

task) or compound (non atomic, in the sense

you can drill down to see another level of the

process below).

• A task is used when the work in the Process

is not broken down to a finer level of detail.

• The compound type of an Activity is called a

sub-process.

Task

Sub-Process

A sub-process has a “plus

sign” placed in the lower

center of the shape, that

indicates it can be opened

for more details.

Types of sub-processes

73

• Sub-processes enable hierarchical process

development.

• We refer to a Process that contains a Sub-

Process as the Parent Process for the Sub-

Process. Conversely, the Sub-Process is the

child Process of the Process that contains it.

• For an expanded version of a sub- process,

the details (i.e., another process) are visible

within its boundary.

• There are two types of Sub-Processes:

Embedded and Independent

Collapsed

sub-process

Manage

Payment

Expanded sub-process

Receive

credit

report

Approval

Include

Standard

Text

Embedded sub-processes

74

• A modeled process that is actually part of the Parent Process. Embedded

Sub-Processes are not reusable by other processes. All “process relevant

data” used in the parent process is directly accessible by the embedded

sub-process (since it is part of the parent).

• An important characteristic of an embedded sub-process is that it can only

begin with a None Start Event—i.e., without an explicit trigger such as a

message.

Independent

sub-processes

• A separately modeled process that could be used in multiple contexts (e.g.,

checking the credit of a customer). The “process relevant data” of the

parent (calling) process is not automatically available to the sub-process.

Any data must be transferred specifically, sometimes reformatted,

between the parent and sub-process.

• Transferring data from the parent Process to the reusable sub-process will

rely on a “mapping” between the data elements of the two levels.

• Just like an embedded sub-process, an independent sub-process must

have a None Start Event. Independent sub-processes maximize reuse.

Behaviour across

process levels

76

The sub-process is

active

The sub-process is

completed

Exercise. Identify sub-processes\1

77

Exercise. Identify sub-processes\2

78

Exercise. Identify sub-processes\3

79

We can simplify the model

by hidding the content of its

subprocesses. We are

collapsing the sub-

processes in compound

activities.

Looping

80

• On an activity, it is possible to define a loop condition

that determines the number of times to perform that

activity. There are two variations for activity looping :

– While Loop (or While-Do) - The loop condition is

checked before the activity is performed. If the loop

condition turns out to be true, then the activity is

performed. If not, the activity completes and the Process

continues (a token moves down the outgoing sequence

flow), even if the activity was never performed. The cycle

of checking the loop condition and performing the activity

continues until the loop condition is False.

– Until Loop (or Do-While) - The loop condition is

checked after the Activity is performed.

• Using activity attributes, it is possible to set the maximum number of loops

(loop maximum) for both while and until loops. After the activity has reached

the loop maximum, it will stop (even if the loop condition is still true).

Example

81

We can use an annotation to

specify the loop condition

Multi-Instance Activities

82

• Activity to be performed many

times concurrently with different

data sets.

• The value of the loop condition

attribute determines the number of

times that the activity is performed.

• The key point to understand that

the activity does not cycle

around; each activity execution

is distinct from the others.

• The individual instances of a Multi-

Instance Activity might occur in

parallel or in sequence.

Example

83

In a procurement process, a

quote is to be obtained from

all preferred suppliers.

After all quotes have been

received, they are evaluated

and the best quote is

selected.

This is a collection of similar data objects (a list of

suppliers, in our case). When a collection is used as

input to a multi-instance activity, the number of

items in the collection determines the number of

activity instances to be created.

Example

84

Basically, a multi –instance

activity can be modeled

through AND gateways.

There are two problems with

this model:

1) Readability

2) Updating

Exercise

85

After a car accident, a statement is required from two

witnesses out of the five that were present, in order to

lodge the insurance claim.

As soon as the first two statements are received, the claim

can be lodged with the insurance company without waiting

for the other statements.

Solution

86

Events

87

• An event is something that “happens

instantaneously” during the course

of a business process.

• An event may affect the flow of the

Process and usually have a trigger

or a result.

• They can start, delay, interrupt, or

end the flow of the process.
– Events are circles and the type of boundary

determines the type of Event.

Start

Intermediate

End

Start Events

88

• A Start Event shows where a Process can

begin.

• A Start Event is a small, open circle with a

single, thin lined boundary.

• There are different types of Start Events to

indicate the varying circumstances that can

trigger the start of a Process.

• These circumstances, such as the arrival of a

message or a timer “going-off,” are called

triggers.

• A Start Event can only have outgoing

sequence flows.

• Trigger-based Start Events can only feature

in top-level processes (hence they are never

used in sub-processes).

