
Control Systems - January 29, 2024

A Student name: Matricola:

1) A lift to move material is described by the following differential equation

mp̈+ dṗ = f −m` g

where p is the height, m is the total weight of the lift platform mp plus the weight of the load m` (i.e.,
m = mp+m`), d a friction coefficient f a control force provided by a motor and g the gravity acceleration. The
weight of the empty lift is counterbalanced mechanically so it does not enter into the gravity term. Moreover
the load weight m` is unknown but can be up to mmax

` , that is m` ∈ [0,mmax
` ] kg

Draw a control scheme and design a controller which guarantees that the load is moved from the ground (p = 0)
to a given constant height pd. Assume g = 10 m/s2, d = 40 kg/s, the empty lift (platform) weight is mp = 10 kg
while the maximum load weight is mmax

` = 5 kg (in other words, the total mass m belongs to the interval
[mp,mp +mmax

` ] = [10, 15] kg).

2) Consider the system with state space representation

A =

−1 1 0
0 1 0
0 2 −2

 , B =

3
6
4

 , C =
(
0 1 0

)
, D = 0

1. Study controllability and observability properties.

2. Establish whether the system is stabilizable with state feedback and output feedback.

3. Compute the output impulse response.

4. Compute the transfer function.

5. Find a controller which assigns the bandwidth B3 = 10 rad/s to the closed loop system (reference to
output).

3) Consider the system represented by the transfer function

P (s) =
1

s+ 1

1. Find a control scheme and a controller which guarantees that the output exactly follows the reference
r(t) = 3 sin(t) at steady state.

2. With the controller found at the previous point, assume its gain Kc can be changed and is still variable.
Draw the positive and negative root locus.

3. With the chosen controller at the first point, draw the Nyquist plot.

4) For the system characterized by the state space representation

A =

(
−1 −1
−1 −1

)
, B =

(
1
0

)
, C =

(
0 1

)
, D = 0

write the spectral form of the matrix exponential and draw in the (x1, x2) plane the typical trajectories arising
starting from different initial conditions.



1 - Sol.) Taking the Laplace transform of the differential equation (and starting from 0 initial conditions) we
have

(ms+ d)s p(s) = f(s)− L[m` g]

which shows that gravity is acting as an input disturbance to the plant described by the transfer function

P (s) =
p(s)

f(s)− L[m` g]
=

1

(ms+ d)s

and we can then draw the control scheme of Fig. 1.

+

+
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Figure 1: Control scheme for the lift

In order to make the lift reach the desired position at steady state regardless of the constant gravity (we
cannot compensate for the gravity term since we do not know the value of m`, only the platform contribution
has been compensated with a counterweight) we need a pole in s = 0 in the controller (necessary condition).
The system is then of type 2 (provided the closed loop system is asymptotically stable) and therefore one would
obtain a zero steady state error w.r.t. a constant reference pd (when we want the lift to reach the height pd, the
reference changes as a step input from 0 to pd). The modified plant becomes

P̂ (s) =
1

s

1

s(ms+ d)

which does not give an asymptotic closed loop system since the pole polynomial would be s(ms2 + ds) + 1 (no
term in s so the necessary condition is not verified); same result if we use the controller Kc/s. We need to
stabilize the control system.

A first possible choice would be to just add a negative zero in −z (the resulting controller would then be
proper since it has already a pole) so to obtain n −m = 2. In this case the closed loop system is stabilizable
with high positive gain provided the center of asymptotes is negative. The loop function becomes

L1(s) =
K ′(s+ z)

s
P (s) =

K ′

m

(s+ z)

s2(s+ d/m)
= K

(s+ z)

s2(s+ d/m)
, z > 0, K =

K ′

m

with the center of asymptotes

s0 =
−d/m+ z

2

Since we want to choose z > 0 (negative real zero) such that s0 is negative for all possible values of m, we need

0 < z <
d

mmax
=

d

mp +mmax
`

We can now choose the value of K by using the Routh criterion to the closed loop pole polynomial

p(s,K) = s2
(
s+

d

m

)
+K(s+ z) = s3 +

d

m
s2 +Ks+Kz

which gives the following Routh table

1 K
d
m Kz

α

K

with

α = K
d

m
−Kz = K

(
d

m
− z
)
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Figure 2: Positive root locus

being positive for the given choice of z, that is 0 < z < d
mp+mmax

`
. In other words, any K > 0 would stabilize the

closed loop system (with the properly chosen z) and therefore any K ′ > 0 can be chosen. The final controller
is therefore

C1(s) =
K ′(s+ z)

s
, with 0 < z <

d

mp +mmax
`

and K ′ > 0.

