
Data Management – AA 2019/20
Solutions for the exam of 11/06/2020

Problem 1
If S is a schedule on transactions T1, . . . , Tn, then the partial precedence graph PPG(S) associated
to S is a graph that has the transactions in S as nodes, and has an edge from Ti to Tj if and only
if S contains two actions of different types (i.e., one read and one write) ai(x) in Ti and aj(x) in
Tj on the same element x such that ai(x) precedes (not necessarily directly) aj(x) in S. Also, the
write-on graph WOG(S) associated to S is a graph that has the transactions in S as nodes, and has
an edge from Ti to Tj if and only if there is an x such that wj(x) is followed by wi(x) in S, and
there is no write action on x in S between wj(x) and wi(x). Prove or disprove the following claims:

1. If both PPG(S) and WOG(S) are acyclic, then S is view-serializable.

2. If PPG(S) is acyclic, and WOG(S) has no edges, then S is conflict-serializable.

Solution to problem 1

1. The claim can be disproved, for instance, by means of the following counterexample S1:

r1(x)w2(x)w2(y)w1(y)

S1 is not view-serializable and is such that both PPG(S1) and WOG(S1) are acyclic. Observe
that this example shows that even though both PPG(S1) and WOG(S1) are acyclic, their
union may contain a cycle. Now, it is easy to see that the union of the partial precedence
graph associated to S and the write-on graph associated to S is a subset of the precedence
graph associated to S. This implies that if the union of the two graphs contains a cycle, such
cycle appears also in the precedence graph associated to S, and therefore S is not conflict-
serializable, and can even be non view-serializable, as the counterexample S1 shows.

2. The claim can be proved by showing that, in the case where WOG(S) has no edges, the partial
precedence graph PPG(S) associated to S coincides with the precedence graph associated to
S. In order to show this property, we observe the following for S:

• It is immediate to note that PPG(S) and the precedence graph associated to S have the
same nodes.

• It is also immediate to see that the set of edges in PPG(S) is a subset of the set of edges
in the precedence graph associated to S.

• In the case where WOG(S) has no edges, an edge from Ti to Tj exists in the precedence
graph associated to S if and only if S contains two actions of different types (i.e., one
read and one write) ai(x) in Ti and aj(x) in Tj on the same element x such that ai(x)
precedes (not necessarily directly) aj(x) in S. This immediately implies that, if WOG(S)
has no edges, then every edge in the precedence graph associated to S is also an edge in
PPG(S).

Being PPG(S) equal to the precedence graph associated to S, the acyclicity of PPG(S) implies
that S is conflict-serializable.



Problem 2 Let R be a relation with 10.000.000 tuples, each with 50 attributes, occupying 1.000.000
pages, and let us consider the operation of searching for all the tuples of R with a given value for
the non-key attribute A, knowing that A contains 100 values uniformly distributed over the tuples
of R. We consider three methods for representing R in secondary storage: (1) R is stored as a sorted
file with search key A, (2) R is stored as a heap file with an associated sorted index using alternative
2 with search key A, and (3) R is stored as a sorted file with search key A with an associated sorted
index using alternative 2 with search key A. Under the assumption that each value and each pointer
occupy the same space, tell which is the cost (in terms of number of page accesses) of the search
operation in the cases corresponding to the three methods specified above.

Solution to problem 2

1. In the case of method 1, the operation can be performed by a simple binary search on the
sorted file for accessing the first record with the appropriate value of A, plus the scan of the
contiguous pages of the sorted file containing the tuples with that value in the attribute A.
Since A contains 100 values uniformly distributed over the tuples of R, the number of pages of
the sorted file containing the tuples with the same value in the attribute A is 1.000.000 / 100
= 10.000, and therefore the cost is log2 1.000.000 + 10.000 = 10.020.

2. In the case of method 2, the index is unclustering, and the operation can be performed by a
binary search on the sorted index for accessing the first occurrence of the appropriate value
of A, followed by the access to all the pages of R where the records pointed by the data entries
are located. From the fact that the tuples of R have 50 attributes and occupy 1.000.000 pages,
and from the assumption that each value and each pointer occupy the same space, we infer
that the data entries of the sorted index associated to R, each data entry being constituted by
two values, occupy 40.000 pages, where each page contains 250 data entries. How many pages
of the index we have to access after the binary search? Since A contains 100 values uniformly
distributed over the tuples of R, the number of the index pages with the same value of the
search key in the data entries is 40.000 / 100 = 400. How many pointer should we follow to
get to the pages of R? Since there are 10.000.000 tuples in R, for each value of A there are
10.000.000 / 100 = 100.000 tuples with that value in the attribute A, and therefore we have to
follow 100.000 pointers. We conclude that the cost is log2 40.000 + 400 + 100.000 = 100.416.

