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ISSUES IN ACCELERATION RESOLUTION OF
ROBOT REDUNDANCY

A. De Luca and G. Oriolo

Dipartimento di Informatica e Sistemistica, Universitd degli Studi di Roma "La Sapienza”, Via Eudossiana 18,
00184 Roma, l1aly

Abstract. Algorithmic methods for solving robot redundancy are considered, providing new
strategies for optimizing general kinematic criteria at the acceleration level. Acceleration reso-
lution offers two potential advantages: it allows to take into account dynamic performance and
can be directly used with control techniques for accurate tracking. Local first and second-order
optimal resolution schemes are described in a convensent unified framework and classified accord-
ing to their iterative or ezact nature. Instances where an equivalence exists between velocity and
acceleration methods are pointed out. Ezisting second-order methods do not apply to the case of
mized criteria, namely objective functions depending both on joint configuration and velocity. A
discrete-time formulation is used to design algorithms solving this problem. Simulations with a
planar redundant arm show the benefits achieved with the new optimization scheme.

Keywords. Robot redundancy; optimization: acceleration control; discrete-time systems.

Introduction

The potential benefits of using kinematically redun-
dant robots is balanced by the difficulty in designing
inverse kinematic schemes with automatic provision
of a satisfactory behavior at the joint level. Several
methods have been proposed in the last few vears,
mostly addressing the problem of selecting joint dis-
placement or velocity in a locally optimal way, i.e.
with information limited to the current point of
the task trajectory. The synthesis of nominal joint
accelerations in redundant mechanisms usually re-
quires a more involved analysis but allows to directly
face robot dynamics issues, as opposed to velocity
schemes which often resuit in poor dynamic perfor-
mance. At both orders of resolution. a major point
is represented by the choice of the objective func-
tion measuring the robot performance. namely the
quality of the particular inverse kinematic solution.
Independently from the meaning of a specific cri-
terion, its structure and functional dependence will
affect the nature of the method to be chosen.

In this paper some algorithmic aspects involved
in the redundancy resolution process are examined.
A general optimization point of view is assumed in
reviewing the basics of currently used methods. By
setting up a unified framework, we will be able to
give constructive answers to a number of open ques-
tions, and in particular: (i) what is the relation-
ship between first and second-order methods and
when are the obtained joint trajectories identical:
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(i) when is an algorithm exact, i.e. it provides the
local optimal constrained solution in one step; (i1)
when are properties like cyclicity inherited in mov-
ing from velocity to acceleration schemes.

Such a general analysis will also point out that no
existing second-order redundancy resolution method
applies to optimization problems with mired crite-
ria, depending both on joint position and velocity.
A discrete-time formulation of this problem will be
used to develop a new solution algorithm, where
Joint acceleration is selected considering its effect on
the local evolution of both robot configuration and
velocity.

Velocity vs. Acceleration Resolution

Consider a robot manipulator with n joints execut-
ing an m-dimensional task, with d=n — m > be-
ing the degree of redundancy. The associated direct
kinematics is

q€ R", pe R™, (1)

with joint coordinates q and task variables p. The
first and second-order differential kinematics are

p = f(q),

p = J(q)q, (2)
P =J(q)4+J(q,q)4, (3)

where the robot Jacobian J =0f/8q is an mxn ma-
trix. In general, a task trajectory p(t) is given and
the inverse kinematic problem consists in finding an
associated q(t) satisfying (1) for each t. In view of
the nonlinearity of (1), this problem is solved at a
differential level using (2) or (3). Due to the arm



redundancy, at each time instant there exists an in-
finity of solutions q or g of the form

a=3"a)p+ (I-3"(@)I(a)v, (4)
§=3"(a)f(q,q)+ I-3"()I(q))a,  (5)

where J' is the unique pseudoinverse of J (Boullion
and Odell, 1971), ¥ = p—Jq, while v and a are
arbitrary vectors in IR". The nxn matrix I-J'J
is the projection operator into the null-space of the
Jacobian. In the full row-rank case, the expression
of the pseudoinverse is JT(JJT)_I.

Each choice of v(t) and a(t) yields a particular
motion of the arm in the joint space, always guar-
anteeing a correct task execution. These vectors are
usually determined through optimization of some
performance criterion or by satisfying an augmented
task specification (Nakamura, 1991).

