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Abstract—In this article, we present an intrinsically stable4
Model Predictive Control (IS-MPC) framework for humanoid5
gait generation that incorporates a stability constraint in the6
formulation. The method uses as prediction model a dynamically7
extended Linear Inverted Pendulum with Zero Moment Point8
(ZMP) velocities as control inputs, producing in real time a gait9
(including footsteps with timing) that realizes omnidirectional10
motion commands coming from an external source. The stability11
constraint links future ZMP velocities to the current state so as12
to guarantee that the generated Center of Mass (CoM) trajectory13
is bounded with respect to the ZMP trajectory. Being the MPC14
control horizon finite, only part of the future ZMP velocities15
are decision variables; the remaining part, called tail, must be16
either conjectured or anticipated using preview information on17
the reference motion. Several options for the tail are discussed,18
each corresponding to a specific terminal constraint. A feasibility19
analysis of the generic MPC iteration is developed and used20
to obtain sufficient conditions for recursive feasibility. Finally,21
we prove that recursive feasibility guarantees stability of the22
CoM/ZMP dynamics. Simulation and experimental results on NAO23
and HRP-4 are presented to highlight the performance of IS-MPC.24

Index Terms—Gait generation, humanoid robots, internal25
stability, legged locomotion, predictive control, recursive feasibility.26

I. INTRODUCTION27

MANY gait generation approaches for humanoids guar-28

antee that balance is maintained during locomotion by29

enforcing the condition that the Zero Moment Point (ZMP,30

the point where the horizontal component of the moment of31

the ground reaction forces becomes zero) remains at all times32

within the support polygon of the robot. Correspondingly, these33
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approaches identify the ZMP as the fundamental variable to be 34

controlled. 35

Due to the complexity of full humanoid dynamics, however, 36

direct control of the ZMP is very difficult to achieve. In view of 37

this, simplified models are generally used to relate the evolution 38

of the ZMP to that of the Center of Mass (CoM) of the robot, 39

which can be instead effectively controlled. Widely adopted 40

linear models are the Linear Inverted Pendulum (LIP), in which 41

the ZMP represents an input, and the Cart-Table (CT), where 42

the ZMP appears as the output [1]. The first is appropriate 43

for inversion-based control approaches: given a sequence of 44

footsteps, and thus a ZMP trajectory interpolating them, the LIP 45

is used to compute a CoM trajectory which corresponds to the 46

ZMP trajectory (see, e.g., [2]–[4]). The CT model lends itself 47

more naturally to the design of feedback laws for tracking ZMP 48

trajectories, the most successful example in this context being 49

the LQ preview controller of [5]. 50

Regardless of the adopted model, there is a potential instabil- 51

ity issue at the heart of the problem. In particular, a certain ZMP 52

trajectory may be realized by an infinity of CoM trajectories, 53

which, due to the nature of the CoM/ZMP dynamics, will in 54

general be divergent with respect to the ZMP trajectory itself. 55

In this situation, dynamic balance can be in principle achieved 56

by properly choosing the ZMP trajectory, but internal instability 57

indicates that such motion will not be feasible in practice for the 58

humanoid. 59

The seminal paper [6] reformulates the gait generation prob- 60

lem in a Model Predictive Control (MPC) setting. This is conve- 61

nient because it allows to generate simultaneously the ZMP and 62

the CoM trajectories while satisfying constraints, such as the 63

ZMP balance condition as well as kinematic constraints on the 64

maximum step length and foot rotation [7]. Moreover, the MPC 65

approach guarantees a certain robustness against perturbations. 66

It is, therefore, not surprising that it has been adopted in many 67

methods for gait generation; e.g., see [8]–[11] for linear MPC 68

and [12] and [13] for nonlinear MPC. 69

As for all control schemes, a fundamental issue in MPC 70

approaches is the stability of the obtained closed-loop system, 71

especially in view of the previous remark about the instability 72

of the CoM/ZMP dynamics. As discussed in [14], two main 73

approaches have emerged for achieving stability when MPC is 74

used for humanoid gait generation. The first is heuristic in nature 75

and consists in using a sufficiently long control horizon [15], so 76

that the optimization process can discriminate against diverging 77

behaviors, as done, for example, in [7]. The second approach 78

has been to enforce a terminal state constraint (i.e., a constraint 79
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on the state at the end of the control horizon), based on the80

fact that the MPC literature highlights the beneficial role of81

such constraints for closed-loop stability in set-point control82

problems [16].83

In particular, terminal constraints were used for humanoid84

balancing in [17] and for gait generation in [18]. The latter85

makes use of an LIP model, requiring its unstable component86

to stop at the end of the control horizon, a kind of terminal87

constraint referred to as capturability constraint (from the con-88

cept of capture point [19]). This constraint has also been used89

in [20], where it is imposed only at the foot landing instant,90

and in [21], which addresses locomotion in a multicontact91

setting.92

Another approach focusing on the instability issue relies on93

the concept of Divergent Component of Motion (DCM), used94

in [22] to identify an initial condition for stable execution of95

regular gaits, and in [23] to realize transitions between bipedal96

and quadrupedal gaits. The DCM concept has also been ex-97

tended to the 3D context in [24] and [25]. More relevant to98

our review is [26], which presents an MPC scheme for gait99

generation that enforces a terminal constraint (actually converted100

to a terminal cost for the sake of feasibility) on the DCM101

component.102

In this article, we move from the fundamental observation that103

the control problem addressed in MPC-based gait generation is104

neither a set-point nor a tracking problem. In fact, since the ZMP105

control objective is encoded via time-varying state constraints,106

there is no error to be regulated to (or close to) zero. The only107

significant stability issue in this context is internal stability, i.e.,108

the boundedness of the CoM trajectory with respect to the ZMP109

trajectory. Therefore, one cannot simply claim that the use of a110

terminal constraint will automatically entail internal stability. In111

fact, to the best of our knowledge, no MPC-based gait generation112

method exists in the literature for which a rigorous analysis of113

the stability issue has been performed in connection with the use114

and the choice of a terminal constraint.115

Another tightly related aspect to be considered is that terminal116

constraints may have a detrimental effect on feasibility, i.e., the117

existence of solutions for the optimization problem, which is118

at the core of any MPC scheme [27]. A particularly desirable119

property is recursive feasibility, which entails that if the opti-120

mization problem is feasible at a certain iteration, it will remain121

such in future iterations. It appears that this also crucial issue122

has seldom been explored for MPC-based gait generation, with123

the notable exceptions of [28] and [29].124

In [30], we have introduced a novel MPC approach for125

humanoid gait generation, which relies on the inclusion of an126

explicit stability constraint in the formulation of the problem. In127

particular, the idea was to enforce a condition on the future ZMP128

velocities (representing the control inputs) so as to guarantee129

that the generated CoM trajectory remains bounded with respect130

to the ZMP trajectory. Since the control horizon of the MPC131

algorithm is finite, only part of the future ZMP velocities are132

decision variables and can, therefore, be subject to a constraint;133

the remaining part, called tail, must be conjectured.134

Here, we fully develop our approach into a complete Intrin-135

sically Stable MPC (IS-MPC) framework for gait generation.136

In particular, this article adds the following contributions with 137

respect to [30]. 138

1) We describe a footstep generation module that can be used 139

in conjunction with our MPC scheme in order to modify 140

step timing and length in real time in response to omni- 141

directional motion commands coming from a higher-level 142

module. 143

2) Depending on the available preview information on the 144

commanded motion, we discuss several versions of the 145

tail (truncated, periodic, and anticipative) to be used in 146

the stability constraint and show that each of them corre- 147

sponds to a specific terminal constraint. 148

3) We analyze in detail the impact of the new constraint on 149

feasibility and show analytically how, under certain as- 150

sumptions, it is possible to guarantee recursive feasibility 151

of the IS-MPC scheme. 152

4) We prove that recursive feasibility of IS-MPC implies the 153

desired internal stability of the CoM/ZMP dynamics. 154

5) We validate our findings by providing dynamic simula- 155

tions and actual experiments on two different humanoid 156

robots: an HRP-4 and a NAO. 157

The results on tails, recursive feasibility, and internal stability 158

are the main contributions of this article. We consider them 159

particularly important because they indicate that, contrarily to 160

what is often claimed in the literature, simply adding a termi- 161

nal constraint (e.g., the capturability constraint) does not per 162

se guarantee stability of MPC-based gait generation schemes. 163

Indeed, the appropriate tail to be used in the stability constraint— 164

equivalently, the appropriate terminal constraint—depends upon 165

the future characteristics of the commanded motion. In this 166

sense, to guarantee recursive feasibility, one should always 167

choose the anticipative tail, which makes the most use of the 168

available preview information on such motion. Once recursive 169

feasibility is achieved, CoM/ZMP stability is automatically en- 170

sured in IS-MPC. 171

Another potential benefit of the theoretical analysis of feasi- 172

bility is that it paves the road for a formal study of the robustness 173

of IS-MPC. Although this is out of the scope of this article, by 174

relying on this analysis, it is possible to devise modifications 175

of the basic scheme, which will preserve recursive feasibility in 176

the presence of quantified bounded uncertainties and/or distur- 177

bances. 178

The rest of this article is organized as follows. In the next 179

section, we formulate the considered gait generation problem 180

and discuss the structure of the proposed approach. Section III 181

describes the algorithm, which generates timing and locations 182

of the candidate footsteps. In Section IV, we introduce the pre- 183

diction model and the constraints used in the IS-MPC scheme, 184

with the exception of the stability constraint, which is given in a 185

thorough discussion in the dedicated Section V. The IS-MPC 186

algorithm is described in detail in Section VI. Section VII 187

addresses the central issues of stability and feasibility of the 188

proposed method; in particular, a theoretical analysis of the fea- 189

sibility of the generic IS-MPC iteration is presented and used to 190

obtain sufficient conditions for recursive feasibility, whose role 191

in guaranteeing stability is rigorously established. Simulations 192

on the HRP-4 humanoid are presented in Section VIII, while 193
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Fig. 1. Block scheme of the proposed MPC-based framework for gait generation.