The corresponding root locus is shown in Fig. 2.
Note that we cannot choose the zero so to cancel the asymptotically stable pole of the plant since we do not

know the value of this pole being the load mass m` uncertain. However we could choose the zero in

z =
d

mmax
=

d

m` +mmax
w

that is the one with the smallest cut-off frequency d/mmax. With this choice we would obtain a center of
asymptotes which is s0 ≤ 0. The case s0 = 0 corresponds to the case of zero/pole cancellation when m = mmax

so that only the two poles in s = 0 remain. In order to avoid s0 = 0 we should add an extra pair of zero/pole.
The final controller would be

C2(s) =
(s+ d/mmax)(s+ z2)

s(s+ p2)
, with p > z > 0

A possible alternative to the root locus reasoning would be to do some sort of loop shaping (that is working
on the open loop magnitude and phase) in order to guarantee a positive phase margin and the applicability of
Bode’s stability theorem. The modified plant in Bode’s canonical form is

P̂ (s) =
1

m

1

s2(s+ d/m)

In this case a possible Bode plot is shown in Fig. 3 where the smallest smallest value of the gain 1/m is reported

min
1

m
=

1

mmax
=

1

mp +mmax
`

together with the smallest crossover frequency ωmin
c for the range of possible values of the total weight m.

From the phase plot it is clear that if we add a zero in −d/mmax the phase will always be greater or equal
to −π (equal when the weight m is at its maximum value). This corresponds to the analysis done previously
when we added a zero in −d/mmax. Adding a zero with cutoff frequency to the left of d/mmax will give a
positive phase margin at any frequency (recall that the drawn plots of the phase are approximate) confirming
the previous analysis done using the root locus since this corresponds to asking

0 < z <
d

mmax
=

d

m` +mmax
w

Typical errors:

• Some have considered f −m`g as a known constant which enters in the B matrix as

B =

(
0

f−m`g
m

)
clearly not understanding that f is the control input and m`g a constant disturbance acting at the plant’s
input.

3



{ ¼/2

1m
a
g
 (

in
 d

B
)

p
h
a
se

!

!

{ 3¼/2

1

dB

all other values of the weight give 

a higher contribution and higher

crossover frequency

smallest gain

smallest

crossover frequency

!c
min

{ ¼

m
max

d

maxmp + m`

Figure 3: Possible Bode plots for the lift control problem

• It is tempting to denote u = f −m`g and consider u as the control input. However we then lose the fact
that m`g is a disturbance and we want the system to be astatic. You could argue that if u is the output
of the controller then the real force that should be applied is f = u + m`g but this requires the perfect
knowledge of the mass m`.

• This solution has been given in the general case; some have directly used the numerical values and evaluated
the effect of the unknown mass.

2 - Sol.) Due to the block triangular structure of the matrix the eigenvalues are

λ1 = −1, λ2,3 = eig

(
1 0
2 −2

)
= {1,−2}

The controllability and observability matrix are respectively

P =

3 3 3
6 6 6
4 4 4

 , rank[P ] = 1, O =

0 1 0
0 1 0
0 1 0

 , rank[O] = 1

therefore we have 2 uncontrollable natural modes and 2 unobservable natural modes (from this analysis we do
not know yet if the uncontrollable and unobservable modes coincide).

From the structure of the A and C matrices we can for sure say the eigenvalue λ3 = −2 is unobservable,
but since the nullspace of O has dimension 2, another eigenvalue is unobservable.