The basic issue in selecting (4) versus (5) is the
differential order at which redundancy resolution
takes place. Indeed, first-order resolution typi-
cally provides only path planning at the joint level,
whereas the second-order scheme gives a trajectory
planning, i.e. with complete timing information.
Correspondingly, equation (4) requires at the cur-
rent instant only the knowledge of the configuration
q, while both q and q are needed to compute (5).
In the latter case, the set (q,q,q) can be directly
feeded into the robot inverse dynamics computation
for control purposes.

In order to obtain joint accelerations from a
first-order solution, one may differentiate symboli-
cally (4). This corresponds to a specific choice of the
null-space vector a in the second-order solution (5),
as stated in the following
Proposition 1. Assume that p(t) € C?, and that
the initial joint positions q(0) and velocities q(0) are
such that £(q(0))= p(0), J(q(0))4(0) = p(0). Pro-
vided that J(q(t)) is always full rank, the joint tra-
jectory q(t) generated by the first-order solution (4)
for any v(t) € C! coincides with the one generated
by the second-order solution (5) iff

I-3Ja=T-TH[TP-Iv)+v], (6)
where Jt = £(J1).
Proof. Differentiate (4) to obtain

d=3B-Jv)+ (P -Iv)+ T =-3I)v. (7)

Plugging (4) in (5) to eliminate q, and equating with
(7) gives

(I-3tD)a = (I +I1FINH=Iv)+(T-T1I)v. (8)

In the full rank case, differentiating JJ' = I with
respect to time and premuitiplying by J1 leads to
Jt33t =—J13Jt. Substituting this in (8), the thesis
follows. .
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Equality (6) is limited to null-space projections of
joint acceleration vectors. Thus, a = J tHp—=Jv)+v
is a sufficient but not necessary condition for coin-
cidence of first and second-order schemes.

In the following, we will focus on cases where re-
dundancy is resolved by local optimization of a per-
formance criterion. A number of algorithms have
been proposed in connection with a variety of crite-
ria measuring arm dexterity (Yoshikawa, 1985), dis-
tance from obstacles (Maciejewski and Klein, 1985)
or from joint range limits (Liégeois, 1977), joint ve-
locity (Whitney, 1972), joint acceleration (Khatib,
1983) or torque (Hollerbach and Suh, 1987). When
the task trajectory is completely known in advance,
an alternative approach is to optimize a global
(viz. integral) criterion defined over the whole path
(Nakamura and Hanafusa, 1987). Besides being un-
feasible for on-line application, the resulting algo-
rithms are in general computationally intensive, and
will not be considered here.

It can be recognized that the above methods dif-
fer in three aspects: the functional dependence of
the objective function H, the differential order at
which kinematic redundancy is resoived, and the ex-
act(D) or iterative nature of the optimization process.
Table 1 summarizes the various possibilities. Note
that qg and qo always denote the current joint posi-
tion and velocity. On the other hand, in first-order
schemes (corresponding to the first row) q is the
velocity to be chosen at the current instant, while
q is the nezt joint position that will be reached as
a result of this choice. Similarly, in second-order
schemes q and q are the nezt joint position and ve-
locity that will be reached as a result of the choice
of the current acceleration g.

First-order methods

Most of the existing techniques fall into class (1.A),
i.e. in the iterative minimization of a configura-
tion dependent objective H(q) by a velocity scheme.
Each step moves towards the constrained optimum
of the objective function, possibly reaching it after
some iterations. This is usually realized by the Pro-
jected Gradient (PG) method (Liégeois, 1977)

q=3"p-a(I-3'NVH| (9)

where o > 0 is a scalar stepsize (Luenberger, 1984).
In a discrete-time implementation of the update (9),
time derivatives are replaced by finite increments
and a is chosen in relation with the sampling time.
When the Jacobian has full rank, a convenient alter-
native to (9) is the Reduced Gradient (RG) method
proposed by De Luca and Oriolo (1990a). At each
instant, the joint vector is partitioned as (qq,qs),
with qa € R™ and q, € R"™™, in such a way that

(1) By exact we mean locally exact, not necessarily global.



Ja = 08f/0q, is nonsingular. Correspondingly, the
Joint velocity is computed as
J VaHl,

[ 4a It
= [§]= 5] oo]

(10)
where Jp =J1J,. The two methods PG and RG

provide different updates, and in general the latter
is more efficient in approaching the local optimum.