experimental results on both the NAO and the HRP-4 humanoids194

are shown in Section IX. Section X concludes this article.195

II. PROBLEM AND APPROACH196

Consider the problem of generating a walking gait for a197

humanoid in response to high-level reference velocities, which198

are given as the driving (vx, vy) and steering (ω) velocities199

of an omnidirectional single-body mobile robot chosen as a200

template model for motion generation. These velocities, which201

may encode a persistent trajectory or converge to a stationary202

point, are produced by an external source; this could be a human203

operator in a shared control context, or another module of the204

control architecture working in open loop (planning) or in closed205

loop (feedback control).206

The proposed MPC-based framework, whose block scheme207

is shown in Fig. 1, works in a digital fashion over sampling208

intervals of duration δ. Throughout this article, it is assumed209

that the reference velocities vx, vy , and ω are made available210

for gait generation with a preview horizon Tp = P · δ, with P211

being the number of intervals within the preview horizon. At212

the generic instant tk = k · δ, the high-level reference veloci-213

ties over [tk, tk + Tp] are then sent to the footstep generation214

module, which uses quadratic programming (QP) to generate215

candidate footsteps over the same interval. In particular, vectors216

X̂k
f and Ŷ k

f collect the Cartesian positions of the footsteps,217

with the “hat” indicating that these are candidates which can be218

modified by the MPC module, whereas vector Θk
f collects the219

footstep orientations, which will not be modified. The footstep220

generation module also generates the timing T k
s of the sequence.221

The output of the footstep generation module is sent to the222

IS-MPC module, which solves another QP problem to produce223

in real time the actual footstep positions Xk
f and Y k

f and the224

trajectory p∗
c of the humanoid CoM over the control horizon225

Tc = C · δ, with C being the number of intervals within the226

control horizon. It is assumed that Tc ≤ Tp, i.e., C ≤ P . The227

inclusion of a stability constraint in the formulation guarantees228

that the CoM trajectory will be bounded, in a sense to be made229

precise later.230

The pose (position and orientation) of the footsteps with the 231

associated timing is used to generate—still in real time—the 232

swing foot trajectory p∗
swg over the control horizon. Together 233

with the CoM trajectory, this is sent to the kinematic control 234

block, which generates velocity inputs at the joint level in order 235

to achieve output tracking (we are assuming that the humanoid 236

robot is velocity- or position- controlled). 237

In the next sections, we will discuss the proposed control 238

scheme in detail. We will first describe the footstep generation 239

scheme and then turn our attention to the IS-MPC algorithm, 240

which is our core contribution. The kinematic control block 241

can use any standard pseudoinverse-based feedback law and 242

therefore will not be discussed further. 243

III. CANDIDATE FOOTSTEP GENERATION 244

The proposed footstep generation module runs synchronously 245

with the IS-MPC scheme and chooses both the timing and 246

the candidate location of the next footsteps in response to the 247

high-level reference velocities. Timing is determined first by a 248

simple rule expressing the fact that a change in the reference 249

velocity should affect both the step duration and length. The 250

candidate footstep locations are then chosen through quadratic 251

optimization. 252

Note that generating the timing and the orientation of the 253

candidate footsteps outside the IS-MPC is essential to retain the 254

linear structure of the latter. The IS-MPC scheme will still be 255

able to adapt the position of the footsteps to guarantee reactivity 256

to disturbances. 257

At each sampling instant tk, the candidate footstep generation 258

module receives in input the high-level reference velocities 259

over the preview horizon, i.e., from tk to tk + Tp = tk+P (see 260

Fig. 1). In output, it provides the candidate footstep sequence 261

(X̂k
f , Ŷ

k
f ,Θk

f ) over the same interval with the associated timing 262

T k
s . In particular, these quantities are defined1 as 263

X̂k
f = (x1

f . . . xF
f )

T

1To keep a light notation, thek symbol identifying the current sampling instant
is used for the sequence vectors but not for their individual elements.
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Fig. 2. Proposed rule for determining the step duration Ts as a function of
the magnitude v of the reference Cartesian velocity. For comparison, the rules
yielding constant step duration and constant step length are also shown.

Ŷ k
f = (y1f . . . yFf )

T

Θk
f = (θ1f . . . θFf )

T

and264

T k
s = {T 1

s , . . . , T
F
s }

where (xj
f , y

j
f , θ

j
f ) is the pose of the jth footstep in the preview265

horizon and T j
s is the duration of the step between the (j − 1)th266

and the jth footstep, taken from the start of the single support267

phase to the next. Since the duration of steps is variable, the268

number F of footsteps falling within the preview horizon Tp269

may change at each tk.270

In the following, we first discuss how timing is determined271

and then describe the procedure for generating the candidate272

footsteps.273

A. Candidate Footstep Timing274

In our method, the duration Ts of each step is related to the275

magnitude v = (v2x + v2y)
1/2 of the reference Cartesian velocity276

at the beginning of that step.277

Assume that a triplet of cruise parameters (v̄, T s, L̄s) has278

been chosen, where v̄ is a central value of v and T s and L̄s279

are the corresponding values of the step duration and length,280

respectively, with v̄ = L̄s/T s. The choice of these parameters281

will depend on the specific kinematic and dynamic capabilities282

of the humanoid robot under consideration.283

The idea is that a deviation from v̄ should reflect on a change284

in both Ts and Ls. In formulas, we have285

v = v̄ +Δv =
L̄s +ΔLs

T s −ΔTs

with ΔLs = αΔTs. One easily obtains286

Ts = T s
α+ v̄

α+ v
. (1)

Figure 2 shows the resulting rule for determining Ts as a287

function of v in comparison to other possible rules. For illustra-288

tion, we have set v̄ = 0.15 m/s, T s = 0.8 s, L̄s = 0.12 m, and289

α = 0.1 m/s. It is confirmed that an increase of v, for example, 290

corresponds to both a decrease of Ts and an increase in Ls. 291

Note that the reference angular velocity ω does not enter into 292

rule (1). The rationale is that the step duration and length along 293

curved and rectilinear paths do not differ significantly if the 294

Cartesian velocity v is the same. For a purely rotational motion 295

(v = 0), where the humanoid is only required to rotate on the 296

spot, the above rule would yield the maximum value of Ts. 297

In practice, equation (1) is iterated along the preview horizon 298

[tk, tk + Tp] in order to obtain the footstep timestamps: 299

tjs = tj−1
s + T s

α+ v̄

α+ v(tj−1
s )

with t0s equal to the timestamp of the last footstep before tk. 300

Iterations must be stopped as soon as tjs > tk+P , discarding the 301

last generated timestamp, since it will be outside the preview 302

horizon. The resulting step timing will be T k
s = {T 1

s , . . . , T
F
s }, 303

with T j
s = tj+1

s − tjs. 304

B. Candidate Footstep Placement 305

Once the timing of the steps in the preview horizon [tk, tk + 306

Tp] has been chosen, the poses of candidate footsteps are gen- 307

erated. To this end, we use a reference trajectory obtained by 308

integrating the following template model under the action of the 309

high-level reference velocities over Tp: 310

⎛
⎝

ẋ
ẏ

θ̇

⎞
⎠ =

⎛
⎝

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝

vx
vy
ω

⎞
⎠ . (2)

This is an omnidirectional motion model which allows the 311

template robot to move along any Cartesian path with any 312

orientation, so as to perform, e.g., lateral walks, diagonal walks, 313

and so on. 314

The idea is to distribute the candidate footsteps around the 315

reference trajectory in accordance to the timing T k
s while tak- 316

ing into account the kinematic constraints of the robot. These 317

constraints will also be used in the IS-MPC stage, and therefore 318

we will provide their description directly in Section IV-C (see 319

also Fig. 7). 320

A sequence of two QP problems is solved. The first is 321

⎧⎨
⎩

min
Θk

f

∑F
j=1(θ

j
f − θj−1

f −
∫ tjs
tj−1
s

ω(τ)dτ)2

subject to |θjf − θj−1
f | ≤ θmax.

