
Loop shaping exercise

Excerpt1 from “Controlli Automatici - Esercizi di Sintesi”, L. Lanari, G.
Oriolo, EUROMA - La Goliardica, 1997. It’s a generic book with some typical
problems in control, not a collection of exam problems.

Warning - All the computation have been done using numerical tools in order
to show the exact values and reasoning. An exam exercise will be, from the
numerical point of view, much simpler.

Exercise

Given the control system of Fig. 1, with the plant having the following transfer
function

P (s) =
10

(1 + 0.1s)(1 + 0.01s)
.

Find the controller G(s) such that the following requirements are met:

a) the steady state error to a step reference r(t) is zero;

b) the steady state error to a unit ramp reference r(t) = tδ−1(t) is, in absolute
value, smaller equal to 0.01;

c) the steady state output response to a constant disturbance d(t) is zero;

d) the open loop crossover frequency is ω∗c ≈ 30 rad/sec with a corresponding
phase margin PM∗ ≥ 20◦. [These are almost equivalent requirements, on
the closed loop, of a bandwidth close to 50 rad/sec and a resonance peak
not greater than 9 dB.]
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Figure 1: The given control system

How will the design be modified if d) is changed into:

1Free online version available at
http://www.diag.uniroma1.it/~lanari/FdA9/FdA9MatDid/LibroEs 2pps.pdf



d’) the open loop crossover frequency is ω∗c ≈ 7 rad/sec with a corresponding
phase margin PM∗ ≥ 40◦? [These are almost equivalent requirements, on
the closed loop, of a bandwidth close to 10 rad/sec and a resonance peak
not greater than 4 dB.]

or

d”) ω∗c ≈ 30 rad/sec with a corresponding phase margin PM∗ ≥ 55◦? (B3 ≈
50 rad/sec and Mr ≤ 2 dB).

We seek the compensator G(s) in the general form

G(s) =
KG

sh
R(s).

Parameters KG and h are chosen such that the steady state requirements are
guaranteed (just necessary conditions), while with R(s) we meet the dynamic
specifications. R(s) is usually chosen to have unit gain2 so that the controller
gain coincides with KG. The closed loop stability will be guaranteed, for the
considered problem, by a direct application of Bode’s theorem on stability.

Notice first that P (s) has no poles at the origin (i.e. in s = 0), therefore, in
order to obtain a zero steady state error corresponding to a constant reference,
we need to introduce a pole in s = 0 (h = 1) in the controller and thus in
the open loop function (being a unit feedback system, the open loop function
coincides with the loop function). The control system (closed loop system) then
becomes of type 1.

If the reference is a unit ramp, the non-zero steady state error (after the
introduction of the pole at the origin) will be

|ẽ1| =
1

|KPKG|
=

1

10|KG|
≤ 0.01 =⇒ |KG| ≥ 10,

since the plant’s gain is Kp = 10. Choosing a negative KG would lead to
a negative loop gain and thus not allowing the application of Bode’s stability
theorem. Moreover, a negative loop gain would make stabilization much harder.
We therefore choose KG = 10.

The introduction of the pole at the origin also renders the control system
astatic w.r.t. to any constant disturbance d acting at the plant’s output; there-
fore the requirement is already satisfied.

Coming to d), the open loop system F (jω) is

F (jω) = P (jω)G(jω) =
KG

(jω)h
P (jω)R(jω) = F̂ (jω)R(jω),

where F̂ (jω) denotes the modified plant (to satisfy the steady state requirements
a), b) and c)) frequency response corresponding to the transfer function

F̂ (s) =
10

s

10

(1 + 0.1s)(1 + 0.01s)
.

2In general steady state specifications may require a loop gain greater, in absolute value,
than a minimum value depending on the maximum allowed error. In this case, when choosing
KG so satisfy these inequality constraints with the smallest possible value (in absolute value),
we could still consider an increase in the overall loop gain (by choosing R(0) ≥ 1) but not a
decrease and therefore the gain R(0) cannot be chosen smaller than one.
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Figure 2: Bode diagrams of F̂ (jω)

From the Bode’s diagram of Fig. 2, the current crossover frequency ω̂c and
phase margin P̂M of F̂ (jω) are numerically found to be

ω̂t ≈ 30 rad/sec and P̂M ≈ 1.6◦.

Note that the closed loop system is very close to the critical point (−1, 0) (phase
margin almost zero) and thus, for the considered system, very close to instability.

Comparing the required values of the crossover frequency and corresponding
phase margin, we note that the actual crossover frequency coincides with the de-
sired one and thus the only required action is to increase the phase in 30 rad/sec.
In particular it is necessary to increase the phase by 20− 1.6 = 18.4◦ trying to
maintain unchanged the crossover frequency (i.e. trying to introduce no change
in the magnitude at that frequency).

