# From Verification to Synthesis

Moshe Y. Vardi

Rice University

#### Verification

#### **Model Checking:**

- *Given*: Program P, Specification  $\varphi$ .
- *Task*: Check that  $P \models \varphi$

#### Success:

- Algorithmic methods: temporal specifications and finite-state programs.
- Also: Certain classes of infinite-state programs
- Tools: SMV, SPIN, SLAM, etc.
- *Impact* on industrial design practices is increasing.

#### Problems:

- Designing P is hard and expensive.
- Redesigning P when  $P \not\models \varphi$  is hard and expensive.

# **Automated Design**

#### Basic Idea:

• Start from spec  $\varphi$ , design P such that  $P \models \varphi$ .

#### Advantage:

- No verification
- No re-design
- Derive P from  $\varphi$  algorithmically.

#### Advantage:

No design

*In essenece*: Declarative programming taken to the limit.

# **Program Synthesis**

The Basic Idea: Mechanical translation of human-understandable task specifications to a program that is known to meet the specifications.

**Deductive Approach** (Green, 1969, Waldinger and Lee, 1969, Manna and Waldinger, 1980)

- Prove *realizability* of function, e.g.,  $(\forall x)(\exists y)(Pre(x) \rightarrow Post(x, y))$
- Extract program from realizability proof.

#### Classical vs. Temporal Synthesis:

- Classical: Synthesize transformational programs
- Temporal: Synthesize programs for ongoing computations (protocols, operating systems, controllers, etc.)

# **Temporal Logic**

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit

- $next \phi$ :  $\phi$  holds in the next state.
- eventually  $\phi$ :  $\phi$  holds eventually
- always  $\phi$ :  $\phi$  holds from now on
- $\phi$  until  $\psi$ :  $\phi$  holds until  $\psi$  holds.

#### **Semantics**

$$\bullet \ \pi, w \models \mathit{next} \ \varphi \ \mathsf{if} \ w \bullet \underline{\hspace{1cm}} \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \underline{\hspace{1cm}} \bullet \underline{\hspace{1cm}} \underline{\hspace{1$$

$$\bullet \ \ \pi, w \models \varphi \ \textit{until} \ \psi \ \textit{if} \ w \bullet \underbrace{\hspace{1cm}}_{\varphi} \bullet \underbrace{\hspace{1cm}}_{\varphi} \bullet \underbrace{\hspace{1cm}}_{\varphi} \bullet \underbrace{\hspace{1cm}}_{\psi} \bullet \ldots$$

# **Examples**

- always not (CS<sub>1</sub> and CS<sub>2</sub>): mutual exclusion (safety)
- always (Request implies eventually Grant): liveness
- always (Request implies (Request until Grant)): liveness

# **Synthesis of Ongoing Programs**

**Specs**: Temporal logic formulas

Early 1980s: Satisfiability approach (Wolper, Clarke+Emerson, 1981)

- Given:  $\varphi$
- Satisfiability: Construct  $M \models \varphi$
- Synthesis: Extract P from M.

**Example:**  $always \ (odd \rightarrow next \ \neg odd) \land \\ always \ (\neg odd \rightarrow next \ odd)$ 



# **Reactive Systems**

**Reactivity**: Ongoing interaction with environment (Harel+Pnueli, 1985), e.g., hardware, operating systems, communication protocols, etc. (also, *open systems*).

**Example**: Printer specification –  $J_i$  - job i submitted,  $P_i$  - job i printed.

- *Safety*: two jobs are not printed together  $always \neg (P_1 \land P_2)$
- Liveness: every jobs is eventually printed always  $\bigwedge_{i=1}^{2} (J_i \rightarrow eventually P_i)$

# **Satisfiability and Synthesis**

#### **Specification Satisfiable?** Yes!

*Model* M: A single state where  $J_1$ ,  $J_2$ ,  $P_1$ , and  $P_2$  are all false.

#### Extract program from M? No!

Why? Because M handles only one input sequence.

- $J_1, J_2$ : input variables, controlled by environment
- $P_1, P_2$ : output variables, controlled by system

**Desired**: a system that handles *all* input sequences.

**Conclusion**: Satisfiability is inadequate for synthesis.

# Realizability

*I*: input variables

O: output variables

#### Game:

- System: choose from  $2^O$
- Env: choose from  $2^I$

#### **Infinite Play:**

$$i_0, i_1, i_2, \dots$$
  
 $0_0, 0_1, 0_2, \dots$ 

**Infinite Behavior**:  $i_0 \cup o_0$ ,  $i_1 \cup o_1$ ,  $i_2 \cup o_2$ , ...

Win: behavior ⊨ spec

**Specifications**: LTL formula on  $I \cup O$ 

**Strategy**: Function  $f:(2^I)^* \to 2^O$ 

Realizability: Abadi+Lamport+Wolper, 1989

Pnueli+Rosner, 1989

Existence of winning strategy for specification.