Here, θmax is the maximum allowed rotation between two con- 322

secutive footsteps. The second QP problem is 323

⎧⎨
⎩

min
X̂k

f ,Ŷ
k
f

∑F
j=1(x̂

j
f − x̂j−1

f −Δxj)2 + (ŷjf−ŷj−1
f −Δyj)2

subject to kinematic constraints (7).

Here, (x̂0
f , ŷ

0
f ) is the known position of the support foot at tk, 324

and Δxj and Δyj are given by 325

(
Δxj

Δyj

)
=

∫ tjs

tj−1
s

Rθ

(
vx(τ)
vy(τ)

)
dτ ±Rj

(
0
�/2

)
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Fig. 3. Candidate footsteps generated by the proposed method for different
high-level reference velocities corresponding to a circular walk (top), L-walk
(center), and diagonal walk (bottom). The paths in black are obtained by
integrating model (2) under the reference velocities. Footsteps in magenta and
cyan refer, respectively, to the left and right feet.

where Rθ and Rj are the rotation matrices associated, respec-326

tively, with θ(τ) (the orientation of the template robot at any327

given time τ ) and the footstep orientation θj , and � is the328

reference coronal distance between consecutive footsteps. The329

sign of the second term alternates for left/right footsteps.330

At the end of this procedure, the candidate footstep sequence331

(X̂k
f , Ŷ

k
f ,Θk

f ) with the associated timing T k
s is sent to the332

IS-MPC stage. The final footstep positions (Xk
f , Y

k
f ) will be333

determined by the latter, while the footstep orientations Θk
f and334

timing T k
s will not be modified.335

Some examples of candidate footsteps generation are shown336

in Fig. 3. Note that the orientation of the humanoid robot is337

tangent to the path for the circular walk, but is kept constant338

(ω = 0) for the other two walks, which represent then proper339

examples of omnidirectional motion.340

IV. IS-MPC: PREDICTION MODEL AND CONSTRAINTS341

The IS-MPC module uses the LIP as a prediction model. The342

constraints are of three kinds. The first concerns the position of343

the ZMP, which must be at all times within the support polygon344

Fig. 4. LIP in the x direction.

defined by the footstep sequence and the associated timing. The 345

second type of constraint ensures that the generated steps are 346

compatible with the kinematic capabilities of the robot. The 347

third is the new stability constraint guaranteeing that the CoM 348

trajectory generated by our MPC scheme will be bounded with 349

respect to the ZMP trajectory. The first two constraints must be 350

verified throughout the control horizon, whereas the third is a 351

single scalar condition on each coordinate. 352

In this section, we discuss in detail the prediction model 353

and the constraints on ZMP and kinematic feasibility. The next 354

section will be devoted to the stability constraint, which deserves 355

a thorough discussion. 356

A. Prediction Model 357

The LIP is a popular choice for describing the motion of 358

the CoM of a biped walking on flat horizontal floor when its 359

height is kept constant and no rotational effects are present. 360

From now on, we express motions in the robot frame, which 361

has its origin at the center of the current support foot, the x-axis 362

(sagittal) aligned with the support foot, and the y-axis (coronal) 363

orthogonal to the x-axis. In the LIP model, which applies to both 364

point feet and finite-sized feet, the dynamics along the sagittal 365

and coronal axes are governed by decoupled identical linear 366

differential equations. 367

Consider the motion along the x-axis (see Fig. 4) for illus- 368

tration, and let xc and xz be, respectively, the coordinate of the 369

CoM and the ZMP. The LIP dynamics is 370

ẍc = η2(xc − xz) (3)

where η =
√

g/hc, with g the gravity acceleration and hc the 371

constant height of the CoM. In this model, the ZMP position xz 372

represents the input, whereas the CoM position xc is the output. 373

To obtain smoother trajectories, we take the ZMP velocity ẋz 374

as the actual control input. This leads to the following third-order 375

prediction model (LIP + dynamic extension): 376

⎛
⎝

ẋc

ẍc

ẋz

⎞
⎠ =

⎛
⎝

0 1 0
η2 0 −η2

0 0 0

⎞
⎠
⎛
⎝

xc

ẋc

xz

⎞
⎠+

⎛
⎝

0
0
1

⎞
⎠ ẋz. (4)



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON ROBOTICS

Fig. 5. At time tk , the control variables determined by IS-MPC are the
piecewise-constant ZMP velocities over the control horizon. The ZMP velocities
after the control horizon are instead conjectured in order to build the tail (see
Section V-B). Also shown are the F footstep timestamps placed by the footstep
generation module in the preview horizon;F ′ of them fall in the control horizon.

Our MPC scheme uses piecewise-constant control over the377

sampling intervals (see Fig. 5)378

ẋz(t) = ẋi
z, t ∈ [ti, ti+1).

In particular, a bound of the form |ẋi
z| ≤ γ, with γ a positive379

constant, will be satisfied for all i. In fact, the reference velocities380

vx, vy , and ω will be bounded in any realistic gait generation381

problem. As shown in Fig. 2, the footstep generation module382

will then produce a sequence of footstep along which the step383

duration is bounded below. This timing will be reflected in the384

associated ZMP constraints (see Section IV-B), which will, in385

turn, entail as solution a piecewise-continuous trajectory xz(t)386

with bounded derivative. Therefore, for t ∈ [ti, ti+1] it will be387

xz(t) = xi
z + (t− ti) ẋ

i
z, with |ẋi

z| ≤ γ (5)

where we have used the notation xi
z = xz(ti).388

The generic iteration of IS-MPC plans over the control hori-389

zon, i.e., from tk to tk + Tc = tk+C . Since Tc ≤ Tp, a subset of390

the F candidate footsteps produced by the footstep generation391

module fall their inside the control horizon; denote their number392

by F ′ < F . The MPC iteration will then generate:393

1) the control variables, i.e., the input values ẋk+i
z , ẏk+i

z , for394

i = 0, . . . , C − 1;395

2) the other decision variables, i.e., the actual footstep posi-396

tions (xj
f , x

j
f ), for j = 1, . . . , F ′;397

3) as a byproduct, the output history xc(t), yc(t), for t ∈398

[tk, tk+C ], which will be ultimately used to drive the actual399

humanoid.400

As already mentioned, the orientations of the footsteps are401

instead inherited from the generated sequence (more on this in402

Section IV-B).403

Note that the footsteps do not appear in the prediction model,404

but will show up in the constraints, as discussed in the rest of405

this section.406

B. ZMP Constraints407

The first constraint guarantees dynamic balance by imposing408

that the ZMP lies inside the current support polygon at all time409

instants within the control horizon.410

Fig. 6. ZMP moving constraint in double support.

When the robot is in single support on the jth footstep, the ad- 411

missible region for the ZMP is the interior of the footstep, which 412

can be approximated as a rectangle of dimensions dz,x and dz,y , 413

centered at (xj
f , y

j
f ), and oriented as θj . Using the fact that the 414

ZMP profile is piecewise-linear, as entailed by (5), the constraint 415

can be expressed as2 416

RT
j

(
δ
∑i

l=0 ẋ
k+l
z − xj

f

δ
∑i

l=0 ẏ
k+l
z − yjf

)
≤ 1

2

(
dz,x

dz,y

)
−RT

j

(
xk
z

ykz

)
. (6)

If the above sampled-time ZMP constraint is satisfied, then the 417

original continuous-time constraint is also satisfied thanks to the 418

linearity of xz(t) within each sampling interval. Constraint (6), 419

complete with the corresponding left-hand side, must be im- 420

posed throughout the control horizon (i = 0, . . . , C − 1) and 421

for all the associated footsteps (j = 0, . . . , F ′). 422

Note that constraint (6) is nonlinear in the footstep orientation 423

θj , which however is not a decision variable, being simply 424

inherited from the footstep generation module. The constraint 425

is instead linear in xj
f and yjf , as well as in the ZMP velocity 426

inputs. 427

During double support, the support polygon would be the 428

convex hull of the two footsteps, whose boundary is a nonlinear 429

function of their relative position. To preserve linearity, we adopt 430

an approach based on moving constraints [31]. In particular, the 431

admissible region for the ZMP in double support has exactly 432

the same shape and dimensions it has in single support, and 433

it roto-translates (i.e., simultaneously rotates and translates) 434

from one footstep to the other in such a way to always remain 435

in the support polygon (see Fig. 6). This results in a slightly 436

conservative constraint, which is however linear in the decision 437

variables. 438

2For compactness, we shall only write the right-hand side of bilateral inequal-
ity constraints. For example, constraint (6) should be completed by a left-hand
side obtained by adding (rather than subtracting) the two terms that appear in
the right-hand side.
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Fig. 7. Kinematic constraint on footstep placement.

