
Self assessment - 00B (with solutions)

October 14, 2019 - last update 17/11/2020

1 Exercise

Consider the Mass-Spring-Damper system with parameters m, µ and k, find analytically the natural
modes for the special case µ = 2

√
km.

Sol. MSD system characteristic polynomial and eigenvalues

pA(λ) = λ2 +
µ

m
λ+

k

m
→ λ1,2 = − µ

2m
± 1

2

√( µ
m

)2
− 4

k

m

which, for µ = 2
√
km, become coincident and equal to λ1 = − µ

2m which therefore has algebraic
muyltiplicity equal to 2. One real eigenvalue λ1 = with algebraic multiplicity 2. We need to find
the geometric multiplicity and therefore the dimension of the eigenspace associated to λ1. From
the A− λ1I matrix, being µ = 2

√
km,

A− λ1I =


µ

2m
1

− k
m
− µ

2m

 =


√
k

m
1

− k
m

−
√
k

m


it is evident (being the matrix with rank 1) that the nullspace has dimension 1

N (A− λ1I) = gen


 1

−
√
k

m




and therefore the geometric multiplicity is 1. The natural modes are therefore eλ1t and t eλ1t.

2 Exercise

Given the system

A =

(
2 −1.5
2 −2

)
, B =

(
2
2

)
• Find a “sensor”, that is the C matrix, such that the unstable mode will never result in the

output free response.

• What is the corresponding impulse response?

• Is the system asymptotically stable?
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Sol. Matrix A has characteristic polynomial and eigenvalues/eigenvectors

pA(λ) = λ2 − 1 → λ1 = −1, u1 =

(
1
2

)
, λ2 = 1, u2 =

(
3
2

)
So there is an unstable aperiodic natural mode eλ2t = et. In order to make this mode not appear
in the output free response, that is for any initial condition, the C has to be such that

Cu2 = 0, → C =
(
−2 3

)
Being the left eigenvalue associated to λ1

vT1 =
(
−0.5 0.75

)
the corresponding impulse response is

CeAtB = eλ1tCu1v
T
1 B + eλ2tCu2v

T
2 B = eλ1tCu1v

T
1 B = e−t

(
−2 3

)(1
2

)(
−0.5 0.75

)(2
2

)
= 2e−t

Note that it is not just a coincidence that C ‖ vT1 .

3 Exercise

Given the system

A =

(
0 −0.5
−2 0

)
, B =

(
1
2

)
• Compute the system eigenvalues and corresponding eigenspaces. Draw a phase plane plot of

the typical qualitative state free evolutions (starting from different initial conditions that you
choose and motivate).

• Let the input be an impulse, compute the corresponding state response assuming zero initial
state.

• Is the previous state impulse response diverging? Interpret the result in terms instantaneous
state transfer and eigenspaces.

• Denote by λ2 the resulting positive eigenvalue and assume the input does not contain eλ2t,
will the diverging exponential eλ2t appear in any forced output response?

Sol. Eigenvalues and eigenvectors are (other choices are possible for the eigenvectors, but all
parallel to these)

λ1 = −1, u1 =

(
1
2

)
, vT1 =

(
0.5 0.25

)
, λ2 = 1, u2 =

(
1
−2

)
, vT2 =

(
0.5 −0.25

)
,

The state impulsive response is given by

H(t) = eAtB = eλ1tu1v
T
1 B + eλ2tu2v

T
2 B = e−t

(
1
2

)
and is converging. Since we know that the impulse instantaneously transfers the 0-state in a state
which has the same values as B and noticing that B ‖ u1, the state impulse response coincides
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Figure 1: Phase plane trajectories

with the state evolution from an initial state which belongs to the eigenspace generated by u1 and
therefore tends to the origin, being λ1 = −1, exponentially.

Since the output impulse response is a linear combination (W (t) = CH(t)) of the state impulse
response, it will not contain the diverging natural mode eλ2t. Moreover, being any forced output a
convolution integral of the impulse response with the input

yZSR(t) =

∫ t

0
W (t− τ)u(τ)dτ

no diverging component eλ2t will ever appear in yZSR(t).

4 Exercise

Consider the system matrix

A =

−2 0 0
0 −1 + j 0
0 0 −1− j


Find the particular change off coordinates T (which may have elements with complex numbers)
that makes the system matrix become

TAT−1 =

−2 0 0
0 −1 1
0 −1 −1


Sol. Let’s start from what we know: given the real matrix

Acc =

(
−1 1
−1 −1

)
with complex eigenvalues −1 ± j, the diagonalizing change of coordinates Tcc is given by the
eigenvectors associated to −1 + j and −1− j
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A− (−1 + j)I =

(
−j 1
−1 −j

)
→ u1 =

(
1
j

)
, u∗1 =

(
1
−j

)
and therefore

Tcc =

(
1 1
j −j

)−1

which, as stated by the theory, gives

TccAccT
−1
cc =

(
−1 + j 0

0 −1− j

)
→ T−1

cc

(
−1 + j 0

0 −1− j

)
Tcc = Acc

We can therefore state that the change of coordinates which transforms the diagonal matrix in Acc
is given by

Tr = T−1
cc .