None

Message

Timer

Conditional

Signal

Multiple

Parallel

Multiple

Start Events Behaviour

89

• Start Events are where the flow of a

Process starts, and, thus, are where

tokens are created. When a Start

Event is triggered, the token is

generated.

• Immediately after the Start Event

triggers and the token generated,

the token will then exit the Start

Event and travel down the outgoing

Sequence Flow.

Timer Start Event

90

• The Timer Start Event indicates that the Process is

started (i.e., triggered) when a specific time condition has

occurred.

– This could be a specific date and time (e.g., January 1, 2009 at

8am) or a recurring time (e.g., every Monday at 8am).

Message Start Event

91

• The Message Start Event represents a situation where a

Process is initiated (i.e. triggered) by the reception of a

message.

• A message is a direct communication between two business

participants. These participants must be in separate pools

(they cannot be sent from another lane inside a single pool).

Signal Start Event

92

• It indicates that the Process is started (i.e. triggered) when a signal

is detected.

• This signal was a broadcast communication from a business

participant or another Process. Signals have no specific target or

recipient - i.e., all processes and participants can see the signal

and it is up to each of them to decide whether or not to react.

– Unlike messages, signals can operate within a Process (perhaps between a

Sub-Process and its parent calling Process).

Conditional Start Event

93

• The Conditional Start Event represents a situation where a Process

is started (i.e., triggered) when a pre-defined condition becomes true.

• A condition is used to define the details of the change in data that is

expected.

– The condition for the Event must become false and then true again

before the Event can be triggered again.

Multiple and Parallel

Multiple Start Events

94

• The Multiple Start Event represents a collection of two

or more Start Event triggers. The triggers can be any

combination of messages, timers, conditions, and/or

signals.
– Any one of those triggers will instantiate the Process.

– If one of the other triggers occurs, or the same trigger occurs again,

then another Process instance is generated.

• For the Parallel Multiple Start Event a combination of

triggers is required before the process can be

instantiated.

End Events

95

• There are different types of End Events

that indicate different categories of

results for the Process.

– A result is something that occurs at the end of

a particular path of the Process (for example,

a message is sent, or a signal is broadcast).

– All End Events are throw results.

• Only incoming sequence flow is

permitted – (i.e. sequence flow cannot

leave from an End Event).

• A None End Event is always used to mark

the end of Sub-Processes (moving from one

level up to the next).

None

Message

Signal

Multiple

Terminate

End Events Behaviour

96

• When a token arrives at an End

Event, the result of the event, if any,

occurs and the token is consumed.

• it is possible to have one or more

paths (threads) that continue even

after the token in one path has

reached an End Event and has been

consumed.

• If the Process still contains an

unconsumed token, then the Process

is still “active.” After all active paths

have reached an End Event, the

Process is then complete.

Terminate End Event

97

• The Terminate End Event will cause the immediate cessation of

the Process instance at its current level and for any Sub-

Processes (even if there is still ongoing activity), but it will not

terminate a higher-level parent Process.
When the lower path reaches the

Terminate End Event, the work of the

upper path will be stopped, thereby

stopping the infinite loop.

Intermediate Events

98

• An Intermediate Event indicates where

something happens/occurs after a Process

has started and before it has ended.

• They may also interrupt the normal

processing of an activity.

• Each type of Intermediate Events can either

throw or catch the event.

• A catching Intermediate Event waits for

something to happen (i.e., wait for the

circumstance defined on the trigger).

• A throwing Intermediate Event

immediately fires (effectively creating the

circumstance defined on the trigger).

None

Message

Timer

Conditional

Signal

Multiple

Parallel

Multiple

Link

Catching Throwing

Catch Intermediate Events

Behaviour

99

• A token arriving at a catch

Intermediate Event would wait

until the trigger occurs. Then

the token would leave

immediately and move down the

outgoing Sequence Flow.

• A Catching Intermediate Event

(except than the Link Event) can

also be attached to the

boundary of an Activity.

• When the activity starts, so does the timer.

• If the activity finishes first, then it completes

normally and the Process continues normally.

• If the timer goes off before the Activity is

completed, the Activity is immediately

interrupted and the Process continues down the

sequence flow from the Timer Intermediate

Event.

Throw Intermediate Events

Behaviour

100

• A token arriving at a throw

Intermediate Event would

immediately fire the trigger. It

would then leave immediately

and travel down the outgoing

Sequence Flow.

• A Throwing Intermediate Event

can not be attached to the

boundary of an Activity.

Intermediate Events

Behaviour

101

• When a token arrives at a

throwing Message Intermediate

Event, it immediately triggers the

Event, which sends the message

to a specific participant.