C. Kinematic Constraints439

The second type of constraint is introduced to ensure that all440

steps are compatible with the robot kinematic limits. Consider441

the jth step in Tc, with the support foot centered at (xj−1
f , yj−1

f )442

and oriented as θj−1. The admissible region for placing the443

footstep is defined as a rectangle having the same orientation444

θj−1 and whose center is displaced from the support foot center445

by a distance � in the coronal direction (see Fig. 7). Denoting446

by da,x and da,y the dimensions of the kinematically admissible447

region, the constraint can be written as448

RT
j−1

(
xj
f − xj−1

f

yjf − yj−1
f

)
≤ ±

(
0

�

)
+

1

2

(
da,x

da,y

)
(7)

with the sign alternating for the two feet. The above constraint,449

complete with the corresponding left-hand side, must be im-450

posed for all footsteps in the control horizon (j = 1, . . . , F ′).451

V. IS-MPC: ENFORCING STABILITY452

The LIP dynamics (3) is inherently unstable. As a conse-453

quence, even when the ZMP lies at all times within the sup-454

port polygon (gait balance), it may still happen that the CoM455

diverges exponentially with respect to the ZMP; in this case,456

the gait would obviously become unfeasible in practice, due to457

the kinematic limitations of the robot. The role of the stability458

constraint is then to guarantee that the CoM trajectory remains459

bounded with respect to the ZMP (internal stability).460

In this section, we first describe the structure of the sta-461

bility constraint and then discuss the possible tails for its462

implementation.463

A. Stability Constraint464

Since we want to enforce boundedness of the CoM w.r.t. the465

ZMP, we can ignore the dynamic extension and focus directly466

on the LIP system.467

By using the following change of coordinates: 468

xs = xc − ẋc/η (8)

xu = xc + ẋc/η (9)

the LIP part of system (3) is decomposed into a stable and an 469

unstable subsystem 470

ẋs = −η (xs − xz) (10)

ẋu = η (xu − xz). (11)

The unstable component xu is also known as Divergent Com- 471

ponent of Motion (DCM) [22] or capture point [32]. 472

In spite of the LIP instability, for any input ZMP trajectory 473

xz(t) of the form (5) there exists a special initialization of 474

xu such that the resulting output CoM trajectory is bounded 475

with respect to the input [33]. In particular, this is the (only) 476

initial condition on xu for which the free evolution of (11) 477

exactly cancels the component of the forced evolution that would 478

diverge with respect to xz(t). In the MPC context, where the 479

initial condition at tk is denoted by xu(tk) = xk
u, the special 480

initialization is expressed as 481

xk
u = η

∫ ∞

tk

e−η(τ−tk)xz(τ)dτ. (12)

Note that this particular initialization depends on the future 482

values of the LIP input, i.e., the ZMP coordinate xz . In the 483

following, we refer to (12) as the stability condition. 484

The stability condition, which involves xu at the initial instant 485

tk of the control horizon, can be propagated to its final instant 486

tk+C by integrating (11) from xk
u in (12): 487

xk+C
u = η

∫ ∞

tk+C

e−η(τ−tk+C)xz(τ)dτ. (13)

Condition (12)—or equivalently, (13)—can be used to set up 488

the corresponding constraint for the MPC problem. To this end, 489

we use the piecewise-linear profile (5) of xz to obtain explicit 490

forms. 491

Proposition 1: For the piecewise-linear xz in (5), condi- 492

tion (12) becomes 493

xk
u = xk

z +
1− e−ηδ

η

∞∑
i=0

e−iηδẋk+i
z (14)

while (13) takes the form 494

xk+C
u = xk+C

z +
1− e−ηδ

η
eCηδ

∞∑
i=C

e−iηδẋk+i
z . (15)

Proof: Rewrite (5) as 495

xz(t) = xk
z +

∞∑
i=0

(ρ(t− tk+i)− ρ(t− tk+i+1))ẋ
k+i
z (16)

where ρ(t) = t δ−1(t) denotes the unit ramp and δ−1(t) the unit 496

step. Using Properties 1, 4, and 3 given in the Appendix, we get 497

∫ ∞

tk

e−η(τ−tk)(ρ(τ − tk+i)− ρ(τ − tk+i+1))dτ
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=
1− e−ηδ

η2
e−iηδ.

Plugging this expression in condition (12) and using Property 2498

of the Appendix, one obtains (14).499

To prove (15), rewrite (16) as500

xz(t) = xk
z +

C−1∑
i=0

(ρ(t− tk+i)− ρ(t− tk+i+1))ẋ
k+i
z

+

∞∑
i=C

(ρ(t− tk+i)− ρ(t− tk+i+1))ẋ
k+i
z .

The contribution of the first two terms of xz to the integral501

in (13) is xk+C
z . Using Properties 1, 3, and 4, one verifies that502

the contribution of the third term is exactly the second term on503

the right-hand side of (15). This completes the proof. �504

In (14), one should logically separate the values of ẋi
z505

within the control horizon, i.e., the control variables ẋi
z for506

i = k, . . . , k + C − 1, from the remaining values, i.e., from507

k + C on. The infinite summation is then split into two parts,508

and (14) can be rearranged as3509

C−1∑
i=0

e−iηδẋk+i
z = −

∞∑
i=C

e−iηδẋk+i
z +

η

1− e−ηδ
(xk

u − xk
z).

(17)
Observe the inversion between (14), which expresses the stable510

initialization at tk for a given xz(t), and (17), which constrains511

the control variables so that the associated stable initialization512

matches the current state at tk. In the following, we will refer513

to (17) as the stability constraint.514

The control variables do not appear in condition (15), which515

involves only the value of the state variable xk+C
u at the end516

of the control horizon. In other terms, this condition represents517

what is called a terminal constraint in the MPC literature.518

Both the stability and the terminal constraint contain an infi-519

nite summation, which depends on ẋk+C
z , ẋk+C+1

z , . . . , i.e., the520

ZMP velocities after the control horizon. These are obviously521

unknown, because they will be determined by future iterations522

of the MPC algorithm; as a consequence, including either of the523

constraints in the MPC formulation would lead to a noncausal524

(unrealizable) controller. However, by exploiting the preview in-525

formation on vx, vy, andω, we can make an informed conjecture526

at tk about these ZMP velocities, which we will denote by ˙̃xk+C
z ,527

˙̃xk+C+1
z , . . . and refer to collectively as the tail in the following.528

Correspondingly, the stability constraint (17) assumes the form529

C−1∑
i=0

e−iηδẋk+i
z = −

∞∑
i=C

e−iηδ ˙̃xk+i
z +

η

1− e−ηδ
(xk

u − xk
z)

(18)
while the terminal constraint (15) becomes530

xk+C
u = xk+C

z +
1− e−ηδ

η
eCηδ

∞∑
i=C

e−iηδ ˙̃xk+i
z . (19)

3Constraint (17) can be written as a function of the actual state variables of
our prediction model (xc, ẋc, and xz) using the coordinate transformation (9).
The same is true for all subsequent forms of the stability constraint as well as of
the terminal constraint.

Using either of these in the MPC formulation will lead to a causal 531

(realizable) controller. 532

B. Tails 533

We now discuss three possible options for the structure of the 534

tail depending on the assumed behavior of the ZMP velocities 535

after the control horizon. Basically, they correspond to: 1) ne- 536

glecting them; 2) assuming they are periodic; and 3) anticipating 537

a more general profile based on preview information. For each 538

option, we shall explicitly compute the corresponding form of 539

both the stability and the terminal constraint. 540

1) Truncated Tail: The simplest option is to truncate the tail, 541

by assuming that the corresponding ZMP velocities are all zero. 542

This is a sensible choice if the preview information indicates that 543

the robot is expected to stop at the end of the control horizon. 544

Proposition 2: Let (truncated tail) 545

˙̃xk+i
z = 0 for i ≥ C.

The stability constraint becomes 546

C−1∑
i=0

e−iηδẋk+i
z =

η

1− e−ηδ
(xk

u − xk
z) (20)

while the terminal constraint becomes 547

xk+C
u = xk+C

z . (21)

Proof: The above expressions are readily derived from the 548

general constraints (18) and (19), respectively. � 549

Interestingly, the terminal constraint (21) is equivalent to the 550

capturability constraint, originally introduced in [18]. 551

2) Periodic Tail: The second option is to use a periodic tail 552

obtained by infinite replication of the ZMP velocities within the 553

control horizon. This assumption is justified when the reference 554

velocities are themselves periodic (in particular, constant) in Tc, 555

which is typically chosen as the gait period (total duration of two 556

consecutive steps) or a multiple of it. Formulas for a replication 557

period different from the control horizon may be easily derived. 558

Proposition 3: Let (periodic tail) 559

˙̃xk+i
z = ẋk+i−C

z , for i = C, . . . , 2C − 1

˙̃xk+i
z = ˙̃xk+i−C

z , for i ≥ 2C.