We can therefore compute (although not necessary) the image of P and the kernel of O

Im[P ] = gen


3

6
4

 , Ker[O] = gen


1

0
0

 ,

0
0
1


but it is not necessary to do the Kalman decompositions; it is sufficient to check the structural properties
(controllability and observability) through the PBH test:

• for λ1 = −1 we have

rank

0 1 0 | 3
0 2 0 | 6
0 2 −1 | 4

 = 2, rank


0 1 0
0 2 0
0 2 −1
−− −− −−
0 1 0

 = 2

• for λ2 = 1 we have

rank

−2 1 0 | 3
0 0 0 | 6
0 2 −3 | 4

 = 3, rank


−2 1 0
0 0 0
0 2 −3
−− −− −−
0 1 0

 = 3
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• for λ3 = −2 we have

rank

1 1 0 | 3
0 3 0 | 6
0 2 0 | 4

 = 2, rank


1 1 0
0 3 0
0 2 0
−− −− −−
0 1 0

 = 2

• Note that once we find that λ1 is uncontrollable and λ2 is controllable, there is no need to check λ3
which necessarily will be uncontrollable since the rank of the controllability matrix is 2. Similarly for
the PBH test for observability. Even better, thinking about the next question, we could just verify the
controllability and observability of the only unstable eigenvalue.

We can conclude that the system is characterized by an asymptotically stable uncontrollable and unobservable
subsystem with eigenvalues λ1 and λ3 and therefore the system is both stabilizable with state feedback (if the
state is available) and stabilizable with output feedback (for example through the separation principle since the
system is also detectable) recalling that state stabilizability is a necessary condition for output stabilizability.

To compute the output impulse response, we need first to compute the matrix exponential eAt; however we
can exploit the particular structure of A and C as

w(t) = CeAtB =
(
C1 0

)
e

 A11 0

A21 A22

t(
B1

4

)
=
(
C1 0

)( eA11t 0

# eA22t

)(
B1

4

)

= C1e
A11tB1 =

(
0 1

)
e

−1 1
0 1

t(
3
6

)
=
(
0 1

)(e−t ∗∗
0 et

)(
3
6

)
= 6et

which is what we expected since λ2 is the only controllable and observable eigenvalue and therefore the only
one to appear in the impulse response. The transfer function, given by the Laplace transform of the impulse
response, is

W (s) = L [w(t)] =
6

s− 1

Using a feedback control scheme, we need to both stabilize the closed loop system which can evidently be
achieved with a simple gain C(s) = Kc and assign the required bandwidth. The resulting closed loop pole
polynomial would then be

p(s,Kc) = s− 1 + 6Kc

We then recall that a transfer function with a single pole (and no zeros) has the bandwidth coincident with the
pole cut-off frequency. Therefore in order to achieve the required bandwidth of B3 = 10 rad/s for the closed
loop we just need to choose Kc = 11/6 so that

p(s, 11/6) = (s+ 10).

The closed loop complementary sensitivity function is then

T (s) =
L(s)

1 + L(s)
=

KcP (s)

1 +KcP (s)
=

11

s+ 10

Note that the gain of the complementary sensitivity is not 1 (there are no poles in s = 0 in the loop function).
As a possible alternative solution one could reason on the loop function crossover frequency and the ap-

proximation (it’s however an approximation) that the crossover frequency of L and the bandwidth of T are
“close”. So one could look for a gain that moves the crossover frequency to 10 rad/s (the required closed loop
bandwidth). This value is not evident from the handwritten Bode plot of |P (jω)| to understand the required
amplification −|P (j10)|dB . More importantly even if we read correctly this value, we still need to verify closed
loop stability (here the Bode theorem cannot be applied since we have an unstable pole in P (s)). We can either
compute the closed loop polynomial (but then we go back to the first solution) or do the Nyquist plot (do it as
an exercise).

For completeness Fig. 4 shows some magnitude plots of interest.

Typical errors:

• Once you have found the eigenvalues (thanks to the particular form of the A matrix) and you notice that
the rank of the controllability matrix is 1, you just have to check if the unique unstable eigenvalue is
controllable (similarly for the observability).
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Figure 4: Problem 2: magnitude of P (jω), KcP (jω) and T (jω) in dB

• Some have found a transfer function (or impulse response) which is not compatible with the controllability
and observability analysis (this is considered a serious flaw).

