
Data Management – exam of 09/09/2022

Problem 1
Suppose that for every schedule S on transactions {T1, . . . , Tn} and for every element x of the database, we
have a sequence σS,x that is a total order on the transactions {T1, . . . , Tn}. Consider a scheduler R that
behaves as follows when analysing action ai(y): if there is an action bj(y) (with j 6= i) preceeding ai(y) in S
such that Tj appears after Ti in σS,y, then S is not accepted, otherwise the action ai(y) is executed and the
schedule proceeds. Question: is it true that every schedule S accepted by R is conflict serializable? If your
answer to the question is positive, then provide a proof. Otherwise, (i) provide a proof that the answer is
negative and (ii) specify a condition on the various σS,x under which the answer becomes true. If you do
not know how to solve the problem in general, try to solve it in the case where S is on just two transactions,
i.e., the case of n = 2.

Solution to problem 1
(i) We provide the proof that the answer is negative by exhibiting a counterexample to the statement,

i.e., a schedule S that is accepted by R but is not conflict serializable. Consider σS,x = {T1, T2} and
σS,y = {T2, T1} and S = r1(x)w2(x)w2(y)w1(y). It is obvious that R accepts S, and it is also very clear
that S is not conflict serializable. Therefore, the answer to the question is negative.

(ii) A condition on the various σS,x under which the answer becomes true is simply that for each pair
of elements x, y, we have σS,x = σS,y. To prove that this is true, we show that, under the above condition,
if a schedule S is not conflict serializable, then it is not accepted by R. In the following, let us call σS
the sequence σS,x for some x (there is just one such sequence, because all the sequences associated to the
elements of the database are equal).

• As a first step, we consider the case of just two transactions, i.e., the case of n = 2. Since S is not
conflict serializable, S contains action ai(x) coming before bj(x) and action cj(y) coming before di(y).
Since σS,x = σS,y, we have that when R analyzes S it rejects it, because for at least one pair between
〈ai(x), bj(x)〉 and 〈cj(y), di(y)〉 we have that an action of a transaction Th on an element z preceeds
an action of another transaction Tk such that Th appears after Tk in σS,z.

• We now present the proof for the general case, i.e., for any n. Consider the graph G that has an edge
from Ti to Tj if and only if Ti comes before Tj in the sequence σS. Notice that, since σS is a total
order, for each pair of transactions Th, Tk, either there is an edge in G from Th to Tk or there is an
edge in G from Tk to Th. Also notice that, being S not conflict serializable, the precedence graph PS

associated to S has at least one cycle. Since G has clearly no cycle, this means that PS has at least
one edge that is not in G. Let us call e such edge, and assume that e is an edge from Ti to Tj derived
from the conflicting actions oi, oj, with oi coming before oj in S. Observe that, since the edge from
Ti to Tj is not in G, Tj does not appear before Ti in σS, and therefore, Tj appears before Ti in σS. It
is now immediate to see that when R analyzes oj it rejects S, because there is an action (in this case
oi) preceeding oj in S such that Tj appears before Ti in σS. So, we have again shown that if S is not
conflict serializable, then it is not accepted by R.

Problem 2
Let S be the schedule r1(X) r3(Z)w1(Y )w2(X)w1(Z)w3(U)w1(V )w2(U)w2(V ) r3(T ) and answer the

following questions: (2.1) Tell whether S is accepted by the 2PL scheduler with exclusive and shared
locks. If the answer is yes, then show the 2PL schedule obtained from S by adding suitable lock and
unlock commands. If the answer is no, then motivate the answer. (2.2) Tell whether we can insert into S
the commit commands for all the transactions in S such that the resulting schedule S ′ is commit order
preserving conflict serializable. If the answer is yes, then show S ′, otherwise motivate the answer.