#### **Church's Problem**

Church, 1957: Realizability problem wrt specification expressed in MSO (monadic second-order theory of one successor function)

Büchi+Landweber, 1969:

- Realizability is decidable.
- If a winning strategy exists, then a *finite-state* winning strategy exists.
- Realizability algorithm produces finite-state strategy.

Rabin, 1972: Simpler solution via Rabin tree automata.

Question: LTL is subsumed by MSO, so what

did Pnueli and Rosner do?

**Answer**: better algorithms!

# **Strategy Trees**

**Infinite Tree**:  $D^*$  (D - directions)

Root: ε

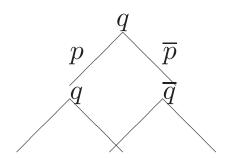
• Children:  $xd, x \in D^*, d \in D$ 

**Labeled Infinite Tree**:  $\tau: D^* \to \Sigma$ 

Strategy:  $f: (2^I)^* \rightarrow 2^O$ 

*Rabin's insight*: A strategy is a labeled tree with directions  $D=2^I$  and alphabet  $\Sigma=2^{O}$ .

**Example**:  $I = \{p\}, O = \{q\}$ 



Winning: Every branch satisfies spec.

# Rabin Automata on Infinite k-ary Trees

$$A = (\Sigma, S, S_0, \rho, \alpha)$$

- $\Sigma$ : finite alphabet
- S: finite state set
- $S_0 \subseteq S$ : initial state set
- $\rho$ : transition function

$$- \rho : S \times \Sigma \to 2^{S^k}$$

α: acceptance condition

$$- \alpha = \{(G_1, B_1), \dots, (G_l, B_l)\}, G_i, B_i \subseteq S$$

- *Acceptance*: along every branch, for some  $(G_i, B_i) \in \alpha$ ,  $G_i$  is visited infinitely often, and  $B_i$  is visited finitely often.

# **Emptiness of Tree Automata**

**Emptiness**:  $L(A) = \emptyset$ 

Emptiness of Automata on Finite Trees: PTIME test (Doner, 1965)

#### Emptiness of Automata on Infinite Trees: Difficult

- Rabin, 1969: non-elementary
- Hossley+Rackoff, 1972: 2EXPTIME
- Rabin, 1972: EXPTIME
- Emerson, V.+Stockmeyer, 1985: In NP
- Emerson+Jutla, 1991: NP-complete

# Rabin's Realizability Algorithm

#### $REAL(\varphi)$ :

- Construct Rabin tree automaton  $A_{\varphi}$  that accepts all winning strategy trees for spec  $\varphi$ .
- Check non-emptiness of  $A_{\varphi}$ .
- If nonempty, then we have realizability; extract strategy from non-emptiness witness.

#### **Complexity**: non-elementary

**Reason**:  $A_{\varphi}$  is of non-elementary size for spec  $\varphi$  in MSO.

# **Post-1972 Developments**

- Pnueli, 1977: Use LTL rather than MSO as spec language.
- V.+Wolper, 1983: Elementary (exponential) translation from LTL to automata.
- Safra, 1988: Doubly exponential construction of tree automata for strategy trees wrt LTL spec (using V.+Wolper).
- Rosner+Pnueli, 1989: 2EXPTIME realizability algorithm wrt LTL spec (using Safra).
- Rosner, 1990: Realizability is 2EXPTIMEcomplete.

# **Standard Critique**

Impractical! 2EXPTIME is a horrible complexity.

#### Response:

- 2EXPTIME is just worst-case complexity.
- 2EXPTIME lower bound implies a doubly exponential bound on the size of the smallest strategy; thus, hand design cannot do better in the worst case.

# **Real Critique**

- Algorithmics not ready for practical implementation.
- Complete specification is difficult.

Response: More research needed!