• When a token arrives at a catching

Message Intermediate Event, the

Process pauses until a message

arrives.

If the token is waiting at the

Intermediate Event and the message

arrives, then the Event triggers.

Discuss

Confirmation

Discuss

Confirmation

Confirmation

Confirmation

An Example

102

Link Intermediate Event

103

• Link Intermediate Events are always used in pairs, with a source and a target

Event. To ensure the pairing, both the source and target Link Events must

have the same label.

• Using a pair of Link Events creates a virtual Sequence Flow.

• There can be only one Target Link Event, but there may be multiple Source

Link Events paired with the same catching Link Event.

• Once the Source Link Event

is triggered (the throw), the

token immediately jumps to

the catching (Target) Link

Event.

• The arrival of the token at

the Target Link Event

immediately triggers the

Event..

Example of a

Multiple Intermediate Event

104

Gateways

105

• Gateways are modeling elements that

control how the Process diverges or

converges.

• They represent points of control for the

paths within the Process.

• They split and merge the flow of a

Process (through Sequence Flow).

• Since there are different ways of

controlling the Process flow, there are

different types of Gateways.

• The type (splitting and merging) for a

single Gateway must be matched - i.e.

a Gateway cannot be Parallel on the

input side, and Exclusive on the output

side.

Exclusive

Event

Parallel

Inclusive

Complex

Event-based Exclusive

Gateways

106

• Event-Based Exclusive Gateways represent

an alternative branching point where the

decision is based on two or more Events that

might occur, rather than data-oriented

conditions (as in an Exclusive Gateway).

• These Events, which must be of the catch

variety, are the first objects connected by

the Gateway’s outgoing Sequence Flow. The

tokens will wait there until one of the Events

is triggered.

• The Intermediate Events that are part of the

Gateway configuration become involved in a

race condition. Whichever one finishes first

(fires) will win the race and take control of

the Process with its token.

• Then the token will immediately continue

down its outgoing Sequence Flow, by

disabling the other paths.

Complex Gateways –

Splitting Behaviour

107

• With a Complex Gateway, Modelers provide their own expressions that

determine the merging and/or splitting behavior of the Gateway.

• Complex Gateway uses a single outgoing assignment within the Gateway,

rather than a set of separate conditions on the outgoing Sequence Flow.

• An assignment has two parts: a condition and an action. When an assignment

is performed, it evaluates the condition and if true, it then performs the action

such as updating the value of a Process or Data Object property.

• The outgoing assignment may send a token down one or more of the

Gateway’s outgoing Sequence Flow. The outgoing assignment may refer to

data of the Process or its Data Objects and the status of the incoming

Sequence Flow.

• For example, an outgoing assignment may evaluate Process data and then

select different sets of outgoing Sequence Flow, based on the results of the

evaluation.

– However, the outgoing assignment should ensure that at least one of the outgoing

Sequence Flow will always be chosen.

Complex Gateways –

Merging Behaviour

108

• There are many patterns that can be performed with the Complex Gateway,

such as typical Inclusive Gateway behavior, batching of multiple tokens,

accepting tokens from some paths but ignoring the tokens from others, etc.

• The Gateway looks the same for each of these patterns, so the modeler should

use a Text Annotation to inform the reader of the diagram how it is used.

• The Complex Gateway uses an incoming assignment when tokens arrive.

The condition may refer to Process or Data Object information and the status of

the incoming Sequence Flow.

– If the condition is false, nothing happens other than the token is held there.

– If the condition is true, then the action could be set to pass the token to the output

side of the Gateway, thereby activating the outgoing assignment, or the action could

be set to consume the token.

Exercise

109

Design a a sample expense reimbursement process. This process provides for

reimbursement of expenses incurred by employees for the company. For

example buying a technical book, office supplies or software. In a normal day

there are several hundreds of instances of this process created. Concentrate on

the basic flow of the Process…

After the reception of a meeting remainder, a new account must

be created if the employee does not already have one. The report

is then reviewed for automatic approval. Amounts under $200 are

automatically approved, whereas amounts equal to or over $200

require approval of the supervisor. In case of rejection, the

employee must receive a rejection notice by email. The

reimbursement goes to the employee’s direct deposit bank

account. If the request is not completed in 7 days, then the

employee must receive an “approval in progress” email If the

request is not finished within 30 days, then the process is stopped

and the employee

Exercise - Solution

110

Others Advanced

Concepts

111

• Error Events and Exception Handling

• Cancel Events, Compensation Events and

Transactions

• Ad Hoc Processes

• Conversation Diagrams

• Coreography Diagrams

Error Events

112

• The Error Intermediate Event is used to

handle the occurrence of an error that

needs the interrupting of an Activity (to

which it is attached).