The stability constraint becomes 560

C−1∑
i=0

e−iηδẋk+i
z = η

1− e−Cηδ

1− e−ηδ
(xk

u − xk
z) (22)

while the terminal constraint becomes 561

xk+C
u − xk+C

z = xk
u − xk

z . (23)

Proof: If the tail is periodic, the infinite summation in (18) 562

can be rewritten as follows: 563

∞∑
i=C

e−iηδ ˙̃xk+i
z = e−Cηδ

∞∑
i=0

e−iηδ ˙̃xk+C+i
z

= e−Cηδ
C−1∑
i=0

e−iηδẋk+i
z

(
1 + e−Cηδ + · · ·

)
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=
e−Cηδ

1− e−Cηδ

C−1∑
i=0

e−iηδẋk+i
z

which can be plugged in (18) and (19), respectively, to564

obtain (22) and (23). �565

Note that, using (11), the terminal constraint (23) can be566

rewritten as567

ẋk+C
u = ẋk

u.

3) Anticipative Tail: In the general case, one can use the568

candidate footsteps produced by the footstep generation module569

beyond the control horizon to conjecture a tail in [Tc, Tp]. This is570

done in two phases: in the first, we generate in [Tc, Tp] a ZMP tra-571

jectory which belongs at all times to the admissible ZMP region572

defined by the footsteps {(x̂F ′
f , ŷF

′
f , θF

′
f ), . . . , (x̂F

f , ŷ
F
f , θ

F
f )}. In573

the second phase, we sample the time derivative of this ZMP574

trajectory every δ seconds.575

Denote the samples obtained by the above procedure by576

ẋk+i
z,ant, for i = C, . . . , P − 1. The anticipative tail is then577

obtained by:578

1) setting ˙̃xk+i
z = ẋk+i

z,ant for i = C, . . . , P − 1;579

2) using a truncated or periodic expression for the residual580

part of the tail located after the preview horizon, i.e., for581
˙̃xk+i
z , i = P, P + 1, . . . .582

The stability constraint (18) then becomes583

C−1∑
i=0

e−iηδẋk+i
z = −

P−1∑
i=C

e−iηδẋk+i
z,ant −

∞∑
i=P

e−iηδ ˙̃xk+i
z

+
η

1− e−ηδ
(xk

u − xk
z).

Once a form is chosen for the residual part of the tail, this formula584

leads to a closed-form expression of the stability constraint585

which consists of a finite number of terms, and is, therefore,586

still amenable to real-time implementation. Similarly, one can587

use (19) to derive the corresponding expression of the terminal588

constraint.589

In the following, and specifically in the feasibility analysis of590

Section VII-B2, we will use a particular form of anticipative tail591

such that 1) the ZMP trajectory in [Tc, Tp] is always at the center592

of the ZMP admissible region, and 2) the residual part of the tail593

is truncated.594

VI. IS-MPC: ALGORITHM595

Each iteration of our IS-MPC algorithm solves a QP problem596

based on the prediction model and constraints described in597

Section IV, with the addition of the stability constraint discussed598

in the previous section.599

A. Formulation of the QP Problem600

Collect in vectors601

Ẋk
z = (ẋk

z . . . ẋk+C−1
z )T

Ẏ k
z = (ẏkz . . . ẏk+C−1

z )T

Xk
f = (x1

f . . . xF ′

f )T

Y k
f = (y1f . . . yF

′

f )T

all the MPC decision variables. 602

At this point, the QP problem can be formulated as 603

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Ẋk

z ,Ẏ
k
z

Xk
f ,Y

k
f

‖Ẋk
z ‖2 + ‖Ẏ k

z ‖2+β
(
‖Xf − X̂f‖2 + ‖Yf − Ŷf‖2

)

subject to

• ZMP constraints (6)

• kinematic constraints (7)

• stability constraints (18) forx and y

.

Note the following points. 604

1) While the ZMP and kinematic constraints involve simul- 605

taneously the x and y coordinates, the stability constraints 606

must be enforced separately along the sagittal and coronal 607

axes. 608

2) The actual expression of the stability constraint will de- 609

pend on the chosen tail (truncated, periodic, anticipative). 610

3) The same expression of the stability constraint is obtained 611

by imposing the corresponding terminal constraint for x 612

and y. 613

4) The CoM coordinate xc only appears through xu in the 614

stability (or terminal) constraints. 615

B. Generic Iteration 616

We now provide a sketch of the generic iteration of the IS- 617

MPC algorithm. The input data are the sequence (X̂k
f , Ŷ

k
f ,Θk

f ) 618

of candidate footsteps, with the associated timing T k
s , as well as 619

the high-level reference velocities used for footstep generation 620

(these are used explicitly in the MPC if the anticipative tail 621

is chosen). As initialization, one needs xc, ẋc, and xz at the 622

current sampling instant tk. Depending on the available sensors, 623

one may either use measured data (typically true for the CoM 624

variables) or the current model prediction (often for the ZMP 625

position). 626

The IS-MPC iteration at tk goes as follows. 627

1) Solve the QP problem to obtain Ẋk
z , Ẏ

k
z , Xk

f , and Y k
f . 628

2) From the solutions, extract ẋk
z , ẏkz , the first control sam- 629

ples. 630

3) Set ẋz = ẋk
z in (4) and integrate from (xk

c , ẋ
k
c , x

k
z) to 631

obtain xc(t), ẋc(t), and xz(t) for t ∈ [tk, tk+1]. Compute 632

yc(t), ẏc(t), and yz(t) similarly. 633

4) Define the 3D trajectory of the CoM as p∗
c = (xc, yc, hc) 634

in [tk, tk+1] and return it. 635

5) Return also the actual footstep sequence (Xk
f , Y

k
f ,Θk

f ) 636

with the (unmodified) timing T k
s . 637

We recall that the footstep sequence is used by the swing foot 638

trajectory generation module for computing p∗
swg in [tk, tk+1] 639

(actually, only the first footstep is needed for this computation). 640

This is then sent to the kinematic controller together with p∗
c 641

(see Fig. 1). 642
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VII. IS-MPC: FEASIBILITY AND STABILITY643

In this section, we address the crucial issues of feasibility644

and stability of the proposed IS-MPC controller in itself, i.e.,645

independently from the footstep generation module. We start by646

reporting some simulations that show how the introduction of647

the stability constraint is beneficial in guaranteeing that the CoM648

trajectory is always bounded with respect to the ZMP trajectory.649

A theoretical analysis of the feasibility of the generic IS-MPC650

iteration is then presented and used to obtain explicit conditions651

for recursive feasibility; simulations are used again to confirm652

that the choice of an appropriate tail is essential for achieving653

such a property. Finally, we formally prove that internal stability654

of the CoM/ZMP dynamics is ensured, provided that IS-MPC is655

recursively feasible.656

A. Effect of the Stability Constraint657

We present here some MATLAB simulation results of IS-658

MPC for the dynamically extended LIP model, in which we have659

set hc = 0.78 m (an appropriate value for the HRP-4 humanoid660

robot, see Section VIII). A sequence of evenly spaced footsteps661

is given with a constant step duration Ts = 0.5 s, split in Tss =662

0.4 s (single support) and Tds = 0.1 s (double support). The663

dimensions of the ZMP admissible regions are dz,x = dz,y =664

0.04 m, and the sampling time is δ = 0.01 s. For simplicity,665

the footstep sequence given to the MPC is not modifiable (this666

corresponds to β going to infinity in the QP cost function of667

Section VI-A); correspondingly, the kinematic constraints (7)668

are not enforced. The QP problem is solved with thequadprog669

function, which uses an interior-point algorithm.670

We compare the performance of the proposed IS-MPC scheme671

with a standard MPC. In IS-MPC, we have used (22) as the672

stability constraint, which corresponds to choosing a periodic673

tail. In the standard MPC, the stability constraint is removed, and674

the ZMP velocity norms in the cost function are replaced with675

the CoM jerk norms in order to bring the CoM into play. This676

corresponds to entrusting the boundedness of the CoM trajectory677

entirely to the cost function, in the hope that minimization of678

the CoM jerk will penalize diverging behaviors, as done in early679

MPC approaches for gait generation.680

Figure 8 shows the performance of IS-MPC and standard681

MPC for Tc = 1.5 s, i.e., 1.5 times the gait period. Both gaits682

are stable, with the IS-MPC gait more aggressively using the683

ZMP constraints in view of its cost function that penalizes ZMP684

variations.685

Figure 9 compares the two schemes when the control horizon686

is reduced to Tc = 1 s. The standard MPC loses stability: the687

resulting ZMP trajectory is always feasible, but the associated688

CoM trajectory diverges4 with respect to it, because the control689

horizon is too short to allow sorting out the stable behavior via690

jerk minimization. With IS-MPC, instead, boundedness of the691

CoM trajectory with respect to the ZMP trajectory is preserved692

in spite of the shorter control horizon, thanks to the embedded693

4In particular, in this case the divergence occurs on the coronal coordinate yc.
However, it is also possible to find situations where divergence occurs on the
sagittal coordinate xc, or even on both coordinates.

