
Data Management – exam of 12/07/2023 (A)

Problem 1
The separation degree between researcher A and researcher B (different from A) is 1 if they have collaborated,
and is 2 if both of them have collaborated with a third researcher C. Let R(A,B) be a relation (therefore,
without duplicates) storing all the tuples ⟨r, s⟩ such that researchers r and s have collaborated. Obviously,
R is symmetric. We know that (i) no researcher has more than 300 collaborations, (ii) associated to R there
is a clustering B+-tree index on attribute A whose cost for retrieving the first tuple of R with a certain value
for A is 4 page accesses, (iii) every page has space for 500 tuples of R, and (iv) the buffer has 100 frames
available. Considering the query Q that, given a specific researcher x, computes the set (therefore, without
duplicates) of researchers with whom x has separation degree less than or equal to 2, illustrate the most
efficient algorithm you can think of for answering Q, and tell which is the cost of the algorithm in terms of
number of page accesses.

Solution 1
We can use the index for retrieving the tuples of R whose first component is x, telling us which are the
collaborators of x and store them in one frame F of the buffer, relying on the fact that their maximum
number is 300 (500 tuples fit in one frame). We can then use the index again for each of the collaborators of
x to retrieve all the collaborators of the collaborators of x, whose maximum number is 300× 300 = 90.000.
Since 500 tuples of two values fit in one page, we have that 1.000 values fit in one page and therefore we can
store the codes of all the collaborators of x and the codes of the collaborators of the collaborators of x using
90.300/1.000 = 91 frames in the buffer, eliminate all duplicates by working in the buffer, and then write all
the pages of the result. As for the cost, we count 4 page accesses for retrieving the first collaborator of x,
plus one page for retrieving, in the worst case, all the collaborators of x. Similarly, we need (4 + 1) × 300
page accesses for retrieving all the collaborators of the collaborators of x. Therefore, the cost is simply 1.505
page accesses.

Problem 2
Consider the following schedule S:

r1(X) w4(Z) w2(X) r2(Y ) w3(Y ) w3(X) r1(Y ) r4(Y ) w1(Z)
and answer (with suitable motivations) the following questions: (i) Is S conflict serializable? (ii) Is S a
2PL schedule (with shared and exclusive locks)? (iii) Can we insert the commit commands in such a way
that the resulting schedule is accepted by the timestamp-based scheduler (assuming that the timestamp
associated to a transaction coincides with the physical time when the transaction starts)? (iv) In all the
three cases above where the answer is no, provide the answer to the following further question: is there any
action α in S such that, is we delete α fron S, then the answer to the question would switch to yes?

Solution 2
(i) Since the precedence graph associated to S is cyclic, S is not conflict serializable.
(ii) Since transaction T1 should enter the shrinking phase when w2(x) is executed, and we cannot

anticipate all the future locks required by T1 (in particular, we cannot anticipate the shared lock on Y
required for r1(Y )), we have that S is not a 2PL schedule with both shared and exclusive locks.

(iii) Since r1(Y ) comes after w3(Y ) and the timestamp of T3 is higher than the one of T1, we have that
r1(Y ) is a “read too late action”. Analogously, since r4(Y ) comes after w3(Y ) and the timestamp of T3 is
higher than the one of T4, we have that r4(Y ) is a “read too late action”. Therefore, we cannot insert the
commit commands in such a way that the resulting schedule is accepted by the timestamp-based scheduler.

(iv) We analyze the three cases separately.

• Looking at the precedence graph, we can realize that all cycles involve node T1 and deleting action
r1(X) eliminates both the edge from T1 to T2 and the edge from T1 to T3, thus eliminating all cycles.
So, if we delete r1(X) from S, then the answer to question (i) would switch to yes. Analogously, we
could eliminate w3(Y ) and have the answer switched to yes.

• It can be verified that if we delete r1(X) from S, then the answer to question (ii) would switch to yes.
And the same applies to action w3(Y ).



• Finally, if we delete action w3(Y ), insert the commit commands in S as follows:

r1(X) w4(Z) w2(X) r2(Y ) c2 w3(X) c3 r1(Y ) r4(Y ) c4 w1(Z) c1

and use the Thomas rule when executing w1(Z), the resulting schedule is accepted by the timestamp-
based scheduler.

Problem 3
A schedule S is called parsimonious if it contains only write actions and no element of the database is used
by more than two actions in S. Prove or disprove that every parsimonious schedule is conflict serializable if
and only if it is view serializable.