• An error is generated by applications or

systems involved in the work (which are

transparent to the Process) or by End

Events.

Error End Event –

Catching

Error Intermediate Event -

Throwing

• The Error End Event is used to throw an error.

• The Error Intermediate Event can only be used when attached

to the boundary of an Activity, thus it can only be used to

catch an error.

• When an error occurs all work will stop for that Process.

• However, these Events do not interrupt the Activity since they

are only operational after an Activity has completed.

Exception Handling

113

• The error thrown by the Event will be

caught by an Intermediate Event at a

higher level.

• Errors have a specific scope of

visibility. An error can only be seen by

a parent Process. Other Processes at

the same level or within different Pools

cannot see the error.

• Errors only move upward in the

Process hierarchy.

• If there happens to be more than one

Process level higher than the Error

End Event, then first level that has a

catch Error Intermediate Event

attached to its boundary will be

interrupted, even if there are higher

levels that could possible catch the

same error.

Exception Handling

114

The token leaves the

previous flow object and

arrives at the Activity with the

attached Intermediate Event.

The token enters the Activity and

starts the work of the Activity. At

the same time, another token is

created and resides in the

Intermediate Event on its boundary.

If the Activity finishes before the

trigger occurs, then the token

from the Activity moves down the

normal outgoing Sequence Flow

of the Activity and the additional

token is consumed.

However, if the attached

Intermediate Event triggers before

the Activity finishes, then the

Activity is interrupted (all work

stops). In this case, the token from

the Event moves down its outgoing

Sequence Flow. The token that

was on the Activity is consumed.

Transactions

115

• A Transaction is a set of

activities that logically belong

together.

• In BPMN, a Transaction is a

formal business relationship

and agreement between two

or more participants.

• For a Transaction to succeed, all

parties involved have to perform

their own Activities and reach an

agreement point.

• If any one of them withdraws or

fails to complete, then the

Transaction cancels and all

parties need to undo all the work

that has completed.

A Process model (i.e.,

within one Pool), shows the

Activities of the Transaction

Sub-Process for just one of

the participants.

Transactions

116

• Transaction Sub-Processes have special behaviors.

• Firstly, they are associated with a Transaction Protocol. This means that the

companies involved in the Transaction must be able to send and receive all the

handshaking messages between the participants.

• Secondly, if the work of all the Activities in

the Transaction Sub-Process complete

normally and all the tokens reach an End

Event, the Sub-Process is still not complete.

• Thirdly, if a processing or technical error

occurs for one of the participants of the

Transaction, then there are two possibilities

for interrupting the Transaction Sub-Process:
– An attached Error Intermediate Event is triggered

(often called a hazard) and the Transaction Sub-

Process is interrupted.

– An attached Cancel Intermediate Event is triggered

and the Transaction Sub-Process is cancelled.

Cancel Events

117

• The Cancel Intermediate Event is designed to handle

a situation where a transaction is canceled.

• Cancel Intermediate Events can only catch a transaction

cancellation. The Cancel End Event throws the cancellation.

• The Cancel Intermediate Event can only be attached to the

boundary of a Transaction Sub-Process. It can be triggered by a

Cancel End Event within the Sub-Process, or through a cancellation

received through the transaction protocol assigned to the

Transaction Sub-Process.

• When triggered, the Transaction Sub-Process is interrupted (all

work stops) and the Sub-Process is rolled-back, which may result in

the compensation of some of the Activities within the Sub-Process.

• To cancel the Transaction Sub-Process, the Cancel End Event must

be contained within the Sub-Process or within a lower level child

Sub-Process.

Compensation Events

118

• There are two types of Compensation

Intermediate Events: throwing and

catching - i.e. sending and receiving.

 • The catch Compensation Intermediate Event can only be used by

attaching them to the boundary of an Activity. However, the throw

Compensation Intermediate Event is used in normal flow.

• The Compensation End Event indicates that the ending of a Process

path results in the triggering of a compensation.

• In the definition of the Compensation End Event the name of an Activity

can be identified as the Activity that should be compensated. The

Activity must be within the Process, either at the top-level Process or

within a Sub-Process.

• If the named Activity was completed and it has an attached

Compensation Intermediate Event, then that Activity will be

compensated.

Hazard in a Transaction

Sub-Process

119

• When there is a hazard, a normal

cancellation and compensation are

not sufficient to fix the situation.

• The transaction is then interrupted.