Fig. 8. Simulation 1: Gaits generated by IS-MPC (top) and standard MPC
(bottom) for Tc = 1.5 s. The given footstep sequence is shown in magenta.
Note the larger region corresponding to the initial double support.

Fig. 9. Simulation 2: Gaits generated by IS-MPC (top) and standard MPC
(bottom) for Tc = 1.0 s. Note the instability in the standard MPC solution.

stability constraint. The accompanying video shows an anima- 694

tion of the evolutions in Figs. 8 and 9. 695

Another interesting situation is that of Fig. 10, in which the 696

CoM height is increased to hc = 1.6m while keeping the “long” 697

control horizonTc = 1.5 s of Simulation 1. Once again, standard 698

MPC is unstable, while IS-MPC guarantees boundedness of the 699

CoM with respect to the ZMP. Since it is η2 = g/hc, a similar 700

situation can be met when g is decreased, as in gait generation 701

for low-gravity environments (e.g., the moon). 702

We emphasize that the onset of instability in standard MPC 703

cannot be avoided by adding to the cost function a term for 704

keeping the ZMP close to the foot center. The result of this 705

common expedient is shown in Fig. 11, in which the divergence 706

occurs even earlier than in Fig. 9, because the additional cost 707

term has actually the effect of depenalizing the norm of the CoM 708

jerk. Instead, IS-MPC remains stable also with this modified cost 709

function, with the ZMP pushed well inside the constraint region. 710
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Fig. 10. Simulation 2 bis: Gaits generated by IS-MPC (top) and standard MPC
(bottom) for Tc = 1.5 s and a higher CoM. Note the instability in the standard
MPC solution.

Fig. 11. Simulation 2 ter: Gaits generated by IS-MPC (top) and standard MPC
(bottom) for Tc = 1.0 s, adding in the cost function a term for keeping the ZMP
close to the foot center. The standard MPC solution is still unstable.

B. Feasibility Analysis711

The introduction of the stability constraint (or the correspond-712

ing terminal constraint), although beneficial in guaranteeing713

boundedness of the CoM trajectory, has the effect of reducing714

the feasibility region, i.e., the subset of the state space for which715

the QP problem of Section VI-A admits a solution. In some716

situations, this might even lead to a loss of feasibility, i.e., the717

system may find itself in a state where it is impossible to find a718

solution satisfying all the constraints.719

In the following, we show how to determine the feasibility720

region at a given time. Then, we address recursive feasibility:721

this property holds if, starting from a feasible state, the MPC722

scheme always brings the system to a state which is still feasible.723

In particular, we will prove that one can achieve recursive724

feasibility by using the preview information conveyed by the725

sequence of candidate footsteps.726

1) Feasibility Regions: To focus on the feasibility issue,727

consider the case of given footsteps (β → ∞ in the QP cost728

function) with fixed orientation. Thanks to the latter assumption, 729

and to the use of a moving ZMP constraint in double support (see 730

Fig. 6), the QP problem separates in two decoupled problems: 731

one for the x and one for the y ZMP coordinate. Let us focus on 732

the x coordinate henceforth, with the understanding that every 733

development is also valid for the y coordinate. The general 734

coupled case can be treated by using an appropriate coordinate 735

change. 736

Consider the kth step of the IS-MPC algorithm. The QP 737

problem is feasible at tk if there exists a ZMP trajectory xz(t) 738

that satisfies both the ZMP constraint for t ∈ [tk, tk+C ] 739

xm
z (t) ≤ xz(t) ≤ xM

z (t) (24)

and the stability constraint 740

η

∫ tk+C

tk

e−η(τ−tk)xz(τ)dτ = xk
u − η

∫ ∞

tk+C

e−η(τ−tk)x̃z(τ)dτ

(25)
where: 741

• xm
z (t) and xM

z (t) are, respectively, the lower and upper 742

bounds of the ZMP admissible region at time t, as derived 743

from (6); 744

• x̃z is the ZMP position5 corresponding (through integra- 745

tion) to the chosen velocity tail; 746

• both the ZMP and the stability constraint have been ex- 747

pressed in continuous time for later convenience (in partic- 748

ular, (25) is obtained from (12) by splitting the integral in 749

two and plugging the tail in the second integral); 750

• the kinematic constraints (7) are not enforced since foot- 751

steps are given. 752

Proposition 4: At time tk, IS-MPC is feasible if and only if 753

xk,m
u ≤ xk

u ≤ xk,M
u (26)

where 754

xk,m
u = η

∫ tk+C

tk

e−η(τ−tk)xm
z dτ + η

∫ ∞

tk+C

e−η(τ−tk)x̃zdτ

xk,M
u = η

∫ tk+C

tk

e−η(τ−tk)xM
z dτ + η

∫ ∞

tk+C

e−η(τ−tk)x̃zdτ.

Proof: To show the necessity of (26), multiply each side of 755

the ZMP constraint (24) by e−η(t−tk) and integrate over time 756

from tk to tk+C . Adding to all sides the integral term in the 757

right-hand side of (25), the middle side becomes exactly xk
u, 758

while the left- and right-hand sides become xk,m
u and xk,M

u , as 759

defined in the thesis. 760

The sufficiency can be proven by showing that if (26) holds, 761

then the ZMP trajectory 762

xz(t) = xM
z (t)− xk,M

u − xk
u

1− e−ηTc

satisfies both the ZMP constraint (24) and the stability 763

constraint (25). � 764

The interpretation of (26) is the following: it is the admissible 765

range forxu at time tk to guarantee solvability of the QP problem 766

5In the rest of this section, for simplicity, we will use the term “tail” for both
the ZMP velocity and the corresponding position.
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Fig. 12. Feasibility regions. (Top) The robot is taking a single step. (Bottom)
The robot is taking a sequence of steps. The anticipative tail is used in both
cases.

associated with the current iteration of IS-MPC. Since xu is767

related to the state variables of the prediction model through (9),768

equation (26) actually identifies the feasibility region in state769

space.770

Note that771

xk,M
u − xk,m

u = η

∫ tk+C

tk

e−η(τ−tk)(xM
z − xm

z )dτ

= dz,x(1− e−ηTc) (27)

where we have used the fact that xM
z (t)− xm

z (t) = dz,x for all772

t, as implied by (6). This shows that the extension xk,M
u − xk,m

u773

of the admissible range for xu depends on the dimension dz,x774

of the ZMP admissible region and tends to become exactly dz,x775

as the control horizon Tc is increased. On the other hand, the776

midpoint of this range depends on the tail chosen for the stability777

constraint (25), because η
∫∞
tk+C

e−η(τ−tk)x̃zdτ acts as an offset778

in both the left- and right-hand sides of (26).779

Figure 12 illustrates how the admissible range for xu moves780

over time, for the case of a single step and of a sequence of steps.781

These results were obtained with hc = 0.78 m, dz,x = 0.04 m,782

and Tc = 0.5 s. In both cases, an anticipative tail was used, with783

the residual part truncated; the preview horizon is Tp = 1 s.784

Note that, as expected, the extension of the range is constant785

and smaller than dz,x, and that the range itself gradually shifts786

toward the next ZMP admissible region as a step is approached.787

2) Recursive Feasibility: Next, we prove that the use of an788

anticipative tail provides recursive feasibility under a (sufficient)789

condition on the preview horizon Tp.790

Proposition 5: Assume that the anticipative tail is used in the791

stability constraint (25). Then, IS-MPC is recursively feasible if792

the preview horizon Tp is sufficiently large.793

Proof: To establish recursive feasibility, we must show that if 794

the IS-MPC QP problem is feasible at tk, it will be still feasible 795

at time tk+1. 796

Let us assume that (26) holds. This implies that the ZMP 797

constraint (24) holds for t ∈ [tk, tk+C ], and that the stability 798

constraint (25) is satisfied, i.e., 799

xk
u = η

∫ tk+C

tk

e−η(τ−tk)xzdτ + η

∫ ∞

tk+C

e−η(τ−tk)x̃z(τ)dτ

with x̃z chosen as the anticipative tail at tk. 800

Using (11), the value of xu at tk+1 is written as 801

xk+1
u = eηδxk

u − η

∫ tk+1

tk

eη(tk+1−τ)xz(τ)dτ.

Plugging the above expression for xk
u in this equation, simplify- 802

ing, and considering that xz(t) ≤ xM
z (t) for t ∈ [tk, tk+C ], we 803

obtain 804

xk+1
u ≤ η

∫ tk+C

tk+1

eη(tk+1−τ)xM
z (τ)dτ

+ η

∫ ∞

tk+C

eη(tk+1−τ)x̃z(τ)dτ.

