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01) (Dominant dynamics) Let the system S and its low frequency approximation
based on dominant dynamics Sa be given by

S : F (s) =
100

(s+ 1)(0.1s+ 1)2
Sa : Fa(s) =

100

(s+ 1)

We want to compare the two systems in terms of closed-loop stability.

• Compare the Bode diagrams and the related Nyquist plots.

• Verify the previous conclusions referred to stability with any other tech-
nique you prefer.

01 - Solution summary) From the Bode diagrams and corresponding Nyquist
plots we note that Fa(jω), for ω ≥ 0 lies all in the fourth quadrant and has an
infinite gain margin while F (jω) moves from the fourth to the third and ends
in the second quadrant (as ω increases from 0 to ∞) thus crossing the negative
real axis. From the Bode plots, we note that the phase margin for F (jω)
is negative and thus the closed loop system is unstable (the phase of F (jω)
in ω = 10 rad/sec is −π and thus, being the crossover frequency at higher
frequency and the phase decreasig, the phase margin is negative). The closed
loop system relative to the dominant dynamics approximation is asymptotically
stable. The result can be easily verified with the Routh criterion. (See slides
“Control Basics II”, section on “Unmodeled dynamics”)

02) Let the plant and controller be given by

P (s) =
1

s+ 1
C(s) =

Kc

s

Choose the value of Kc such that the following both requirements are met

• a sinusoidal disturbance sin(ωt) acting on the output of the plant with
ω ∈ [0, 0.1] rad/s is attenuated by at least 18 dB

• a sinusoidal measurement noise sin(ωt) acting on the feedback loop with
ω ∈ [10, 100] rad/s is attenuated by at least 38 dB.

Reasoning based on approximate relations is accepted.

02 - Solution summary) The first specification requires the magnitude of the
sensitivity function to be smaller than -18 dB in the [0, 0.1] rad/s frequency
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range. Using the known approximation, this is equivalent to requiring that
the magnitude of the loop function should be greater than 18 dB in the same
frequency range. The specification on the measurement noise translates into
asking that the complementary sensitivity magnitude should be smaller than
-38 dB in the frequency range [10, 100] rad/s and thus, through the approxima-
tion, that the loop function should have a magnitude smaller than -38 dB in the
same frequency range. Choosing Kc = 1 solves the problem. Note that, for the
obtained loop function the location of the crossover frequency is consistent with
the approximations used and that the resulting closed loop is asymptotically
stable.

3) Let the plant be ẋ = x+ u with output y = 3x.

• Design a static output feedback stabilizing controller C1(s) = kc. Let p
be the closed-loop resulting pole (choose a numeric value).

• Design an alternative (dynamic) controller based on the separation prin-
ciple. Choose the state feedback so to assign p, while the estimation error
has dynamics given by the eigenvalue po.

We now want to compare the two alternative solutions to the output stabilization
problem.

• Let a reference r and a measurement noise n be present as illustrated in
the scheme, for both schemes compare the behaviour r → y and n→ y.

• Any suggestion on how to choose the desired eigenvalues in the separation-
based control scheme?
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Figure 1: The two alternative choices

03 - Solution summary) The plant, with state space representation (a, b, c, d) =
(1, 1, 3, 0), has transfer function P (s) = c b/(s−a) = 3/(s−1) then any kc > 1/3
will stabilize the closed loop system (left figure in Fig. 1) which takes on the
form (kc is chosen so that a− b kc c = 1− 3kc = p)

ẋ = (a− b kc c)x+ b kc r − b kc n
y = c x

Being the system one-dimensional (and clearly being the system observable and
controllable), the state feedback and observer design are trivial. For the state
feedback, choose f such that a+ b f = 1 +f = p, while for the observation error
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dynamics choose k such that a − k c = 1 − 3k = po. The resulting closed loop
system is given by (refer to the right figure in Fig. 1)

ẋ = ax+ b fξ + b r

ξ̇ = k c x+ (a+ b f − k c)ξ + b r + k n

y = c x

From the theory (complementary sensitivity function) it is known that the refer-
ence and measurement noise affect the output in a similar way for the scheme on
the left of Fig. 1; this is represented by the complementary sensitivity function

T (s) =
b kc c

s− a+ b kc c
=
a− p
s− p

For the observer-based scheme on the right, we have two different transfer func-
tions

Wry(s) =
(
c 0

)(s− a −b f
−k c s− a− b f + k c

)−1 (
b
b

)
=

b c(s− a+ k c)

(s− a− b f)(s− a+ k c)

=
b c

(s− a− b f)
=

b c

(s− p)

while

Wny(s) =
(
c 0

)(s− a −b f
−k c s− a− b f + k c

)−1 (
0
k

)
=

b c k f

(s− a− b f)(s− a+ k c)

=
b c k f

(s− p)(s− po)

Comparing the two transfer functions we see that the observer has a filtering
role w.r.t. the measuring noise (clear from the figure) and thus we have an
indication on how to choose the parameter k (and thus po) which affects the
reconstruction error dynamics.