• The error can happen within the

Transaction Sub-Process or within

a Process (unseen) of one the

other participants in the

transaction.

• The error from one of the other participants will be sent through the

transaction protocol.

• When Error Intermediate Event triggers, all work within the Sub-

Process is terminated immediately - there is no compensation.

• The token then is sent down the outgoing Sequence Flow of the Error

Event to reach Activities that will deal with the situation.

Cancellation in a

Transaction Sub-Process

120

• a Transaction Sub-Process can be

cancelled through an Event

internal to the Sub-Process or

through a cancellation sent through

a transaction protocol.

• When a Transaction Sub-Process

is cancelled, the Cancel

Intermediate Event attached to its

boundary is triggered.

 • The token will eventually continue down the Cancel Intermediate

Event’s outgoing Sequence Flow, but the behavior of the Transaction

Sub-Process involves more than just interrupting the work in the Sub-

Process.

• Indeed, all ongoing work within the transaction is cancelled.

Compensation in a

Transaction Sub-Process

121

• However, completed work (in the

Transaction Sub-Process) may

need to be undone, which requires

a “rolling back” before the parent

Process can continue.

• This means that each Activity in

turn, in reverse order, is checked to

see whether or not it requires

compensation. Compensation is

the undoing of work that has been

completed.

• A token can be used to trace this

rolling back as it travels backward

through the Process after a

Transaction Sub-Process has been

cancelled.

Compensation in a

Transaction Sub-Process

122

• The link between the normal Activity and the Compensation Activity is

done through an Association rather than a Sequence Flow.

• The Compensation Intermediate Event is never triggered during the

normal flow of the Process. It only can be triggered during the roll-

back of the Transaction Sub-Process. Only one Compensation Activity

can be associated with the Compensation Intermediate Event.

• When the reversal of the token reaches an Activity that has an attached

Compensation Intermediate Event, that Compensation Event fires and

the token is then sent to the associated Compensation Activity.

• Compensation does not just

happen automatically. Another

Activity is required to undo the

work of the original Activity.

• The Compensation Activity links

to each Activity via the

Compensation Intermediate

Event attached to its boundary.

Compensation in a

Transaction Sub-Process

123

• When the Compensation Activity

has completed, the token

continues its backward journey

through the Transaction by

leaving the Activity whose work

was just undone.

• When all the Activities of the

Transaction Sub-Process have

been checked and, if necessary,

compensated, then the

cancellation of the Transaction is

completed.

• This allows the token in the

parent Process to travel down the

outgoing Sequence Flow of the

attached Compensation

Intermediate Event.

Ad Hoc Processes

124

• The Ad Hoc Process represents Processes where the Activities might

occur in any order, and in any frequency- there is no specific ordering

or obvious decisions.
• Typically, the Activities in

an Ad Hoc Process involve

human performers who

make the decisions as to

what Activities to perform,

when to perform them, and

how many times.

• The Ad Hoc Process has a

non-graphical completion

condition attribute that is

used to determine if the

work of the Process is

complete.

Conversation Diagrams

125

Conversation Elements

126

Coreography Diagram

127

Coreography Elements

128

Topics

129

• Process Modeling

• BPMN Background

• Basic Concepts

• Advanced Concepts

• Conclusions

Conclusions

130

References

131

[BPMN 2.0 spec] OMG. BPMN 2.0 specification. (January 2011)

[1] M. Weske. Business Process Management: Concepts, Languages,

Architectures. Springer-Verlag (2007).

[2] Workflow Management Coalition. XPDL 2.1 Complete Specification

(2008).

[3] OASIS. Web Services Business Process Execution Language Version

2.0. http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf

(2007).

[4] R. Hull. Artifact-Centric Business Process Models: Brief Survey of

Research Results and Challenges. In Proceedings of the OTM 2008

Confederated International Conferences, CoopIS (2008).

[5] W.M.P .van der Aalst, C. Stahl. Modeling Business Processes A Petri Net

Oriented Approach. The Mit Press (2011).

[6] M. Pesic. DECLARE: Full Support for Loosely-Structured Processes.

In Proceedings at the 11th IEEE International Enterprise Distributed

Object Computing Conference (EDOC) (2007) .

References

132

[7] A.H.M. ter Hofstede, W. van der Aalst, M. Adams, N. Russell. Modern

Business Process Automation: YAWL and its Support Environment.

Springer-Verlag (2009).

[8] S. Christensen, N. Damgaard Hansen. Coloured Petri Nets: Basic

Concepts, Analysis Methods and Practical Use. Jensen (1997).

THANKS FOR THE ATTENTION