According to Proposition 4, feasibility at tk+1 requires6 805

xk+1
u ≤ η

∫ tk+C+1

tk+1

eη(tk+1−τ)xM
z (τ)dτ

+ η

∫ ∞

tk+C+1

eη(tk+1−τ)x̃′
z(τ)dτ

with x̃′
z(τ) in the second integral denoting the anticipative tail at 806

tk+1. Recursive feasibility is then guaranteed if the right-hand 807

side of the last equation is not larger than that of the penultimate. 808

This condition can be rewritten as 809
∫ tk+C+1

tk+C

eη(tk+1−τ)x̃z(τ)dτ +

∫ ∞

tk+P

eη(tk+1−τ)x̃z(τ)dτ

≤
∫ tk+C+1

tk+C

eη(tk+1−τ)xM
z (τ)dτ +

∫ ∞

tk+P

eη(tk+1−τ)x̃′
z(τ)dτ

where we have used the fact that the anticipative tails at tk and 810

tk+1 coincide over [tk+C+1, tk+P ]. From this, we derive the 811

equivalent inequality 812

∫ tk+C+1

tk+C

eη(tk+1−τ)(xM
z (τ)− x̃z(τ))dτ

+

∫ ∞

tk+P

eη(tk+1−τ)(x̃′
z(τ)− x̃z(τ))dτ ≥ 0.

At this point, exploiting the fact (see the end of Section V-B3) 813

that 1) xM
z (t)− x̃z(t) = dz,x/2 in the preview horizon, and 2) 814

6From now on, we focus only on the right-hand side of the feasibility
condition for compactness. In fact, imposing the left-hand side leads to the
same condition (28).
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the residual part of the anticipative tail is truncated, a lengthy815

but simple calculation leads to the condition816

e−η(Tp−Tc)

η
( ˙̃x′

z)
k+P +

dz,x
2

≥ 0

where ( ˙̃x′
z)

k+P is the last velocity sample in the preview horizon817

of the anticipative tail at tk+1. Finally, if we denote by vmax
z,x the818

upper bound on the absolute value of ( ˙̃x′
z)

k+P , we can claim819

that a sufficient condition for recursive feasibility is820

Tp ≥ Tc +
1

η
log

2 vmax
z,x

η dz,x
(28)

thus concluding the proof. �821

Note the following points.822

1) An upper bound vmax
z,x to be used in (28) can be derived823

(and enforced in the tail) based on the dynamic capabilities824

of the specific robot or, even more directly, using the in-825

formation embedded in the footstep sequence and timing.826

This is the same kind of reasoning that led us to postulate827

the existence of an upper bound γ on ẋi
z in (5).828

2) Equation (28) shows that a longer preview horizon Tp is829

needed to guarantee recursive feasibility for taller and/or830

faster robots (larger η and/or vmax
z,x , respectively), or for831

robots with more compact feet (smaller dz,x).832

3) Proposition 5 provides only a sufficient condition and,833

therefore, does not exclude that recursive feasibility of834

IS-MPC can be achieved with a smaller preview hori-835

zon, or even with a different tail. For example, in the836

next subsection we will describe a case (Simulation 3),837

in which the periodic tail represents a sufficiently ac-838

curate conjecture and therefore recursive feasibility is839

achieved.840

3) Recursive Feasibility—Simulations: We now report some841

comparative MATLAB simulations aimed at showing how dif-842

ferent choices for the tail lead to different results in terms of843

recursive feasibility. We use the same LIP model and parameters844

of Section VII-A. The MPC still operates under the assumption845

that the footstep sequence is given and not modifiable. The846

control horizon Tc is 0.8 s, while the preview horizon Tp is847

1.6 s.848

Figure 13 shows a comparison between IS-MPC using the849

truncated and periodic tail for a regular footstep sequence. When850

using the truncated tail, gait generation fails because the system851

reaches an unfeasible state, due to the significant mismatch852

between the truncated tail and the persistent ZMP velocities853

required by the gait. Recursive feasibility is instead achieved by854

using the periodic tail, which coincides with an anticipative tail855

for this case.856

Figure 14 refers to a situation in which the assigned footstep857

sequence is irregular: two forward steps are followed by two858

backward steps on the same footsteps. Use of the periodic859

tail leads now to a loss of feasibility, as IS-MPC is wrongly860

conjecturing that the ZMP trajectory will keep on moving for-861

ward. The anticipative tail, which is the recommended choice862

for this scenario, correctly anticipates the irregularity, therefore863

achieving recursive feasibility.864

Fig. 13. Simulation 3: Gaits generated for a regular footstep sequence with
different tails: truncated (top) and periodic (bottom). Note the loss of feasibility
when using the truncated tail.

Fig. 14. Simulation 4: Gaits generated for an irregular footstep sequence with
different tails: periodic (top) and anticipative (bottom). The footstep sequence
consists of two forward steps followed by two backwards steps on the same
footsteps. Note the loss of feasibility when using the periodic tail.

The accompanying video shows an animation of the evolu- 865

tions in Figs. 13 and 14. 866

C. Recursive Feasibility Implies Stability 867

In Section VII-B2, it has been shown that recursive feasibility 868

can be guaranteed by using the anticipative tail, provided that 869

the preview horizon Tp is sufficiently large (see Proposition 5). 870

Now, we prove that recursive feasibility, in turn, implies internal 871

stability (i.e., boundedness of the CoM trajectory with respect 872

to the ZMP). 873

We recall a definition first. A function f(t) is said to be of 874

exponential order α0 if [34] 875

lim
t→∞

f(t)e−αt = 0 when α > α0.

According to this definition, any bounded or polynomial func- 876

tion is of exponential order 0, whereas eat is of exponential order 877
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a. In particular, xz is of exponential order 0 in IS-MPC, because878

it is piecewise linear with bounded derivative, see (5).879

Proposition 6: If IS-MPC is recursively feasible, then inter-880

nal stability is guaranteed.881

Proof: We establish the result by contradiction, that is, we882

assume that internal stability is violated and show that this is883

inconsistent with IS-MPC being recursively feasible. We focus884

on the dynamics along the sagittal axis x; an identical reasoning885

can be done along the coronal axis y.886

Assume that internal stability is violated, i.e., xc − xz di-887

verges. This implies that xu − xz diverges, because 1) xc =888

(xs + xu)/2 in view of (8) and (9), and 2) xs − xz is bounded889

(in fact, its dynamics is BIBO-stable and forced by ẋz , which is890

bounded). Since the dynamics ofxu − xz has a single eigenvalue891

η and is also forced by ẋz , then xu − xz will diverge with892

exponential order η. Finally, this implies that the feasibility893

condition (26) will be violated at a future instant of time, as the894

upper and lower bounds in the inequality are functions of the895

same exponential order as xz . This contradicts the assumption896

that IS-MPC is recursively feasible. �897

D. Wrapping Up898

As discussed at the end of Section V-A, a causal MPC899

can only contain an approximate version of the stability con-900

straint, because the tail in (17) is unknown and, therefore,901

must be conjectured. Nevertheless, Proposition 6 states that902

the repeated enforcement of this constraint at each iteration903

of IS-MPC is effective, in the sense that internal stability is904

achieved as long as the controller is recursively feasible. In905

turn, the latter property is guaranteed if the anticipative tail is906

used with a Tp that extends beyond Tc enough to make the907

approximation sufficiently accurate [see Proposition 5, and in908

particular (28)].909

At this point, the reader may wonder whether there is a910

requirement on the minimum control horizon Tc in order for911

IS-MPC to work. The answer is that Tc may indeed be arbitrarily912

small, with one caveat: as shown by (27), the feasibility region913

shrinks as Tc decreases. However, once the system is initialized914

in this reduced region, the recursive feasibility of IS-MPC will915

depend only on Tp through the sufficient condition (28).916

The possibility of decreasing Tc without affecting stability917

is a distinct advantage of IS-MPC with respect to schemes918

which need sufficiently long Tc to work. In fact, a shorter Tc919

means less computation, which may be important for real-time920

onboard implementation on low-cost platforms, such as the921

NAO of our experiments. Moreover, since the MPC needs to922

know the (candidate) footstep locations in the control hori-923

zon, decreasing Tc means that footsteps are required over a924

smaller interval, making it possible to use short-term reactive925

planners.926

VIII. SIMULATIONS927

We now report some complete gait generation results (foot-928

step generation + IS-MPC) obtained in the V-REP simulation929

environment. The humanoid platform is HRP-4, a 34-dof, 1.5 m930

Fig. 15. Simulation 5. HRP-4 following a variable reference velocity.

Fig. 16. Simulation 5: CoM and ZMP trajectories (top) and sagittal velocity
(bottom).

tall humanoid robot. We enabled dynamic simulation using the 931

Newton Dynamics engine. 932

The whole gait generation framework runs at 100 Hz (δ = 933

0.01 s). Footstep timing is determined using rule (1) with 934

L̄s = 0.12m, T̄s = 0.8 s, and v̄ = 0.15m/s as cruise parameters, 935

and α = 0.1 m/s (as in Fig. 2). Each generated Ts is split into 936

Tss (single support) and Tds (double support) using a 60–40% 937

distribution. Candidate footsteps are generated as explained in 938

Section III-B, with θmax = π/8 rad and � = 0.18 m. In the 939

IS-MPC module, which uses a control horizon Tc of 1.6 s, we 940

have set hc = 0.78 m. The dimensions of the ZMP admissible 941

region are dz,x = dz,y = 0.04 m, while those of the kinemati- 942

cally admissible region areda,x = 0.3m andda,y = 0.07m. The 943

weight in the QP cost function isβ = 104. The qpOASES library 944

was used to solve the QP, here as well as in the experiments to 945

be presented in the next section. 946

Figure 15 shows a stroboscopic view of the first simulation 947

(see the accompanying video for a clip). The robot is commanded 948

a sagittal reference velocity vx of 0.1 m/s, which is then abruptly 949
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Fig. 17. Simulation 6: HRP-4 walking along a cusp.