- Better algorithms
- Incremental algorithms write spec incrementally

# **Classical Al Planning**

#### **Deterministic Finite Automaton (DFA)**

 $A = (\Sigma, S, s_0, \rho, F)$ 

- Alphabet:  $\Sigma$
- States: S
- Initial state:  $s_0 \in S$
- Transition function:  $\rho: S \times \Sigma \to S$
- Accepting states:  $F \subseteq S$

Input word:  $a_0, a_1, ..., a_{n-1}$  Run:  $s_0, s_1, ..., s_n$ 

•  $s_{i+1} = \rho(s_i, a_i) \text{ for } i \ge 0$ 

**Acceptance**:  $s_n \in F$ .

**Planning Problem**: Find word leading from  $s_0$  to F.

- Realizability:  $L(A) \neq \emptyset$
- Program:  $w \in L(A)$

# **Dealing with Nondeterminism**

#### **Nondeterministic Finite Automaton (NFA)**

 $A = (\Sigma, S, s_0, \rho, F)$ 

- Alphabet:  $\Sigma$
- States: S
- Initial state:  $s_0 \in S$
- Transition function:  $\rho: S \times \Sigma \to 2^S$
- Accepting states:  $F \subseteq S$

Input word:  $a_0, a_1, ..., a_{n-1}$  Run:  $s_0, s_1, ..., s_n$ 

•  $s_{i+1} \in \rho(s_i, a_i)$  for  $i \ge 0$ 

Acceptance:  $s_n \in F$ .

**Planning Problem**: Find word leading from  $s_0$  to F.

- Realizability:  $L(A) \neq \emptyset$
- Program:  $w \in L(A)$

#### **Automata on Infinite Words**

#### Nondeterministic Büchi Automaton (NBW)

 $A = (\Sigma, S, s_0, \rho, F)$ 

- Alphabet: ∑
- States: S
- Initial state:  $s_0 \in S$
- Transition function:  $\rho: S \times \Sigma \to 2^S$
- Accepting states:  $F \subseteq S$

Input word:  $a_0, a_1, \ldots$ 

**Run**:  $s_0, s_1, ...$ 

•  $s_{i+1} \in \rho(s_i, a_i)$  for  $i \ge 0$ 

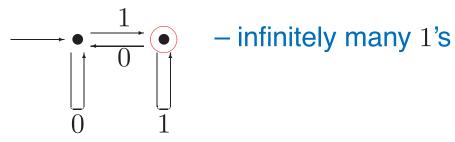
**Acceptance**: *F* visited infinitely often

#### **Motivation:**

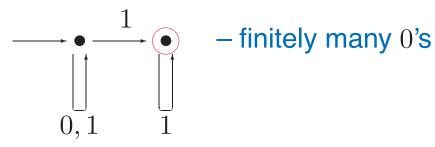
- characterizes  $\omega$ -regular languages
- equally expressive to MSO (Büchi 1962)
- more expressive than LTL

# **Examples**

 $((0+1)^*1)^{\omega}$ :



 $(0+1)^*1^{\omega}$ :



# **Infinitary Planning**

Planning Problem: Given NBW  $A = (\Sigma, S, s_0, \rho, F)$ , find infinite word  $w \in L(A)$ 

*From Automata to Graphs:*  $G_A = (S, E_A)$ ,

 $E_A = \{(s,t) : t \in \rho(s,a) \text{ for some } a \in \Sigma\}.$ 

**Lemma**:  $L(A) \neq \emptyset$  iff there is a a state  $f \in F$  such that  $G_A$  contains a path from  $s_0$  to f and a cycle from f to itself.

Corollary:  $L(A) \neq \emptyset$  iff there are finite words  $u, v \in \Sigma^*$  such that  $uv^{\omega} \in L(A)$ .

Bonus: Finite-state program.

