
Control Systems - January 31, 2022

1) Consider the plant P (s) and the controller C(s) = Kc with

P (s) =
s+ 1

s2 + 1

Study the closed loop stability for Kc ∈ IR varying (both positive and negative) with

1. Routh stability criterion

2. Nyquist stability criterion drawing clear Bode and Nyquist plots

3. Root locus (both positive and negative) computing also the singular points.

2) Consider a pure gain controller C(s) = Kc and the plant

P (s) =
10

s(s+ 100)

A) Using correctly the closed loop functions approximations, determine the value of the gain Kc which
guarantees:

• that the effect of sinusoidal signals with frequency greater equal than 100 rad/s acting on the feedback
loop are attenuated, at steady state, by at least a factor 1/10;

• a phase margin of at leat 45◦;

• and maximum output attenuation, at steady state, of the effect of sinusoidal disturbances acting at the
plant’s output.

B) Evaluate approximately how sinusoidal disturbances acting at the plant’s input would affect the controlled
output at steady state.

3) Let a system be represented by

A =

−1 1 −1
0 2 −3
0 1 −2

 , B =

0
1
0


1. Find, if possible, a stabilizing state feedback.

2. How would you choose (if possible) an output such that the reconstruction error converges to 0 as fast as
e−2t? Explain.



1 - Sol. The closed loop polynomial, having the loop function L(s) = KcP (s), is

p(s,Kc) = s2 + 1 +Kc(s+ 1) = s2 +Kcs+ (1 +Kc)

and therefore the N. & S. condition requires Kc strictly positive to have closed loop asymptotic stability. The
Bode diagrams for Kc = 1 are shown in Fig. 1 while the resulting Nyquist diagrams are reported in Fig. 2 for
both Kc = 1 and Kc = −1.
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Figure 1: Bode plots Exercise 1

From the Nyquist plots we have the confirmation that for Kc > 0 the closed loop system is asymptotically
stable since ncc = Np = 0. When Kc is negative, if Kc < −1 the number of encirclements around the point
(−1, 0) is ncc = −1 while if Kc > −1 we have ncc = −2; in both situations ncc 6= 0.

Nyquist diagram with K = -1 (log scale)
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Figure 2: Nyquist diagrams plots in a log scale Exercise 1

For the root locus plot, in order to compute the singular points candidates, we can use the formula

1

s+ j
+

1

s− j
− 1

s+ 1
=

2s

s2 + 1
− 1

s+ 1
=

2s(s+ 1)− (s2 + 1)

∗
=
s2 + 2s− 1

∗
= 0

which has the two real solutions
s∗1 = −1−

√
2, s∗2 = −1 +

√
2

Finally the root locus is shown in Fig. 3 which confirms all the previous results.
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Figure 3: Root locus Exercise 1

2 - Sol. We have a mix of closed loop (attenuation of sinusoidal signals at steady state on the closed loop) and
open loop (phase margin) requirements. Let us first draw the Bode plots for P (s) which is written in the Bode
canonical form as

P (s) =
1

10

1

s(1 + s/100)

The corresponding approximate Bode plots are shown in Fig. 4.
We need to find the value of the gain Kc which simultaneously allows the closed loop system to satisfy the

requirements.
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Figure 4: Approximate Bode plots Exercise 2. Red is the sum of all contributions.

• Since we want to guarantee at least 45◦ of phase margin and since the phase remains the same for any
positive value of Kc, the crossover frequency must at most be ωmax

c = 100 rad/s.

• Using the approximations for the sensitivity and complementary sensitivity functions, we can transform
the specifications on the closed loop into specifications on the magnitude of the loop function |KcP (jω)|.
For the disturbances acting at the plant’s output which affect the output through the sensitivity function
S(s), we should have

min |S(jω)| ⇒ max |KcP (jω)|

and since the gain Kc translates the magnitude uniformly, this means that we should have the maximum
possible crossover frequency (compatible with the other requirements).

• The requirement on the sinusoidal signals acting in the feedback loop (measurement noise) is translated
in

|T (jω)| ≤ 0.1 for ω ≥ 100 rad/s ⇒ |T (jω)|dB ≤ −20 dB for ω ≥ 100 rad/s

This means that the crossover frequency of the loop function will be smaller than 100 rad/s and therefore
using the approximation

|T (jω)|dB ≈ |KcP (jω)|dB ≤ −20 dB for ω ≥ 100 rad/s.