The given solution is clearly longer than usual since the full symbolic case
has been treated.

4) Let the plant be

P (s) =
1

s+ 0.01

Find a control scheme which ensures that

• a reference r(t) = δ−1(t) is tracked with an absolute error smaller than
10−4

• a constant disturbance acting on the input of the plant does not alter the
output steady-state behaviour

• a crossover frequency of 1 rad/s and a phase margin of at least 30◦.

04 - Solution summary) One of the simplest loop shaping exercise. The
specification on the disturbance requires a pole in s = 0 in the controller which
makes the closed loop system of type 1 and therefore the steady state error to

3



Figure 2: Liquid tank

a constant reference, if the control system is asymptotically stable, will be zero.
Then the first requirement is also automatically satisfied. The extended (or
modified) plant has a crossover frequency which already meets the specifications
(ωc = 1 rad/sec) while the phase margin is almost zero. We need to increase the
phase in ω = 1 rad/sec and compensate for any amplification introduced by the
chosen lead function. This can be achieved with a controller gain smaller than
one in magnitude since there are no particular requirements on the positive loop
gain.

05) Let the cylinder tank shown in Fig. 2 have a constant section of area A =
1 m2, with a liquid of volume V (t) and level h(t). The incoming and outgoing
flow volume flow rates are respectively denoted by qi(t) and qo(t). The system
dynamics is represented by the following differential equation

V̇ (t) = qi(t)− qo(t)

Let the liquid level h(t) inside the tank be measurable and qi(t) be the control
input.

• Write both the state-space representation and the transfer function of the
considered system

• Design a control scheme which generates the control input qi(t) such that,
at steady-state, the liquid is guaranteed to stay at a desired constant
reference value hd in spite of a constant unknown disturbance qo(t) = qo.
Explain in details your control scheme and the variables involved.

• Show with a root locus the behaviour of your control scheme when the
controller gain varies (N.B. the overall controller is not necessarily static).

• Draw the three approximate sensitivity functions and comment the ob-
tained plots.

• Show closed loop stability through the Nyquist criterion.

04 - Solution summary) The state space model is obtained by noting that
V (t) = Ah(t) (see slides “Control Basics I”) and being the output y = h, the
scalar system is represented by (a, b, c, d) = (0, 1/A, 1, 0). The transfer function
relating the plant’s input qi(t)−qo(t) to the output h is therefore P (s) = 1/(As).
Since the constant unknown disturbance qo enters at the plant’s input, the pole
in s = 0 in the plant is useless w.r.t. the disturbance and we need to introduce
a pole in s = 0 in the controller. This, provided the closed loop system is
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asymptotically stable, also guarantees that at steady state the output will tend
to the constant desired reference value hd (type 1 system). The extended (or
modified) plant has two poles at the origin and thus the closed loop system
is clearly not asymptotically stable (the Nyquist plot goes through the point
−1, 0)). A negative zero (since the controller already has a pole) or a lead
function will guarantee a positive margin. The value of the (positive) controller
gain will determine the crossover frequency and the corresponding phase margin.
Depending upon the chosen stabilizing solution the root locus as the controller
gain varies will be different. One should explain what can be inferred by the
root locus in terms of transient behavior. The three approximate sensitivity
functions and the Nyquist plot are standard questions.

5) (Double integrator) Let the plant be

P (s) =
1

s2

• Find a state space realisation of the plant.

• Assuming the state is measurable, find a stabilising controller.

• Assuming only the output is measurable, find, if it exists, a state observer
and, if possible, use it for stabilising the plant. Give the closed-loop state-
space representation.

05 - Solution summary) A state space realisation is given by the controller
canonical form with D = 0

A =

(
0 1
0 0

)
, B =

(
0
1

)
, C =

(
1 0

)
Being the system controllable (by definition) the state feedback is directly ob-
tained by the Ackermann’s formula. The system is also (by definition since we
started from the transfer function) observable and therefore the determination
of the observer is just a direct application of the course slides formulas.

6) Let a system be characterised by the following dynamic matrix

A =

(
−6 8
−3 4

)
• Can the given system have, for some initial condition, a constant state

evolution? If yes, motivate your answer and show your solution.

• Does the result change if we just want a constant output trajectory (discuss
in terms of the output choice)?

06 - Solution summary) The A matrix has eigenvalues λ1 = 0 and λ2 = −2.
Provided the initial condition does not excite the converging mode eλ2t, the
state free evolution will just remain constant. This can be achieved by any
initial condition belonging to the eigenspace associated to λ1, that is parallel to

u1 =
(
4 3

)T
(see slides “Internal Stability - LTI systems”). The output matrix

C can be chosen so to make the converging mode unobservable (use, for example,
the PBH test to determine such a C). A possible choice is C =

(
−1 2

)
. In

this case any initial condition will give a constant output free response.
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