We can use a lead function

Ra(s) =
1 + τas

1 + τa
ma
s
, τa > 0, ma > 1,

which has the typical Bode diagrams reported in Fig. 3 for different values of
ma. In these diagrams, defined universal diagrams, the abscissa represents a
normalized frequency ωτa. Note that the zero binomial factor has the cut off
frequency in 1/τa, while the pole binomial factor has the cut off frequency in
ma/τa. Therefore in the diagrams of Fig. 3, the normalized frequency 100 = 1
corresponds the zero cut off frequency 1/τa.
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In this case the choice of the parameters is driven by the following consider-
ations. The lead action should be such that it increases the phase by 18.4◦ at
the frequency ω∗c = ω̂c = 30 rad/sec. From the universal diagrams of Fig. 3, it
can be seen that this lead can be achieved by several pairs (ma, ωτa). However
the resulting amplifications are quite different. Since we want to maintain the
crossover frequency as close as possible to the actual value, we need to intro-
duce as little amplification as possible. We therefore need to choose the smallest
normalized frequency ωτa which guarantees, for an appropriate value of ma, the
required lead.

For our case this means choosing ωτa = 0.4 and ma = 10. In ωτa = 0.4, the
magnitude plot for ma = 10 shows a very limited amplification and therefore
a reduced change in the crossover frequency ωc. This is extremely important
since a large change in the crossover frequency would require a different lead
action and at a different frequency location.

We still need to choose τa which corresponds to placing the required lead at
the required frequency ω∗c , that is

ω∗c τa = 30 τa = 0.4 =⇒ τa =
0.4

30
=

1

75
.

The final lead function is

Ra(s) =
1 + 1

75s

1 + 1
750s

,

and therefore the final controller is

G(s) =
KG

s
Ra(s) =

10

s

1 + 1
75s

1 + 1
750s

.

The open loop (or loop function in this case) F (jω) = F̂ (jω)Ra(jω) Bode
diagrams are reported in Fig. 4 and, for a wider frequency range, in Fig. 5. Note
that, as expected, the amplification introduced by the lead function has slightly
moved the crossover frequency from 30 rad/sec to approximately 31 rad/sec,
while the phase margin (computed at the true crossover frequency 31 rad/sec)
has increased to more than 20◦.

Finally, having a unique crossover frequency and having guaranteed a pos-
itive loop gain, since the resulting phase margin is positive and the open loop
system (including the controller) has no poles with positive real part, the closed
loop is asymptotically stable. Although not explicitly required, asymptotic sta-
bility of the control system is an implicit binding requirement since steady state
exists only for asymptotic stable systems.
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Figure 3: Universal Bode diagrams for the lead function. Each plot corresponds
to a value of ma. The same plots can be used for the lag function by changing
the sign on the ordinate values.
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Figure 4: Bode diagrams of F (jω) (−−) and F̂ (jω) (—)
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Figure 5: Bode diagrams of F (jω). The resulting gain and phase margin are
reported in the plot title together with the corresponding frequencies.
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Figure 6: Magnitude in dB of T (jω)
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Figure 7: Magnitude in dB of S(jω)

Since the original specifications (bandwidth close to 50 rad/sec, resonance
peak not greater than 9 dB) were on the closed loop system (control system),
the complementary sensitivity function frequency response

T (jω) =
F (jω)

1 + F (jω)
=

Ra(jω)F̂ (jω)

1 +Ra(jω)F̂ (jω)
,

is shown in Fig. 6 where the resulting resonance peak is smaller than 9 dB and
the bandwidth is approximately 50 rad/sec as requested. For completeness the
magnitude of the sensitivity function S(s) frequency response is also reported
in Fig. 7. As expected, the pole at the origin in the forward path and before
the entry point of the disturbance translates into the presence of a zero at the
origin in the sensitivity function. The magnitude of S(jω) in dB comes from
−∞ when ω increases from 0..
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If instead of solving d) we have to solve the specifications d’), we first
compare the actual magnitude and phase of the modified plant F̂ (jω) at the
new desired crossover frequency. From the plot in Fig. 2 we have

|F̂ (jω∗c )| = 21 dB, 6 F̂ (jω∗c ) = −128◦

and therefore we need an attenuation of 21 dB while we can accept a maximum
delay of 140− 128 = 12◦.

Attenuation cannot be achieved by introducing an extra smaller than one
(negative in dB) gain since this would violate the steady state requirement of
b). A lag function

Ri(s) =
1 + τi

mi
s

1 + τis
, τi > 0, mi > 1,

is therefore required. The corresponding Bode diagrams can be obtained from
those of Fig. 3 by changing the sign of the ordinates. The pole binomial term has
a cut off frequency 1/τi while the one corresponding to the zero is mi/τi. In the
universal diagrams of Fig. 3, when dealing with a lag function, the normalized
frequency 100 = 1 corresponds to the pole cut off frequency.