3. In the case of method 3, the index is clustering, and therefore the number of data entries
is 1.000.000 (one data entry per page of R), stored in 1.000.000 / 250 = 4.000 pages. The
operation can be performed by a binary search on the sorted index for accessing the first
occurrence of the appropriate value of A, followed by one access to the heap file storing R, plus
the scan of the contiguous pages of the sorted file containing the tuples with the appropriate
value in the attribute A. So, the cost is log2 4.000 + 1 + 10.000 = 10.013.

Problem 3
Consider the relations R(A, B, C,D,E,F) and Q(C, D), where R is stored in 20.000 pages of a heap file
with an associated B+-tree index with search key 〈A, B〉, Q is stored in 600 pages of a heap file, each
page contains 20 tuples of R, each attribute and each pointer occupy the same space, and we know
that there are 150 available frames in the buffer. Consider the following query

select A from R where A not in (select C from Q)

union

select C from Q where C not in (select A from R)

Show the logical query plan associated to the query, as well as the logical query plan and the



physical query plan you would choose for executing the query efficiently. Also, tell which is the cost
(in terms of number of page accesses) of executing the query according to the chosen physical query
plan.

Solution to problem 3

The logical query plan associated to the query, which is also the logical query plan chosen, is shown
below.

∪s

𝜋A

− s

𝜋C 𝜋C 𝜋A

RQQR

Logical query plan

− s

If a page contains 20 tuples, each with 6 attributes, then it has space for 40 data entries. Taking
into account the 67% rule, we know that each leaf contains 27 data entries. This means that the
index has 400.000 / 27 = 14.815 leaves.

To decide the physical query plan, we observe that what we have to compute is the set V1 of
values that are in πA(R) but not in πC(Q), union the set V2 of values that are in πC(Q), but not in
πA(R). Note that V1 and V2 are disjoint, and therefore we can ignore duplicate elimination during
the union.

Observe that having the values of πA(R) sorted, and having the values of πC(Q) sorted would
definitely help in computing the union of the two differences. Indeed, one could simply perform a
kind of merge step, by scanning the sorted files, copying to the output both the values in πA(R) that
are not in πC(Q), and the values in πC(Q) that are not in πA(R). Note also that the values in πA(R)
already sorted are exactly in the leaves of the index. One could then decide to sort πC(Q) and then
perform the merging step. However, this implies to sort the 300 pages of πC(Q) in two passes (since
the buffer has 150 frames) and to materialize the results. The corresponding physical query plan is
as follows:



merge(union of two differences)
300 frames

IndexScan(R,A) 2-pass Sorting(A)

TableScan(Q)
600 pages

300 pages

14.815 pages 

Physical query plan

1-pass projection on A
300 pages

The cost in terms of the number of page accesses is 14.815 (index scan) + 600 (reading of Q) +
900 (sorting of πC(Q)) + 300 (reading of the sorted πC(Q)) = 16.615.

We can actually do better, by avoiding the materialization step as follows. We produce the
sorted sublists of πC(Q), sorted on the basis of C, in one pass (2 sorted sublists), and then we
perform a merge step using only 4 buffer frames (1 for the leaves of the index, 2 for the sublists of
πC(Q), and 1 for the output) for computing the result. In such a merge step, a value that is both
in πA(R) and in πC(Q) is ignored, whilst all other values are copied to the output.

The physical query plan is as follows:

merge(union of two differences)
300 frames

IndexScan(R,A) 1-pass SortPartition(A)

TableScan(Q)
600 pages

2 sorted subllists,
150 pages each

14.815 pages 

Physical query plan

1-pass projection on A
300 pages

The cost in terms of the number of page accesses is 14.815 (index scan) + 600 (reading of Q) + 300
(writing of the sorted sublists of πC(Q)) + 300 (reading of the sorted sublists of πC(Q)) = 16.015.



Problem 4
Given the two relations R1(A,B,C) and R2(C,D), the following equivalences were intended to be
used during the optimization of logical query plans involving R1 and R2:

1. If R1 or R2 (or both) is a bag, i.e., may contain duplicates, then δ(R1 ./ R2) = δ(R1) ./ δ(R2).

2. If R1 and R2 are sets, then δ(πA,B,C(R1 ./ R2)) = πA,B,C(R1 ./ R2).

For each of the above equivalences, prove or disprove, explaining your answer in details, that it
is valid, and can indeed be used in query optimization. We remind the students that δ denotes
duplicate elimination, π denotes projection (without duplicate eliminations) and ./ denotes natural
join, i.e., the join of two relations based on equality on common attributes.

Solution to problem 4

1. This equivalence is valid. To show validity, we will prove that, for any R1 (set or bag) and R2
(set or bag), (i) t ∈ δ(R1 ./ R2) implies t ∈ δ(R1) ./ δ(R2), and (ii) t ∈ δ(R1) ./ δ(R2) implies
t ∈ δ(R1 ./ R2).