Solution to problem 2
(2.1) S is accepted by the 2PL scheduler with exclusive and shared locks, as shown by the following

schedule extended with appropriate locking and unlocking commands:



sl1(X) r1(X) sl3(Z) r3(Z)xl1(Y )w1(Y )xl3(U) sl3(T )u3(Z)xl1(Z)xl1(V )u1(X)xl2(X)w2(X)w1(Z)w3(U)
u3(U)w1(V )u1(V )xl2(U)w2(U)u2(U)xl2(V )w2(V )u2(V ) r3(T )u3(T )

(2.2) Yes, we can insert into S the commit commands for all the transactions in S such that the resulting
schedule S ′ is commit order preserving conflict serializable. Indeed, it is sufficient to define S ′ as the schedule
obtained from S by adding the commands c3, c1, c2.

Problem 3
Let R(A,B,C) and S(C,D) two relations stored in two heap files with 1.000 and 5.000 pages, respectively. We
have to compute the natural join between the two relations. If M is the number of frames, are there values
of M for which the block nested loop algorithm is more efficient than the multi-pass algorithm based on
sorting for executing the operation? If the answer is negative, then motivate the answer. If the answer is
positive, then tell which are the values of M for which the block nested loop algorithm is more efficient than
the multi-pass algorithm, again motivating the answer.

Solution to problem 3
It is well known that, if the buffer has M frames, then the cost of the block nested loop is B(R) +B(R)×
B(S)/(M − 2). We now compare the cost of the block nested loop algorithm with that of the multi-pass
algorithm based on sorting, taking into account the number n of passes. As usual, we consider the cost in
terms of number of page accesses.

• n = 1: the cost of the multi-pass algorithm (actually, the 1-pass algorithm) in this case is 6.000, and
it is obvious that we can apply the 1-pass algorithm if M ≥ 1.002. Since the cost of the block nested
loop in this case is also 6.000, we conclude that for such values the block nested loop is not more
efficient than the multi-pass algorithm.

• n = 2: we know that the cost of the multi pass algorithm (actually, the 2-pass algorithm) in this
case is 3 × (1.000 + 5.000) = 18.000. We also know that we can apply the 2-pass algorithm if
M × (M − 1) ≤ (1.000 + 5.000), i.e., if M × (M − 1) ≤ 6.000, which means for M ≥ 78. So,
we need to find the values of M for which B(R) + B(R) × B(S)/(M − 2) < 18.000. We conclude
that the condition on M for which the block nested loop algorithm is more efficient than the 2-pass
algorithm is M ≥ 297.

• n ≥ 2 : we know that the multi-pass algorithm requires more than 2 passes in the case where M < 78.
In particular, for M = 77, the cost of the multi pass (actually, the 3-pass algorithm) is 5 × 6.000 =
30.000. For the same value, the cost of the block nested loop algorithm is 1.000 + 1.000× 5.000/75 =
67.667. It is not difficult to conclude that for all values of M less than 78, the block nested loop
algorithm is not more efficient that the multi-pass algorithm.

In conclusion, the values of M for which the block nested loop algorithm is more efficient than the
multi-pass algorithm are those in the range [292, 1.002].

Problem 4
In this exercise we assume that every value and every pointer occupies the same number of bytes and the
buffer has 100 frames. Let R(A,B,C) and S(D,E,F,G,H,L) be two relations stored as heap files. R has 1.000
pages, where each page has 100 tuples, and the attribute A has 500 values uniformly distributed over the
tuples of R. S has 2.000 pages and has an associated B+-tree index using alternative 2 with search key
equal to the primary key 〈D,E〉. Consider the query select A, F from R,S where A=20 and B=D and C=E
and answer the following questions: (4.1) Determine which is the most efficient between the “index-based”
and the “two-pass” strategies for the above query, showing and comparing the cost of the algorithms based
on the two strategies. (4.2) Would the answer change if the number of pages of R were 20.000?

Solution to problem 4
As usual, we express the cost in terms of number of page accesses. Also, we refer to the two-pass strategy
based on sorting.