In table ‘slot’ (1.B), we refer to the possibility of
obtaining an ezact solution to the constrained opti-
mization of a function H(q) at each Joint configura-
tion satisfying (1). Assume that the initial configu-
ration q(0) is optimal, ie. (=JF I)VH =0 at
q(0) (Chang, 1987). Imposing the following condi-
tion will propagate optimality throughout arm mo-
tion:

JRJE ~Jgr
-J3 I

d .
EE[( -J} I)VqH| = G(q)g = 0. (11)
This constraint, used to ‘square’ system (2), yields
the Eztended Jacobian method (Baillieul, 1985)

L2l
G(q) 0}’
provided that no algorithmic singularities are en-
countered. The requirement of starting (12) from
a posture where the criterion is maximized ensures
that motion will be cyclic in the joint space.

Objective functions depending on ¢ can be ex-
actly handled with a first-order scheme only when
joint velocities appear quadratically (case (1.C)).
The current qg, which may appear in H(qg,q),
shapes the criterion in dependence of the arm config-
uration. However, the major instance of this class
is the minimization of the squared velocity norm
H(q)=347q, achieved by the simple Jacobian pseu-
doinverse solution (Whitney, 1972)

(12)

q=Jp. (13)
This is a special case of (4) with no null-space vector.
or v=0. The general relationship between the exact
optimization of a complete quadratic function (with
weighted quadratic term and a linear term in q)
and (4) will be clarified in the next section. First-
order approximate methods for an objective H(q, q)
(not reported in Tab. 1) will directly follow from the
same analysis.

Second-order methods

The taxonomy of second-order redundancy resolu-
tion methods is a transposition of the first-order
one. Case (2.A) refers to the iterative optimiza-
tion of a configuration and velocity-dependent ob-
Jective function H(q, q), performed at the accelera-
tion level. Surprisingly enough, no method has yet
been proposed for such case. A reason for this stands
in the mathematical difficulty of optimizing a func-
tion of 2n differentially related variables using only
the n-dimensional vector of Jjoint accelerations. The
appropriate framework for this problem is the Cal-
culus of Variations, which applies however only to a
globally defined criterion (Martin et al,, 1989). In-
stead, a practical way is to use a simple expansion
accounting for the effect of acceleration on the next
attained position and velocity. Based on a discrete-
time approach, a new optimization algorithm will
be developed for this case later on.

No existing methods fall into class (2.B) either,
but an extension of the Extended J acobian ap-
proach (12) is straightforward. Assume that the ini-
tial velocity q(0) extremizes A (90,4), as expressed
by the n—m conditions (--JE I)VaH |4y = 0.
Optimality will be preserved if the acceleration is
such that

d Caym .
7[(-9F DVeH] =K(q,di-s(q,9) =0,
(14)
Using this constraint to ‘square’ system (3), one can
define a second-order Ertended Jacobian method

i= [KJ(g?Zi)]-l m

In contrast with (12), this scheme does not guaran-
tee that cyclic task trajectories map into cyclic joint
trajectories. In fact, constraint (14) is not twice in-
tegrable in general, i.e. it is nonkolonomic.

Proposition 1 can be used to state the equiva-
lence between first-order methods ( 1.C) and second-
order methods (2.B) in the case of objective func-
tions quadratic in q. For example, consider again
H(q) = 344, which is optimized at velocity level
by (13). On the other hand, (14) can be equivalently
expressed now as

(15)

2la-313)4) = o, (16)

A. [terative methods

B. Exact methods C. Exact methods

1. First-order schemes

Find q, given qo H(q)

H(q) H(Qqo,q), quadratic in §

2. Second-order schemes

Find §, given qq, qo H(q,q)

H(qo,q) H(qo,q0,4), quadratic in §

Tab. 1 - Classification of resolution methods
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resulting in

I-IDg= 3T+ 3104 (17)
Using the idempotency of matrix (I-J'J), and not-
ing that for any ¢ there exists a vector a such that
(I-J1J)§ = (I~J'J)a, the equivalence is shown by
applying (6) with v = 0. As a result, this second-
order method will be cyclic both in position and
velocity only if the pseudoinverse solution (13) is
cyclic itself.