Being the original matrix block diagonal, we can directly write

T =

(
1 0
0 Tr

)

5 Exercise

Given the dynamic matrix

A =

0 1 1
0 −1 −1
0 1 1


• Determine the eigenvalues and their multiplicities (algebraic and geometric).

• Is the corresponding system asymptotically stable, marginally stable or unstable?

Sol. The characteristic polynomial is

det

λ −1 −1
0 λ+ 1 1
0 −1 λ− 1

 = λ3

so there is one eigenvalue λ1 = 0 with algebraic multiplicity ma(λ1) = 3. The geometric multiplicity
is given by the dimension of the nullspace

dim(N (A− λ1I)) = dim(N (A)) = 2

since

N (A) = gen


1

0
0

 ,

 0
1
−1


so mg(λ1) = 2 < ma(λ1) which implies that the system is unstable.
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6 Exercise

Given the dynamic matrix

A =

0 1 0
0 0 0
0 0 0


• Compute the matrix exponential eAt.

• Is there a particular choice of the input matrix B which will not lead to a diverging state
impulse response?

• For a generic input matrix B, is there a particular choice of the output matrix C which will
not lead to a diverging impulse response?

Sol. By definition of matrix exponential (in this case matrix A is nilpotent since A2 = 0)

eAt =

1 t 0
0 1 0
0 0 1


Clearly any matrix B of the form

B =

∗0
∗


i.e. with a second component equal to 0, will always lead to the state impulse response

eAtB =

1 t 0
0 1 0
0 0 1

∗0
∗

 =

∗0
∗


Similarly, for a generic B choosing the output vector with the first element equal to 0 leads to a
non-diverging impulse response

C =
(
0 ∗ ∗

)
→ CeAtB =

(
0 ∗ ∗

)1 t 0
0 1 0
0 0 1

B =
(
0 ∗ ∗

)
B

7 Exercise

Let the dynamic matrix be

A =

(
1 −1
−2 0

)
• Find the spectral decomposition of A.

• Compute the exponential eAt.

• Draw some illustrative phase plane trajectories.

• Verify on Matlab.
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Sol. Being
pA(λ) = (λ+ 1)(λ− 2)

we have

λ1 = −1, u1 =

(
1
2

)
, vT1 =

(
1/3 1/3

)
λ2 = 2, u2 =

(
1
−1

)
, vT2 =

(
2/3 −1/3

)
so that the spectral decomposition is

A = λ1u1v
T
1 + λ2u2v

T
2 = −

(
1
2

)(
1/3 1/3

)
+ 2

(
1
−1

)(
2/3 −1/3

)
= −

(
1/3 1/3
2/3 2/3

)
+ 2

(
2/3 −1/3
−2/3 1/3

)
and the exponential is

eAt = e−t
(

1/3 1/3
2/3 2/3

)
+ e2t

(
2/3 −1/3
−2/3 1/3

)
=

(
(e−t + 2e2t)/3 (e−t − e2t)/3
2(e−t − e2t)/3 (2e−t + e2t)/3

)
The phase plot is similar (with different eigenspaces) to Fig. 1. Possible Matlab code follows.

1 clear all
2 A = [1, -1; -2, 0]; % dynamic matrix
3 B = [1;0]; % whatever, since it is not specified
4 C = [1,1]; % whatever, since it is not specified
5 D = [0]; % whatever, since it is not specified
6 System = ss(A,B,C,D); % state space representation of the system
7 [Y1,T1,X1] = initial(System,[1;1]); % free evolution from initial state [1;1]
8 [Y2,T2,X2] = initial(System,[-1;1]); % free evolution from initial state [-1;1]
9 [Y3,T3,X3] = initial(System,[1;-1]); % and so on

10 [Y4,T4,X4] = initial(System,[-1;-1]);
11 [Y5,T5,X5] = initial(System,[0;2]);
12 [Y6,T6,X6] = initial(System,[0;-2]);
13 [Y7,T7,X7] = initial(System,[1;2]);
14 [Y8,T8,X8] = initial(System,[-1;-2]);
15

16 % the three dots at the end of the following line of code is to split
17 % a long line of code between multiple lines
18 Plot = plot(X1(:,1),X1(:,2),X2(:,1),X2(:,2),X3(:,1),X3(:,2),X4(:,1),X4(:,2),...
19 X5(:,1),X5(:,2),X6(:,1),X6(:,2),X7(:,1),X7(:,2),X8(:,1),X8(:,2)), grid
20 set(Plot,'LineWidth', 2); % to make the lines thick enough
21 axis([-4,4,-4,4]) % to see only this portion of the plane
22 xlabel('x1') % label for the x-axis
23 ylabel('x2') % label for the y-axis
24 title('Phase plane trajectories')

8 Exercise

Consider the Mass-Spring-Damper system (MSD).
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• Choose the parameters such that the eigenvalues are real and distinct. Compute the maximum
extension of the mass when a force impulse is applied.

• Same problem with a different choice of the parameters leading to a complex pair of eigen-
values.