(4.1) R has 1.000 × 100 = 100.000 tuples, and only 100.000/500 = 200 of them have the value 20 for
A. Since 50 tuples of S fit in one page, S has 2.000 × 50 = 100.000 tuples, and the associated index is



unclustering (because the heap storing S is obviously not sorted) and therefore dense. This means that the
leaves of the index must store 100.000 data entries. Taking into account the 67% occupancy rule and the
fact that each data entry has 3 fields (D, E and the pointer), we conclude that each leave can store 67 data
entries, which implies the the leaves of the index are 100.000/67=1.493. Since the fan-out of the tree is 75,
we have that the cost of accessing the index with a specific value of the search key is log751.493 = 2 and
since we also need the value F in output, we consider the cost of 3. Since we can obviously limit the index
only to the 200 tuples of R with the value 20 for A, the cost of the algorithm for evaluating the query based
on the index-based strategy is 1.000 + 200× 3 = 1.600.

As for the two-pass strategy, one might directly apply the known formulas and conclude that it can
indeed be applied (because 100 × 99 ≥ 1.000 + 2.000) with a cost of 3 × 3.000 = 9.000. However, it is
not difficult to see that we can modify the algorithm following the two-pass strategy as follows: we can
read R and keep only the 200 tuples satisfying the condition A=20, store 1 sorted sublists with 2 pages for
such 200 tuples sorted on 〈B, C〉, then read S, store 20 sorted sublists (each of 100 pages) with the tuples
of S sorted on 〈D, E〉, and then perform the merge step by reading again all the 21 sorted sublists. This
means that the cost of the algorithm for evaluating the query based on this modified two-pass strategy is
1.000 + 2 + 2 + 3× 2.000 = 7.004.

Observe also that we could even avoid using the two pass strategy, and adopt the one pass strategy
because the 2 pages storing the 200 tuples satisfying the condition A=20 fit in the buffer. In this case the
cost of the algorithm would be 1.000 + 2.000 = 3.000, which is still greater than the cost of the index-based
algorithm.

We then conclude that the index-based strategy is the most efficient one.
(4.2) R has 20.000× 100 = 2.000.000 tuples, and only 2.000.000/500 = 4.000 of them have the value 20

for A. Since we can obviously limit the index only to the 200 tuples of R with the value 20 for A, the cost of
the algorithm for evaluating the query based on the index-based strategy is 20.000 + 4.000× 3 = 32.000.

As for the two-pass strategy, one might directly apply the known formulas and conclude that it cannot
be applied, because 100 × 99 < 20.000 + 2.000. However, it is not difficult to see that we can modify the
algorithm as before and obtain a cost of 20.000 + 40× 2 + 3× 2.000 = 26.080.

We then conclude that the two-pass strategy is the most efficient one. Observe that in this case also, we
could even apply the one pass strategy, with a cost of 22.000, that is the best we can achieve.

Problem 5 (A.Y. 2021/22)
We refer to a data warehouse on car accidents. An accident (having an associated cost) is caused by a
driver (with an age) driving a vehicle (with a certain power) in a date (day, month and year) and in a city
(belonging to a province, which is part of a region). Sometimes the accident has a witness (again, of a certain
age, but also with an address) and requires an emergency vehicle (again, with a certain power). The student
is asked to (5.1) show the conceptual representation of the above domain in terms of the Dimensional Fact
Model, (5.2) produce the corresponding “star schema”, and (5.3) write the SQL query that computes the
average cost of the accidents that required an emergency vehicle and occurred in 2021 in the Lazio region.

Solution to problem 4
We show below the conceptual representation of the above domain in terms of the Dimensional Fact Model.



Accident

cost

date

month

year

cityprovinceregion

driver

age

witness

address

age

vehicle

power

normal emergency

The corresponding star schema is as follows.

Accident
keyc
keyw (nullable)

keyd

keyn
keye (nullable)

keyt

cost

City
keyc
province

region

Vehicle
keyv
power

Witness
keyw
age

address

Driver
keyd
age

Date
keyt
day

month

year

Finally, the SQL query that computes the average cost of the accidents that required an emergency
vehicle and occurred in 2021 in the Lazio region is:

select avg(cost)

from Accident, City, Date

where Accident.keyc = City.keyc and Accident.keyt = Date.keyt and

keyE is not null and City.region = ’Lazio’ and Date.year = 2021