**Synthesized Program**: Do u and then repeatedly do v.

# **Catching Bugs with A Lasso**

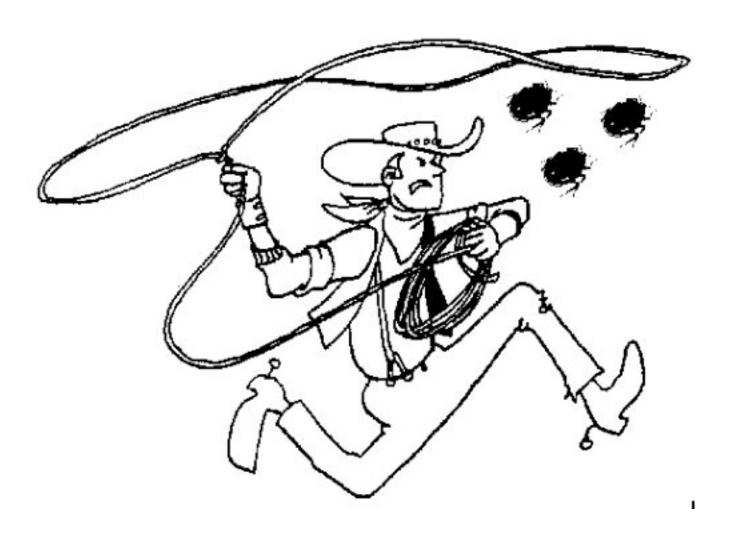


Figure 1: Ashutosh's blog, November 23, 2005

# **Dealing with Negative Specifications**

#### **Deterministic Automata:**

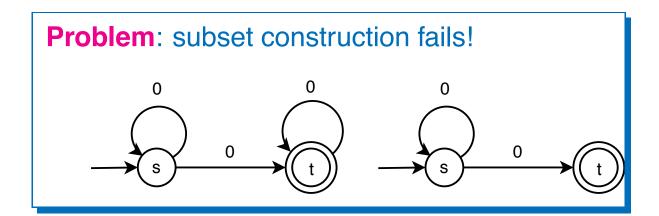
- Input DFA  $A = (\Sigma, S, s_0, \rho, F)$
- Planning Problem: Find word  $w \notin L(A)$ .
- Realizability:  $L(A) \neq \Sigma^*$
- *Solution*: Solve classical planning with complementary DFA  $A^c = (\Sigma, S, s_0, \rho, S F)$ .

#### **Nondeterministic Automata:**

- Input NFA  $A = (\Sigma, S, s_0, \rho, F)$
- Planning Problem: Find word  $w \notin L(A)$ .
- Realizability:  $L(A) \neq \Sigma^*$
- *Solution*: Solve classical planning with complementary DFA  $A^c = (\Sigma, 2^S, \{s_0\}, \rho^c, F^c)$ .
- $\rho^c(P, a) = \bigcup_{s \in P} \rho(s, a)$
- $F^c = \{P : P \cap F = \emptyset\}$

# Planning with Complemented Büchi Automata

- Input: NBW  $A = (\Sigma, S, s_0, \rho, F)$
- Planning Problem: Find infinite word  $w \notin L(A)$ .
- Realizability:  $L(A) \neq \Sigma^{\omega}$
- *Solution*: Solve infinitary planning with complementary NBW  $A^c$ :
- $L(A^c) = \Sigma^{\omega} L(A)$



# **Büchi Complementation**

#### History:

- Büchi, 1962: Doubly exponential complementation.
- Sistla-V.-Wolper 1985: Büchi's construction can be implemented with exponential blow-up  $(16^{n^2})$ .
- Safra, 1988:  $n^{O(n)}$
- Michel, 1988:  $n! \approx (n/e)^n$  lower bound.
- Kupferman-V., 1997:  $(6n)^n$  upper bound.
- Friedgut-Kupferman-V., 2004:  $(0.97n)^n$  upper bound.
- Yan, 2005:  $(0.76n)^n$  lower bound.
- Schewe, 2009:  $(0.76n)^n$  upper bound.

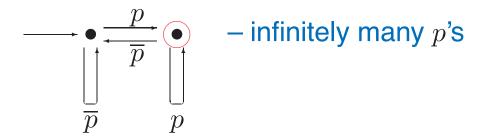
# Temporal Logic vs. Büchi Automata

Paradigm: Compile high-level logical specifications into low-level finite-state language

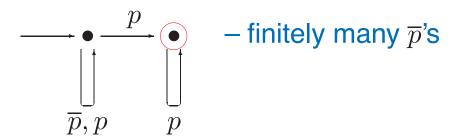
The Compilation Theorem: V.-Wolper, 1983

Given an LTL formula  $\varphi$ , one can construct an NBW  $A_{\varphi}$  such that a computation  $\sigma$  satisfies  $\varphi$  if and only if  $\sigma$  is accepted by  $A_{\varphi}$ . Furthermore, the size of  $A_{\varphi}$  is at most exponential in the length of  $\varphi$ .

#### always eventually p:



#### eventually always p:



# LTL Planning

#### **Positive Direction:**

- Input LTL formula  $\varphi$
- Planning Problem: Find word  $w \models \varphi$
- Realizability:  $\varphi$  is satisfiable.
- *Solution*: Solve infinitary planning with  $A_{\varphi}$

#### **Negative Direction:**

- Input LTL formula  $\varphi$
- Planning Problem: Find word  $w \not\models \varphi$
- Realizability:  $\neg \varphi$  is satisfiable.
- *Solution*: Solve infinitary planning with  $A_{\neg \varphi}$

# **Synthesis of Reactive Systems**

**Game Semantics**: view an open system S as playing a game with an adversarial environment E, with the specifications being the winning condition.