Sol: Compute the state impulse response eAtB, the velocity response – second component of the
state impulse response – will be of the form

v(t) = c21e
−λ1t + c22e

−λ2t

find the time at which the velocity first is 0, this will be

tmax =
1

λ2 − λ1
ln

(
−c21
c22

)
put it in the position expression of the impulse response and obtain

pmax = c11e
−λ1tmax + c12e

−λ2tmax

For the complex conjugate case, the eigenvalues are (λ1, λ
∗
1) with

λ1 = − µ

2m
+ j

√
k

m
− µ2

4m2
= α+ jω

Therefore we have

A− λ1I =

−α− jω 1

− k
m

− µ
m
− α− jω

 u1 ‖
(

1
α+ jω

)

so we can choose

ua = real(u1) =

(
1
α

)
ub = imag(u1) =

(
0
ω

)
The generic state impulse response H(t) = eAtB is obtained from the generic expression of the
state free evolution choosing as initial condition exactly B. Since we should establish when the
velocity becomes zero, we should look only at the second component of the generic expression

eAtB = mRe
αt (sin(ωt+ ϕR)ua + cos(ωt+ ϕR)ub)

where we have set x(0) = B. Since

TR =

(
1 0
α ω

)−1

→ TRB =

(
ca
cb

)
=

 0

1

mω

 , ca = 0, cb =
1

mω

so mR = 1/mω and ϕR = 0. We have

eAtB =
1

mω
eαt
[
sinωt

(
1
α

)
+ cosωt

(
0
ω

)]
The velocity is then

v(t) =
1

mω
eαt [α sinωt+ ω cosωt]
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which becomes zero at tmax if one the two holds

sinωtmax = −ω and cosωtmax = α

sinωtmax = ω and cosωtmax = −α

i.e.
tmax = atan2(−ω, α)/ω, or tmax = atan2(ω,−α)

Finally, from the first component of the state impulse response, we get the maximum position as

pmax = p(tmax) =
1

mω
eαtmax sinωtmax

9 Exercise

Consider the chemical reaction between two components described by the equations given in the
slides.

• Find the change of coordinates that diagonalizes the dynamic matrix and interpret the result
(conservation of some quantity relative to the 0 eigenvalue).

• Draw the phase plane plots highlighting the two eigenspaces.

• The Mass-Spring-Damper system with no spring (K = 0) has a similar dynamic behavior;
what quantity is conserved in this case?

Sol. The dynamic matrix A is

A =

(
−kd ki
kd −ki

)
with an evident zero eigenvalue (being the matrix singular). The characteristic polynomial is

pA(λ) = λ(λ+ kd + ki)

so λ1 = 0 and λ2 = −(kd + ki) < 0. Eigenvectors are

λ1 = 0, u1 =

(
ki
kd

)
, λ2 = −(kd + ki), u1 =

(
1
−1

)
,

and therefore

U =

(
ki 1
kd −1

)
U−1 =

1

kd + ki

(
1 1
kd −ki

)
which shows that in the new coordinates

z = Tx = U−1x =
1

kd + ki

(
CA + CB

kdCA − kiCB

)
the dynamic equations become

ż1 = 0 (1)

ż2 = λ2z2 (2)
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Figure 2: Phase plane trajectories for the chemical reaction example

so the quantity CA + CB remains constant in time. The variable z1 remains constant in time and
therefore highlights a conserved quantity.

For the Mass-Damper system characterized by the dynamic matrix

AMD =

(
0 1
0 −µ/m

)
we have

λ1 = 0, u1 =

(
1
0

)
and λ2 = − µ

m
, u2 =

(
1

−µ/m

)
and therefore the diagonalizing change of coordinates is

T−1 =

(
1 1
0 −µ/m

)
→ T =

(
1 m/µ
0 −m/µ

)
Since the first new coordinate z1 is the one relative to the 0 eigenvalue and the corresponding
dynamic equation is ż1 = 0, this is the conserved quantity which, in terms of the position x1 and
velocity x2, is expressed as

z1 = x1 +
m

µ
x2

10 Exercise

Consider the electrical circuit in Fig. 3. Find the dynamic model and discuss its behavior when the
two capacitors have an initial charge, i.e. when we have initial condition vC1(0) and vC2(0) and no
input voltage vi is applied.

R R

C C

vC1 vC2vi vo

+

-

+

-

+

-

+

-

i1 i2

Figure 3: Electrical circuit
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11 Exercise

Consider the electrical circuit in Fig. 4.

• Find the dynamic model and discuss its behavior.

• Compare this system with the Mass-Damper system (i.e. MSD with no elastic spring).

+

-
R

C
vC1

vi

+ -

i

C- +
vC2

Figure 4: Electrical circuit

Sol. We can write

i =
!

R
(vi − vC1 − vC2) (3)

v̇C1 =
1

C
i (4)

v̇C2 =
1

C
i (5)

from which

v̇C1 = − 1

RC
(vC1 + vC2 − vi) (6)

v̇C2 = − 1

RC
(vC1 + vC2 − vi) (7)

i.e.

A =

(
−1/RC −1/RC
−1/RC −1/RC

)
, B =

(
1/RC
1/RC

)
,

10