(i) If a tuple 〈x1, x2, x3, x4〉 is in δ(R1 ./ R2), then at least one occurrence of 〈x1, x2, x3, x4〉
is in R1 ./ R2. By definition of natural join, we know that there exist 〈x1, x2, x3〉 ∈ R1,
and 〈x3, x4〉 ∈ R2. This in turn implies that there exist at least one occurrence of the
tuple 〈x1, x2, x3〉 in δ(R1) and one occurrence of the tuple 〈x3, x4〉 in δ(R2), and therefore
〈x1, x2, x3, x4〉 ∈ δ(R1) ./ δ(R2).

(ii) Consider a tuple 〈x1, x2, x3, x4〉 ∈ δ(R1) ./ δ(R2); by definition of natural join, we know
that there exist 〈x1, x2, x3〉 ∈ δ(R1), and 〈x3, x4〉 ∈ δ(R2), which implies that there exist
at least one occurrence of the tuple 〈x1, x2, x3〉 in R1, and at least one occurrence of the
tuple 〈x3, x4〉 in R2. This in turn implies that at least one occurrence of 〈x1, x2, x3, x4〉
is in R1 ./ R2, and therefore 〈x1, x2, x3, x4〉 ∈ δ(R1 ./ R2).

2. Clearly, this equivalence is not valid, as shown by the following counterexample: R1(A,B,C) =
{〈a, b, c〉}, R2(C,D) = {〈c, d1〉, 〈c, d2〉}, for which we have R1 ./ R2 = {〈a, b, c, d1〉, 〈a, b, c, d2〉},
and πA,B,C(R1 ./ R2) = {〈a, b, c〉, 〈a, b, c〉}, δ(πA,B,C(R1 ./ R2)) = {〈a, b, c〉}.

Problem 5
Let R1(A,B,C,D) and R2(A,B,C,D) be two relations stored in two heap files with B(R1) and B(R2)
pages, respectively. We know that B(R1) < B(R2), B(R1) > K, and B(R2) > K, where K is the
number of available frames in the buffer. We have to compute the intersection of R1 and R2, in four
different scenarios: (a) both R1 and R2 are sets; (b) R1 is a set and R2 is a bag; (c) R1 is a bag and
R2 is a set; (d) both R1 and R2 are bags. For each of the above scenarios, tell whether the “classical
block-nested loop algorithm” can be used or not; if the answer is negative, then motivate the answer
in detail, and if the answer is positive, then briefly describe the algorithm and its cost (in terms of
number of page accesses). We remind the students that the “classical block-nested loop algorithm”
reads all the pages of the outer relation in blocks, and for each block, it reads all the pages of the
inner relation, and while doing this, it does not execute any write operation other than the writes
of the pages of the result.

Solution to problem 5
We analyze the various cases.



(a) If both R1 and R2 are sets, then we can surely use the classical block-nested loop algorithm:
we simply choose the smallest relation R1 as the outer relation, we load the pages of such
relation in blocks of K−2 pages, and for each block we load all the pages of the inner relation
R2 one at a time, doing the following: we mark the tuples in the block that we encounter
when scanning R2, and at the end of the scan we copy to the output the marked tuples. This
algorithm is correct because, since R1 has no duplicates, if a tuple t of R1 appears in a certain
block L, then it appears only in that block. This implies that after the scan of R2 done for
the block L, we know exactly what to do with the tuple t. It is well known that the cost is
B(R1) +B(R1)/(K − 2)×B(R2).

(b) If R1 is a set and R2 is a bag, then we can still use the classical block-nested loop algorithm:
indeed, the algorithm for case (a) is still valid, because the same argument used in (a) applies.
Obviously, the cost is still B(R1) +B(R1)/(K − 2)×B(R2).

(c) If R1 is a bag and R2 is a set, then we can still use the classical block-nested loop algorithm:
indeed, we can use the same idea as the algorithm for case (a), but we have to consider R2 as
the outer relation, and R1 as the inner relation, even if R2 is the largest relation. So, the cost
is B(R2) +B(R2)/(K − 2)×B(R1).

(d) If both R1 and R2 are bags, then the classical block-nested loop algorithm cannot be used.
Indeed, when we have a block of the outer relation (say, R1) in the buffer, and we consider
a tuple t in such block, we do not know how many other occurrences of t exist in the other
blocks of R1, and therefore we cannot decide what to do with t by simply scanning the inner
relation (say, R2). In principle, we could try to modify the algorithm so as to keep track of
the properties of the tuples in the block, but this would imply writing some information in
secondary storage, thus deviating from the classical block-nested loop technique.