In order to determine the values of the lag function parameters mi and τi,
we first notice that the required attenuation is of 21 dB at the desired crossover
frequency ω∗c = 7 rad/sec. From the universal diagrams of Fig. 3 we see that
this attenuation can be achieved for several pairs (mi, ωτi) which give different
phase lags. In order to make this lag small it is useful to choose the normalized
frequency sufficiently to the right in the diagrams. For example, values of ωτi
close to 102 are reasonable. However choosing an excessively large normalized
frequency corresponds to introducing the attenuation earlier in the frequency
range and thus attenuating at low frequency where it is not strictly necessary.
It is always advisable, when possible, to avoid excessive attenuation at low
frequency.

We choose mi = 12 and we note that, at the normalized frequency ωτi = 60,
we also introduce a phase lag of 12◦ which is the maximum allowed lag. To
place this desired magnitude and phase effect at the desired crossover frequency
ω∗c , we choose

ω∗c τi = 7 τi = 60 =⇒ τi =
60

7
.

The lag function is thus

Ri(s) =
1 + 5

7s

1 + 60
7 s

,

while the final compensator is

G′(s) =
KG

s
Ri(s) =

10

s

1 + 5
7s

1 + 60
7 s

.

Again, stability is guaranteed by Bode’s stability theorem.
To see the effect of this design, the open loop frequency response

F ′(jω) = F̂ (jω)Ri(jω),
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Figure 8: Magnitude of F ′(jω) (−−)
and F̂ (jω) (—)
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Figure 9: Magnitude of F ′(jω) in a
larger frequency range
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Figure 10: Magnitude of W ′(jω)
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Figure 11: Magnitude of S′(jω)

Bode diagrams are shown in Fig. 8 and, for a wider frequency range, in Fig. 9.
In particular we notice that the lag function has brought the crossover frequency
in ωc = 7 rad/sec with a phase margin greater than 40◦, as requested.

The effect of the chosen controller needs to be verified on the closed loop
behavior. The complementary sensitivity function T ′(jω) magnitude is shown in
Fig. 10. The resonance peak Mr is smaller than 4 dB, while the bandwidth B3 is
approximately 11 rad/sec. The resulting sensitivity function S′(jω) magnitude
is plotted in Fig. 11 and shows how the low frequency behavior has worsen w.r.t.
Fig. 7 due to the lag function.
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For the case d”) we again have ω∗c = ω̂c = 30 rad/sec, while the minimum
desired phase margin is PM∗ = 55◦. It is therefore necessary to achieve a phase
lead of 53.4◦ at ω̂c. From the universal diagrams in Fig. 3 it is clear that any
lead function allowing such an increase in the phase will also introduce a large
amplification at the required frequency. We therefore also need to introduce a
lag function to attenuate such an amplification and bring back the crossover
frequency in ω∗c .

From Fig. 3 we observe that a lead function with ma = 11 gives a phase
lead greater than 56◦ at the normalized frequency ωτa = 3. Since we want to
achieve this phase increase in ω∗c = 30 rad/sec, we set τa = 3/30 and therefore

R′′a(s) =
1 + 1

10s

1 + 1
110s

.

The introduction of the lead function is shown in Fig. 12. Note that in ω∗c the
function F̂ (jω)R′′a(jω) has an approximate magnitude of 9 dB and phase 58◦.
It should be reminded that the choice of the lead function has been made in
order to introduce a greater lead than necessary so to compensate the future
lag introduced by the lag function.

The second step requires an attenuation of 9 dB in ω∗c . We then choose a
lag function with mi = 3 and ωτi = 60, from which τi = 60/30. The resulting
lag function is

R′′i (s) =
1 + 2

3s

1 + 2s
.

The overall compensator is given by

G′′(s) =
10

s

1 + 1
10s

1 + 1
110s

1 + 2
3s

1 + 2s
.

The Bode diagrams of the compensated plant

F ′′(jω) = F̂ (jω)R′′a(jω)R′′i (jω)

are shown in Fig. 12 and, for a wider frequency range, in Fig. 13. The resulting
phase margin is larger than the required 55◦ at a crossover frequency which is
slightly smaller than 31 rad/sec.

For completeness, the Bode diagrams of the closed loop frequency response
W ′′(jω) is shown in Fig. 14. As required, the resonance peak is smaller than
2 dB and the bandwidth is around 50 rad/sec.
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Figure 12: Bode diagrams of F̂ (jω) (—), of F̂ (jω)R′′a(jω) (−−) and of F ′′(jω) =
F̂ (jω)R′′a(jω)R′′i (jω) (−·)
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Figure 13: Bode diagrams of F ′′(jω)
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Figure 14: Magnitude of W ′′(jω)
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