• Writing just “the unobservable subsystem is asymptotically stable and therefore the system can be stabi-
lized via output feedback” is incomplete: you should recall that the stabilizability with state feedback is
a necessary condition.

• Recalling the connection between the impulse response and the transfer function, once you compute on of
them obtaining the other one is straightforward; no need to do unnecessary computation all over again.

• Some have computed the step response instead of the impulse response.

3 - Sol.) We know that in order to guarantee zero tracking error with respect to a sinusoidal signal, the loop
function needs to have (necessary condition) a pair of imaginary poles corresponding to the reference signal
frequency; in our case the loop function needs to have the poles ±j and since they are not present in the plant,
we introduce them throught the controller

Ctemp(s) =
1

s2 + 1
=⇒ P̂ (s) = Ctemp(s)P (s) =

1

(s+ 1)(s2 + 1)

We then have to stabilize the closed loop system.
The first attempt could be done looking at the root locus of KcP̂ (s) shown in Fig. 5 which indicates that

the closed loop system can be stabilized with negative and sufficiently small in magnitude values of Kc.

Re

Im

s0 { 1

Figure 5: Problem 3: a possible root locus for C(s)P (s) = Kc/((s
2 + 1)(s+ 1))

Writing the corresponding closed loop polynomial we obtain

p(s,Kc) = (s2 + 1)(s+ 1) +Kc = s3 + s2 + s+Kc + 1

so the necessary condition requires Kc > −1. The Routh table is

1 1

1 1 +Kc

−Kc

1 +Kc

so we obtain that the necessary and sufficient condition for closed loop stability is Kc ∈ (−1, 0). Clearly
Kc = −1 corresponds to a closed loop real pole being in the origin since

p(s,−1) = s(s2 + s+ 1).
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One can even compute the candidate singular points as the solutions of

1

s+ 1
+

1

s+ j
+

1

s+ j
= 0 ⇔ 3s2 + 2s+ 1 = 0

which has complex roots and these roots correspond to complex values of Kc so these are not singular values.
Note however that with a different plant, for example

P2(s) =
1

s+ 10

all the reasoning is similar but the candidate singular points should instead verify the equation

3s2 + 20s+ 1 = 0

which has real roots s∗1 ≈ −6.6 and s∗2 ≈ −0.05 which are therefore singular points. The corresponding root
locus becomes that of Fig. 6.

Re

Im

s0 { 10

Figure 6: Problem 3: a possible root locus for C(s)P2(s) = Kc/((s+ 10)(s2 + 1))

As an alternative solution, closed loop stability can be achieved, for example, by adding a zero (we can
cancel the pole in s = −1) and move the center of asymptotes into the left half-plane with a pole/zero pair. For
example we could choose

C(s) = Kc
(s+ 1)(s+ 4)

(s2 + 1)(s+ 10)

which gives a center of asymptotes s0 = −3. The resulting root locus is shown in Fig. 7.

Re

Im

s0 
{ 10 { 4

Figure 7: Problem 3: a possible root locus with C(s) = Kc(s+ 1)/(s2 + 1)

In order to verify that the closed loop system is asymptotically stable for any Kc > 0, we can compute the
closed loop polynomial

L(s) =
Kc(s+ 4)

(s2 + 1)(s+ 10)
=⇒ p(s,Kc) = s3 + 10s2 + (Kc + 1)s+ 10 + 4Kc

The necessary condition for all poles to be with real part negative is Kc > −1, while from the following Routh
table (where some rows have been multiplied by a positive number to simplify the computation) it is clear that
the necessary and sufficient condition is satisfied for Kc > 0.
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1 Kc + 1

10 10 + 4Kc

6Kc

10 + 4Kc

If the asymptotically stable pole is not cancelled by the additional zero we obtain two possible root locus
plots shown in Fig. 8. Both cases are possible, depending on the location of the additional zero in C(s). In the
first case the closed loop system would be asymptotically stable for any Kc > 0 while in the second case only
for Kc > Kcrit > 0. The closed loop polynomial is now a 4th order polynomial and the corresponding Routh
table is more computationally intensive.

