Self assessment - 01

October 30, 2014

1 Exercise

Let the input $u(t)$ and output $y(t)$ of a system satisfy the following linear differential equation

$$
y^{(5)}(t)+4 y^{(4)}(t)+3 y^{(3)}(t)-2 y^{(2)}(t)+y^{(1)}(t)+y(t)-u(t)=0
$$

where $y^{(i)}(t)$ denotes the i-th time derivative of $y(t)$. For this system:

1. find a state space representation
2. compute the transfer function and say if there exists any uncontrollable or unobservable mode
3. say if the system is asymptotically stable or not.

2 Exercise

Let the system S respond, from zero initial conditions, with

$$
y(t)=\left(1-t+\frac{t^{2}}{2}-e^{-t}\right) \delta_{1}(t)
$$

to the input

$$
u(t)=\delta(t)-2 e^{-3 t} \delta_{-1}(t)
$$

Find the impulse response $w(t)$ of S.

3 Exercise

Find the output forced response (output zero-state response) $y(t)$ of the system represented by

$$
F(s)=\frac{50}{s^{2}+15 s+50}
$$

to the input $u(t)$ shown in Fig. 1

4 Exercise

For each system having the dynamics matrix A_{i} discuss the stability property

$$
\begin{array}{cc}
A_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -3 & 1 \\
0 & 1 & 3
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
-1 & 4 & -2 \\
0 & -3 & 1 \\
0 & 0 & 3
\end{array}\right), \quad A_{3}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-3 & -3 & 0 \\
-3 & 1 & 3
\end{array}\right), \\
A_{4}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 3
\end{array}\right), \quad A_{5}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-10 & -1 & -12
\end{array}\right), \quad A_{6}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & -3
\end{array}\right)
\end{array}
$$

Figure 1: Ex. 3, input $u(t)$

5 Exercise

Assuming the coincidence of poles and eigenvalues, study the stability property of the following systems.

$$
\begin{gathered}
P_{1}(s)=\frac{s-1}{s^{2}}, \quad P_{2}(s)=\frac{s-1}{s(s+1)}, \quad P_{3}(s)=\frac{s+1}{s^{3}+12 s^{2}+3 s}, \quad P_{4}(s)=\frac{s+1}{s^{3}+12 s^{2}+s+10} \\
P_{5}(s)=\frac{s^{2}-18}{s^{3}+12 s^{2}+s-12}, \quad P_{6}(s)=\frac{-1}{s^{3}+2 s^{2}+s+1}, \quad P_{7}(s)=\frac{s-10}{s^{5}+s^{4}+2 s^{3}+s^{2}+3 s+4}
\end{gathered}
$$

6 Exercise

For the system having dynamics matrix

$$
A=\left(\begin{array}{cc}
k & 1 \\
0 & 0
\end{array}\right)
$$

determine, depending upon the values of $k \in R$, the natural modes and study stability.

7 Exercise

Find the forced response of the system

$$
P(s)=\frac{s-1}{s+1}
$$

to the input $u(t)=e^{t} \delta_{-1}(t)-2 t \delta_{-1}(t)$.

8 Exercise

For the system

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right) x+\binom{0}{1} u \\
y & =\left(\begin{array}{ll}
1 & -1
\end{array}\right) x
\end{aligned}
$$

find the forced zero-state response to the input $u(t)$ shown in Fig. 2 using

$$
\mathcal{L}\left[\sin (\omega t) \delta_{-1}(t)\right]=\frac{\omega}{s^{2}+\omega^{2}}
$$

Figure 2: Ex. 8, input $u(t)$

9 Exercise

Find the natural modes of the system having dynamics matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & 2 \\
2 & -1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

10 Exercise

Compute the free state and output response of the system

$$
\begin{aligned}
& \dot{x}(t)=\left(\begin{array}{ll}
-2 & -1 \\
-1 & -2
\end{array}\right) x(t)+\binom{1}{2} u(t) \\
& y(t)=\left(\begin{array}{ll}
2 & 1
\end{array}\right) x(t)
\end{aligned}
$$

from the initial condition

$$
x(0)=\binom{2}{0}
$$

11 Exercise

Determine the initial conditions of the system

$$
\begin{aligned}
\dot{x}(t) & =\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) x(t)+\binom{1}{2} u(t) \\
y & =\left(\begin{array}{ll}
1 & -1
\end{array}\right) x(t)
\end{aligned}
$$

for which we obtain a non-diverging free output.

12 Exercise

For the system given by

$$
\dot{x}(t)=\left(\begin{array}{rr}
6 & -3 \\
2 & -1
\end{array}\right) x(t)
$$

determine the initial conditions, if any, such that the zero-input output response remains constant.