Fig. 18. Simulation 6: CoM and ZMP trajectories (top) and sagittal velocity
(bottom).

increased to 0.3 m/s. The preview horizon is Tp = 3.2 s, and950

the anticipative tail is used. The generated CoM and ZMP951

trajectories together with the sagittal CoM velocity are shown in952

Fig. 16. As expected, the higher commanded velocity is realized953

by increasing both the step length and the frequency.954

In the second simulation, shown in Fig. 17 and the accompa-955

nying video, the reference velocities are aimed at producing a956

cusp trajectory. In particular, initially, we have vx = 0.2m/s and957

ω = 0.2 rad/s; after a quarter turn, we change vx to −0.2 m/s;958

after another quarter turn, ω is zeroed. As before, Tp is 3.2 s, and959

the anticipative tail is used for the stability constraint. Figure 18960

shows plots of the generated ZMP and CoM trajectories, together961

with the sagittal CoM velocity.962

Video clips of the complete simulations are shown in the963

accompanying video.964

Fig. 19. Nominal ZMP, measured ZMP, and measured CoM along a forward
gait of HRP-4. Note the restricted ZMP regions (magenta, solid) and the original
ZMP regions used in the simulations (magenta, dotted).

IX. EXPERIMENTS 965

Experimental validation of the proposed method for gait 966

generation was performed on two platforms, i.e., the NAO and 967

HRP-4 humanoid robots. 968

NAO is a 23-dof, 58 cm tall humanoid equipped with a 969

single-core Intel Atom running at 1.6 GHz. Our method, imple- 970

mented as a custom module in the B-Human RoboCup SPL team 971

framework [35], runs in real time on the onboard CPU at a control 972

frequency of 100 Hz (δ = 0.01 s). Footstep timing is determined 973

using rule (1) with L̄s = 0.075 m, T̄s = 0.5 s, and v̄ = 0.15 m/s 974

as cruise parameters, and α = 0.1 m/s (as in Fig. 2). Candidate 975

footsteps are generated as explained in Section III-B, with 976

θmax = π/8 rad and � = 0.1 m. In the IS-MPC module, we 977

have set Tc = 1.0 s and hc = 0.23 m. The dimensions of the 978

ZMP admissible region are dz,x = dz,y = 0.03 m, while those 979

of the kinematically admissible region are da,x = 0.1 m and 980

da,y = 0.05 m. The weight in the QP cost function is β = 104. 981

The anticipative tail is used with a preview horizon Tp = 2.0 s. 982

The software architecture of HRP-4 requires control com- 983

mands to be generated at a frequency of 200 Hz (δ = 0.005 s). 984

Gait generation runs on an external laptop PC, and joint motion 985

commands are sent to the robot via Ethernet using TCP/IP. The 986

parameters are the same of the V-REP simulations in the previous 987

section, includingTc = 1.6 s, with the exception of dz,x and dz,y 988

that are reduced to 0.01 m for increased safety. The anticipative 989

tail is used in the stability constraint. 990

Before presenting complete locomotion experiments, we re- 991

port in Fig. 19 some data from a typical forward gait of HRP-4. 992

In particular, the plot shows the nominal ZMP trajectory, as 993

generated by IS-MPC, together with the ZMP measurements 994

reconstructed from the force-torque sensors at the robot an- 995

kles [36]. Note how the restriction of the ZMP admissible region 996

is effective, in the sense that while the measured ZMP violates 997

the constraints, it stays well within the original ZMP admissible 998

region used in the simulation. 999

The accompanying video shows two successful experiments 1000

for each robot. In the first, the robots are required to perform a 1001

forward–backward motion, as shown in Fig. 20. The reference 1002

velocities are vx = ±0.15 m/s for the NAO and vx = ±0.2 m/s 1003

for the HRP-4. 1004

In the second experiment, which is shown in Fig. 21, the 1005

robots are given reference velocities aimed at performing an 1006

L-shaped motion. In particular, we have vx = 0.15m/s followed 1007

by vy = 0.05 m/s for the NAO, and vx = 0.2 m/s followed by 1008

vy = 0.2 m/s for the HRP-4. 1009
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Fig. 20. Experiments 1 and 2: NAO and HRP-4 walking forward and backward. See the accompanying video.

Fig. 21. Experiments 3 and 4: NAO and HRP-4 walking along an L. See the accompanying video.

X. CONCLUSION1010

In this article, we presented a complete MPC framework1011

(IS-MPC) for generating intrinsically stable humanoid gaits that1012

realize high-level cartesian velocity commands. We discussed1013

various versions of the newly introduced stability constraint,1014

which may be used depending on the available quantity of pre-1015

view information on the reference motion. It was also shown how1016

the different stability constraints can be interpreted as terminal1017

constraints, some of which were new in the literature.1018

A detailed study of the feasibility of the generic MPC itera-1019

tion was developed and used to derive conditions under which1020

recursive feasibility can be guaranteed. Comparative simulations1021

were presented to illustrate the effect of the different tails on the1022

resulting gait and confirmed that incorporating preview infor-1023

mation in the tail was essential to preserve feasibility. Finally, it1024

was shown that recursive feasibility of IS-MPC implies internal1025

stability of the CoM/ZMP dynamics.1026

Experimental results obtained with an onboard NAO imple-1027

mentation proved that the proposed algorithm is viable even in1028

the presence of limited computing capabilities. Additional suc-1029

cessful experiments were carried out on the full-sized humanoid1030

HRP-4.1031

The advantages of IS-MPC can be summarized as follows. 1032

1) It includes an explicit stability constraint, which, through 1033

the choice of the tail, can be declined on the basis of the 1034

preview information so as to accommodate different gaits 1035

to be executed. 1036

2) It is guaranteed to be recursively feasible if the anticipative 1037

tail is used and the preview horizon is sufficiently long (see 1038

Proposition 5). This clarifies the role and the amount of 1039

the required preview information, in contrast with most 1040

literature where such an analysis is missing. 1041

3) It is the first MPC-based gait generation with an explicit 1042

proof of internal stability, which is shown to be a direct 1043

consequence of recursive feasibility (see Proposition 6). 1044

4) It is general enough to be applicable to different hu- 1045

manoids (such as NAO and HRP-4) without significant 1046

adaptation. 1047

We are currently working on several extensions of the pro- 1048

posed approach, such as: 1049

1) developing a robust version of the proposed IS-MPC 1050

scheme that can withstand unmodeled dynamics and 1051

disturbances [37]; 1052

2) extending our approach to the 2.5D case (piecewise- 1053

horizontal ground, such as stairs or flat step stones), for 1054
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which we have presented a preliminary version of IS-MPC1055

in [38] and a footstep planner in [39];1056

3) investigating the use of learning techniques in conjunction1057

with MPC in order to improve performance.1058

APPENDIX1059

We collect here some useful properties used in the proofs of1060

the various propositions. For compactness, we use the following1061

notation:1062

η

∫ ∞

tk

e−η(τ−tk)xz(τ)dτ = x∗
u(tk;xz(t)). (A.1)

Property 1. Linearity in xz(t):1063

x∗
u(tk; ax

a
z(t) + bxb

z(t)) = ax∗
u(tk;x

a
z(t)) + bx∗

u(tk;x
b
z(t)).

Property 2: If xz(t) = δ−1(t− tk), we get1064

x∗
u(tk; δ−1(t− tk)) = 1.

Property 3: If xz(t) = ρ(t− tk), we get1065

x∗
u(tk; ρ(t− tk)) = 1/η.

Properties 1–3 are easily derived by explicit computation of1066

the integral in (A.1).1067

Property 4: If xz(t) = 0 for t < tk, we get1068

x∗
u(tk;xz(t− T )) = e−ηTx∗

u(tk;xz(t)), T ≥ 0.

Proof:

x∗
u(tk;xz(t− T )) = η

∫ ∞

tk

e−η(τ−tk)xz(τ − T )dτ

= η

∫ ∞

tk−T

e−η(θ−tk+T )xz(θ)dθ

= ηe−ηT

∫ ∞

tk−T

e−η(θ−tk)xz(θ)dθ

= e−ηT η

∫ ∞

tk

e−η(θ−tk)xz(θ)dθ

= e−ηTx∗
u(tk;xz(t)).

�1069

Property 4 (time shifting) shows how the stability condition1070

for the time-shifted function xz(t− T ) can be written in terms1071

of the stability condition for the original function xz(t).1072
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