Re

Im

s0 { 1

(a) A possible root locus

Re

Im

s0 { 1

(b) Another possible root locus

Figure 8: Problem 3 - Two alternative root loci whene adding an extra pole/zero pair.

These are some of the possible controllers which all guarantee exact tracking of the particular sinusoidal
reference signal at steady state. These controllers differ with respect to the transient behavior as shown in
Fig. 9 where the tracking error e(t) = y(t)− r(t) is shown fro the three following controllers

C1(s) = −1

2

1

s2 + 1
, C2(s) = 26

(s+ 1)(s+ 5)

(s2 + 1)(s+ 10)
, C3(s) = 300

(s+ 5)(s+ 10)

(s2 + 1)(s+ 20)

0 5 10 15

time

-1.5

-1

-0.5

0

0.5
tracking error with three different controllers

e1(t)
e2(t)
e3(t)

Figure 9: Problem 3: tracking errors with C1(s), C2(s) and C3(s)

The Nyquist plot for the pure gain controller is shown in Fig. 10a (this is one of the examples in the slides
Nyquist.pdf). When Kc is negative (as the case for the stabilizing values of Kc) the plot rotates of −π and
therefore there are no encirclements of the point (−1, 0) for small (in absolute value) negative values of Kc.
With the other controller C2(s) we obtain the Nyquist plot shown in Fig.10b. The Nyquist plot with C3(s) is
similar.

Typical errors:

• Some have chosen the necessary part of the controller to be 3/(s2+1) and not 1/(s2+1) since the reference
was 3 sin t.

• The presence of poles in ±j is a necessary condition; stability still needs to be guaranteed.

• Some have just added a pole in s = 0 ...

• Usual problems with the Nyquist plot (absence of the closure at infinity, ...).
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(a) Problem 3: Nyquist plot for C1(s)
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(b) Problem 3: Nyquist plot for C2(s)

4 - Sol.) The eigenvalues of the dynamic matrix A are

pA(λ) = det(λI −A) = det

(
λ+ 1 1

1 λ+ 1

)
= λ(λ+ 2) =⇒ λ1 = 0, λ2 = −2

and therefore the eigenvectors are

• for λ1 = 0, the eigenvectors are such that (A− λ1I)u1 = Au1 = 0

Au1 =

(
−1 −1
−1 −1

)
u1 = 0 =⇒ U1 = span

{(
1
−1

)}
• for λ2 = −2, the eigenvectors are such that (A− λ2I)u2 = 0

(A− λ2I)u2 =

(
1 −1
1 −1

)
u2 = 0 =⇒ U2 = span

{(
1
1

)}
Choosing the right eigenvectors as

u1 =

(
1
−1

)
, u2 =

(
1
1

)
the left eigenvectors vTi which will be used in the spectral form should be such that vTi uj = δij that is(

vT1

vT2

)
=
(
u1 u2

)−1
=

1

2

(
1 −1

1 1

)
=⇒ vT1 =

(
1
2 − 1

2

)
, vT2 =

(
1
2

1
2

)
We can now write the spectral form of the matrix exponential eAt

eAt = eλ1tu1v
T
1 + eλ2tu2v

T
2 = e0t

(
1
−1

)(
1
2 − 1

2

)
+ e−2t

(
1
1

)(
1
2

1
2

)
=

1

2

(
1 −1
−1 1

)
+

1

2

(
1 1
1 1

)
e−2t

=
1

2

(
1 + e−2t −1 + e−2t

−1 + e−2t 1 + e−2t

)
We can now represent the two eigenspaces U1 and U2 in the (x1, x2) plane together with some typical free
evolutions from different initial conditions. The result is shown in Fig. 11. We clearly have that initial conditions
belonging to U1 lead to degenerate state evolutions (the state remains at the initial condition). This is consistent
with the fact that every state belonging to U1 is an equilibrium point.

Typical errors:

• The choice for the left eigenvectors vTi , when using the spectral decomposition, should be such that
vTi uj = δij .

• Some have obtained at the end of the computation a scalar function for eAt while it is a 2×2 matrix since
A is a square 2-dimensional matrix.

• Recall that the product ui (column vector) with vTi (row vector) gives a matrix.
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Figure 11: Free state trajectories in state space
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