Putting all these requirements together we see that Kc should be chosen as

• Kc

∣∣
dB

= 40 dB or Kc = 100 if we use the segment approximation for the magnitude of the binomial term

• Kc

∣∣
dB

= 43 dB or Kc = 100
√

2 if we use the true value for the magnitude of the binomial term

10 -1 10 0 10 1 10 2 10 3

rad/s

-100

-50

0

50

m
a
g
 
(
d
B
)

plant
+ Kc =43 dB gain
sentitivity
compl. sens.

10 -1 10 0 10 1 10 2 10 3

rad/s

-200

-150

-100

-50

0

p
h
a
s
e
 
(
d
e
g
)

Figure 5: Bode plots Exercise 2.A

The transfer function between a disturbance entering at the input of the plant and the controlled output is
S(s)P (s) and therefore we should evaluate the magnitude of the corresponding frequency response. In dB this
translates in looking at

|S(jω)P (jω)|dB = |S(jω)|dB + |P (jω)|dB
Having already these plots (or at least the approximation of the sensitivity magnitude plot), we clearly see that
the disturbance is attenuated by at least 40 dB (or 43 dB if we refer to the exact plots) as shown in Fig. 6.

Asymptotic stability of the closed loop is guaranteed by Bode’s stability theorem.

3 - Sol. Due to the upper block triangular structure of the dynamic matrix A, the eigenvalues are

λ1 = −1, {λ2, λ3} = eig

(
2 −3
1 −2

)
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Figure 6: Bode magnitude Exercise 2.B

that is

det

(
λ− 2 3
−1 λ+ 2

)
= λ2 − 1 = (λ+ 1)(λ− 1) ⇒ {λ2, λ3} = {−1, 1}

We therefore need to check if the unstable eigenvalue λ3 is controllable, and therefore check the rank of the
matrix (PBH test)

rank
(
λ3I −A B

)
=

2 −1 1 0
0 −1 3 1
0 −1 3 0

 = 3

Since it is full rank, the only unstable eigenvalue is controllable and therefore we can stabilize the system with
state feedback. We could have directly studied the controllability of the system computing the controllability
matrix

R =
(
B AB A2B

)
=

0 1 0
1 2 1
0 1 0

 ⇒ det(R) = 0

The image of the controllability matrix is given by

Im(R) = gen


0

1
0

 ,

1
2
1

 = gen


0

1
0

 ,

1
0
1


and therefore a possible change of coordinates T is z = Tx with

T−1 =

0 1 0
1 0 0
0 1 1

 T =

 0 1 0
1 0 0
−1 0 1

 ⇒ Ã = TAT−1 =

2 −3 −3
1 −2 −1
0 0 −1

 , B̃ = TB =

1
0
0


As expected the unstable eigenvalue is controllable, while we discover that there is an asymptotically stable
uncontrollable subsystem characterized by the eigenvalue −1. We can apply the Ackermann formula to the pair
(Ã11, B̃1) with

Ã11 =

(
2 −3
1 −2

)
, B̃1 =

(
1
0

)
which is by construction controllable, and then go back to the original coordinates as usual (see slides).

In general we would choose the output such that the whole system is observable so that we can assign the
desired decay rate of the reconstruction error. However, note that we have a repeated eigenvalue λ1 = λ2 = −1
and therefore we need to check its geometric multiplicity (see slides “Laplace Analysis”) which turns out to be
mg(λ1) = 2 since

Ker(A− λ1I) = Ker

0 1 −1
0 3 −3
0 1 −1

 = gen


1

0
0

 ,

0
1
1


and therefore its index is 1. In other words the matrix (sI −A)−1 will have at its denominator the term (s+ 1)
and not (s + 1)2 independently from the choices of B and C. This can also be seen noticing that there exists
no C = [c1, c2, c3] matrix which gives rank 3 to the matrix

observability PBH test : rank

(
A− λ1I

C

)
= rank


0 1 −1
0 3 −3
0 1 −1
c1 c2 c3

 = 2

since (A− λ1I) has rank 1.
Moreover, note that:
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• if we choose the output such that the unstable eigenvalue λ3 = 1 is unobservable, clearly the observer
does not exist;

• if we choose the output such that there exists an unobservable asymptotically stable subsystem this will
necessarily include the eigenvalue −1 so the observer exists but the rate of convergence cannot be faster
than e−t and therefore we cannot meet the specifications.
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