#### **DFA Games**:

- S choose output value  $a \in \Sigma$
- E choose input value  $b \in \Delta$
- Round: S and E set their values
- *Play*: word in  $(\Sigma \times \Delta)^*$
- Specification: DFA A over the alphabet  $\Sigma \times \Delta$
- S wins when play is accepted by by A.

#### **Realizability and Synthesis:**

- Strategy for  $S \tau : \Delta^* \to \Sigma$
- Realizability exists winning strategy for S
- Synthesis obtain such winning strategy.

# **Solving DFA Games**

$$A = (\Sigma \times \Delta, S, s_0, \rho, F)$$

- Define  $win_i(A) \subseteq S$  inductively:

   $win_0(A) = F$   $win_{i+1}(A) = win_i(A) \cup \{s: (\exists a \in \Sigma) (\forall b \in \Delta) \rho(s, (a, b)) \in win_i(A) \}$

**Lemma**: S wins the A game iff  $s_0 \in win_{\infty}(A)$ .

Bottom Line: linear-time, least-fixpoint algorithm for DFA realizability. What about synthesis?

#### **Transducers**

**Transducer**: a finite-state representation of a strategy– deterministic automaton with output

 $T = (\Delta, \Sigma, Q, q_0, \alpha, \beta)$ 

- $\Delta$ : input alphabet
- $\Sigma$ : output alphabet
- Q: states
- $q_0$ : initial state
- $\alpha: S \times \Delta \to S$ : transition function
- $\beta: S \to \Sigma$ : output function

**Key Observation**: A transducer representing a winning strategy can be extracted from  $win_0(A), win_1(A), \dots$ 

# **Reachability Games**

Game Graphs:  $G = (V_0, V_1, E, v_s, W)$ 

- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- $v_s$ : start node
- $W \subseteq V_0 \cup V_1$ : winning set
- Player 0 moves from  $V_0$ , Player 1 moves from  $V_1$ .
- Player 0 wins: reach W.

Fact: Reachability games can be solved in linear time –least fixpoint algorithm

Consequence: realizability and synthesis

#### **NFA Games**

#### **NFA Games**:

- S choose output value  $a \in \Sigma$
- E choose input value  $b \in \Delta$
- Round: S and E set their variables
- *Play*: word in  $(\Sigma \times \Delta)^*$
- Specification: NFA A over the alphabet  $\Sigma \times \Delta$
- S wins when play is accepted by by A.

**Solving NFA Games**: *Basic mismatch* between nondeterminism and strategic behavior.

- Nondeterministic automata have perfect foresight.
- Strategies have no foresight.

**Conclusion**: Determinize A and then solve.

#### **NBW Games**

#### **NBW Games**:

- S choose output value  $a \in \Sigma$
- E choose input value  $b \in \Delta$
- Round: S and E set their variables
- *Play*: infinite word in  $(\Sigma \times \Delta)^{\omega}$
- Specification: NBW A over the alphabet  $\Sigma \times \Delta$
- S wins when infinite play is accepted by by A.

### **Resolving the mismatch**: Determinize *A*

#### LTL Games:

- Specification: LTL formula  $\varphi$
- *Solution*: Construct  $A_{\varphi}$  and determinize.

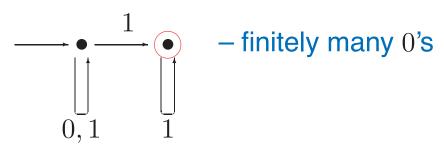
#### History:

- Church, 1957: problem posed (for MSO)
- Büchi-Landweber, 1969: decidability shown
- Rabin, 1972: solution via tree automata

#### **Determinization**

**Key Fact** (Landweber, 1969): Nondeterministic Büchi automata are more expressive than deterministic Büchi automata.

**Example**:  $(0+1)^*1^{\omega}$ :



McNaughton, 1966: NBW can be determinized using more general acceptance condition – blow-up is *doubly exponential*.

# **Parity Automata**

#### **Deterministic Parity Automata (DPW)**

- $A = (\Sigma, S, s_0, \rho, \mathcal{F})$   $\mathcal{F} = (F_1, F_2, \dots, F_k)$  partition of S.
  Parity index: k• Acceptance: Least i such that  $F_i$  is visited infinitely often is even.