Solution 3
As usual, we rule out the possibility that a schedule contains two different write actions on the same
element issued by the same transaction. Therefore, if an element of the database is written by two actions
in a parsimonious schedule S, such actions belong to different transactions. Also, since it is well known that
conflict serializability implies view serializability, in order to prove the statement it is sufficient to prove that
for parsimonious schedules, view serializability implies conflict serializability. We proceed by showing that
if a serial schedule S ′ is view equivalent to a parsimonious schedule S, then S ′ is also conflict equivalent to
S. Let S ′ be a serial schedule view equivalent to S. Obviously, since S is parsimonius, S ′ is parsimonious
too, and the read-from relations for both is empty. Also, they have the same final-write set, and this allows
us to show that S ′ is conflict equivalent to S. Indeed, consider any pair of conflicting actions wi(x), wj(x)
such that wj(x) comes after wi(x) in S. Since S is parsimonious, there is no other write action on x in S,
and therefore, wj(x) is a final write in S. It follows that wj(x) is also a final write in S ′ (otherwise S ′ would
not be view equivalnent to S), which means that wi(x), wj(x) appear in the same order in S and S ′. We
then conclude that S ′ is conflict equivalent to the serial schedule S ′, implying that S is conflict serializable.

Problem 4
Let R(A,B,C) and S(D,E) be two relations, each stored in a heap. A tuple t of R is said to be a lower
k-match with S if there are at least k tuples of S whose value in the attribute D is equal to the value of t in
the attribute C. Let M be the number of buffer frames available, let Q be the query that, given a value for
k, computes all the tuples in R that are lower k-matches with S, and consider the following questions.

4.1 Describe the conditions under which we can process Q using the one-pass, the two-passes, and the
block-nested loop method, respectively.

4.2 For each of the methods mentioned above, illustrate the corresponding algorithm and tell which is the
cost of such algorithm in terms of the number of pages of R and S.

Solution 4
In order to process Q in one pass, a possible condition is that the relation S fits in M − 2 buffer frames.
Under this condition the algorithms would be as follows: we load S in the buffer, and then use one buffer
frame F for reading R one page at a time, and for each tuple t in F , we check whether there are at least k
tuples of S in the buffer whose value in the attribute D is equal to the value of t in the attribute C. If yes,
we write t in the output frame, otherwise, we ignore t. As usual, we write the output frame in secondary
storage when full. The cost is simply B(S) + B(R). Note that another condition that would allow the one
pass strategy is that the relation R fit in the buffer, but in this case we would need another field to associate
to each tuple of R a counter and this must be taken into account in order to establish the condition under
which we can apply the one pass strategy (see the paragraph below on the block-nested loop technique).

In order to process Q in two passes, a possible condition is that B(S) + B(R) ≤ M × (M − 1). Under this
condition the algorithm would be as follows: we produce the sorted sublists (each of size M) of R, sorted
on the sorting key C; we produce the sorted sublists (each of size M) of S, sorted on the sorting key D; we
do the merging phase by simply checking for each tuple t of R, if there are at least k tuples of S whose
value in the attribute D is equal to the value of t in the attribute C. If yes, we write t in the output frame,
otherwise, we ignore t. As usual, we write the output frame in secondary storage when full. The cost is



simply 3× (B(S) +B(R)).

In order to process Q using the block nested loop technique, we just need 3 buffer frames (M ≥ 3) and
we proceed as follows: we read R in block of M − 2 pages, by also reserving in the buffer enough space for
a new integer field N storing for each tuple of R the count of joining tuples of R, we read one by one the
pages of S in one frame, and while reading such pages we register, for each tuple t of R in the M − 2 pages,
in the field N associated to t the number of tuples of S joining with t. After reading all the pages of S we
use the field N to figure out which are the tuples to be written in the output frame, and then we consider
the next block of R. As usual, we write the output frame in secondary storage when full. If we consider the
space used to store N as irrelevant, the cost is simply B(R) +B(R)×B(S)/(M − 2). If we want to be more
precise, then we can assume that the size of N is the same as the size of the other fields of R, so that we
consider the size of the outer relation of the block nested loop algorithm 4 × B(R)/3 instead of B(R), and
obtain the total cost of 4/3× (B(R) +B(R)×B(S)/(M − 2)).

Problem 5 (only for students enrolled in an A.Y. before 2021/22 who do not do the project)
Parallel algorithms for the implementation of relational operators are based on the idea of horizontal data
partitioning, by which we can split a relation in various chunks, each one stored at a different node.

5.1 Describe the techniques that can be used for partitioning.

5.2 Among the described techniques, tell which is the most common one and explain why.

5.3 Illustrate the idea for designing a parallel algorithm that, given a table S, based on the partitioning
technique mentioned for item 2) above, and depending on the number of buffer frames available at
the various nodes, computes the relation obtained from S by eliminating duplicates. Also, discuss the
cost of the algorithm.

5.4 Illustrate the idea for designing a parallel algorithm that, based on the partitioning technique men-
tioned for item 2) above, and depending on the number of buffer frames available at the various nodes,
computes the set difference of two relations given in input, also discussing the cost of the algorithm.

Solution 5
Please, refer to the slides of the course.