**Example**:  $(0+1)^*1^{\omega}$ 

Parity condition:  $(\{\ell\}, \{r\})$ 

Safra, 1988: NBW with n states can be translated to DPW with  $n^{O(n)}$  states and index O(n).

# **Parity Games**

#### Game Graphs: $G = (V_0, V_1, E, v_s, \mathcal{W})$

- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- $v_s$ : start node
- $W \subseteq V_0 \cup V_1$ : winning set
- Player 0 moves from  $V_0$ ,

## Player 1 moves from $V_1$ .

- $\mathcal{W} = (W_1, W_2, \dots, W_k)$  partition of  $V_0 \cup V_1$
- Play 0 wins: least i such that  $W_i$  is visited infinitely often is even.

#### **Solving Parity Games**: complexity

- Jurdzinski, 1998: UP∩co-UP
- Jurdzinski, 2000:  $n^{O(k)}$
- Jurdzinski+Petterson+Zwick, 2000:  $n^{O(\sqrt{n})}$

#### **Open Question: In PTIME?**

# LTL Synthesis

#### **Algorithm for LTL Synthesis:**

- ullet Convert specification arphi to NBW  $A_{arphi}$  (exponential blow-up)
- ullet Convert NBW  $A_{arphi}$  to DPW  $A_{arphi}^d$  (exponential blow-up)
- Solve parity game for  $A^d_{\varphi}$  (exponential)

Pnueli-Rosner, 1989: LTL realizability and synthesis is 2EXPTIME-complete.

• *Transducer*: finite-state program with doubly exponentially many states (exponentially many state variables)

# Theory, Experiment, and Practice

#### **Automata-Theoretic Approach in Practice:**

- Mona: MSO on finite words
- Linear-Time Model Checking: LTL on infinite words

#### **Experiments with Automata-Theoretic Approach:**

- Symbolic decision procedure for CTL (Marrero 2005)
- Symbolic synthesis using NBT (Wallmeier-Hütten-Thomas 2003)

#### Why no implementation of LTL synthesis?

- NBW determinization is hard in practice: from 9-state NBW to 1,059,057-state DRW (Althoff-Thomas-Wallmeier 2005)
- NBW determinization is hard in practice: no symbolic algorithms
- lack of incremental algorithms

**2EXPTIME**: Should not be an insurmountable problem.

# **A Safraless Approach**

#### Kupferman-V., 2005:

- Limit search to strategy trees that are generated by transducers of bounded size
  - Existence of bounded-size transducers follows from the Safraful approach
- Construct recurrence games that are generated by bounded-size transducers
- Solve recurrence games

Crux: focus on subset of strategies

- No determinization
- No parity games

#### **Recurrence Games**

Game Graphs:  $G = (V_0, V_1, E, v_s, W)$ 

- $E \subseteq (V_0 \times V_1) \cup (V_1 \times V_0)$
- $v_s$ : start node
- $W \subseteq V_0 \cup V_1$ : winning set
- Player 0 moves from  $V_0$ ,

Player 1 moves from  $V_1$ .

• Player 0 wins: *infinitely many* visits to W.

Fact: Recurence games can be solved in quadratic time—greatest fixpoint of reachability.

Consequence: reachability and synthesis.

#### Safraless vs. Safraful

**Question**: Is the new approach practical?

**Answer**: Experimentation needed!

#### Promise:

- Approach shown practical (after optimization) for Büchi complementation
- Symbolic approach possible
- First implementation report in FMCAD'06 (Jobstmann-Bloem)

# **Compositional Synthesis**

**Basic Weakness of Synthesis**: full specifications required to get started – unrealistic!

Specifications evolve!

**Compositional Synthesis**: Suppose we synthesized programs for specifications  $\varphi$  and  $\psi$ , can we get programs for  $\varphi \wedge \psi$  *without* starting from scratch.

Kupferman-Piterman-V., 2006: Use realizability proofs for  $\varphi$  and  $\psi$  as starting point for realizability testing and synthesis for  $\varphi \wedge \psi$ .

#### **Discussion**

**Question**: Can we hope to reduce a 2EXPTIME-complete approach to practice?

#### Answer:

- Worst-case analysis is pessimistic.
  - Mona solves nonelementary problems.
  - SAT-solvers solve huge NP-complete problems.
  - Model checkers solve PSPACE-complete problems.
  - Doubly exponential lower bound for program size.
- We need algorithms that blow-up only on hard instances
- New approach is promising.
- Algorithmic engineering is needed.