Finally, case (B.3) is similar to (A.3), but ap-
proaching the problem at the acceleration level gives
more flexibility in the definition of objective func-
tions. To achieve good dynamic performance along
the task trajectory, the robot dynamic model is in-
troduced

(18)
T

B(q)4 +n(q,q) = u.

When the squared norm of the joint torque %u uis
considered, the objective function remains quadratic
and positive definite in terms of the joint acceler-
ation §, being the inertia matrix B > 0. How-
ever, local minimization of pure joint torque may
lead to unstable ‘whipping’ phenomena in the joint
space (Hollerbach and Suh, 1987). Among the
schemes that counterbalance this effect, we mention
the square inverse inertia weighted method of Ne-
dungadi and Kazerounian (1989) and the addition
of a stabilizing velocity-acceleration term proposed
in (De Luca and Oriolo, 1990b). In the latter, the
product qoq (linear in acceleration) ‘completes’ the
quadratic objective function.

Optimization of a Complete Quadratic Form

In some of the examined redundancy resolution
schemes a major role is played by the problem of
minimizing a complete quadratic objective function

. - 1 T T
xrg.glnH(x)_2x Wx-b'x+c, (19)
with W > 0, subject to the linear constraint
Jx=y, yeR". (20)

with full rank J (a constraint qualification condi-
tion). Equation (20) typically resuits from the lin-
earization of a nonlinear constraint (e.g. (1)). The
effect of the linear term in (19) is to *bias’ the un-
constrained minimum at x* = W-!b.

Defining the Lagrangian as

L(x,A) = H(x)+AT(Ix-y). AeR™ (21

the necessary and sufficient conditions for optimality
are T
TxL=Wx-b+J A=0.

(22)
Tal=Jx—-y=0.
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from which

x=W-JTAW-1JIT) -1y - IW~'b) + W-'b

=y + (I -3,HW-1b,
(23)
where the definition of weighted pseudoinverse has
been used.

Customizing x,y, W, and b, one can recover (4)
or (5). Indeed, the solution of any quadratic case
in Tab. 1 naturally fits in the general form (23).
One interesting outcome of the above analysis is that
even the approximate update (9), which iteratively
minimizes H(q), can be reinterpreted as the ezact
solution minimizing the complete quadratic function

o L.y, .
H(a,4) = 547a+ oVeH| a4  (24)

by setting x=q, y=p, W=I, and b= --chqH|qu
in (23). Therefore, the joint velocity norm is embed-
ded in the PG method as a ‘regularizing’ term. The
relative importance of the two components in (24) is
assessed by the choice of a. It follows that only the
Extended Jacobian method is available for the ex-
act optimization of a ‘pure’ configuration dependent
objective H(q).

Finally, note that any exact method for quadratic
optimization may use the idea of ‘reduction’ to the
space of redundant degrees of freedom. as opposed
to ‘projection’ of vectors in the Jacobian null space,
for designing a more efficient algorithm to compute
the same solution (De Luca and Oriolo, 1990b).

A Discrete Time Algorithm

In this section, we consider an iterative acceleration
scheme for the minimization of a general criterion of
the form
) ky.r. .
H(q,q) = 4 at kaL(q), ki,ka > 0. (25)
When k; = 0, purely configuration dependent in-
dices L(q) are recovered, which may be also non-
quadratic. With the arm in a state (qo, Go), assume
that the acceleration q is kept constant for a sam-
pling time T". Thus, after T seconds the kinematic
state of the arm will be

1
= . T Lo TQ, ‘
q=9qo+Qqol + 54 (26)
G=q +4T.
Expanding L(q) around qo up to the second order
results in

L(q) ~L(qo) + VqLIZO(q - qo)

; (27)
+(q-q0) VL], (a = qo),



where V2L is the Hessian matrix of L(q). Substi-
tuting eqs. (26-27) in (25), the quadratic approxi-
mation A’ of the criterion H can be expressed as a
function of q only

H'(q) = -2-qTWq+bTQ+C- (28)
where
W = T?(k I+ -k—szV’?L] )
= 1 1 a~lqe/
lcg kz 2 .
b=T(5Vallg,+ I+ FT*ViL| )do).
(29)

The minimization of H'(q) subject to the kinematic
constraint (3), is a special case of problem (19-20).
With the above definitions, (23) gives

4= Jf - (I-35,3)W-1b, (30)
This solution is well-defined only when matrix W
is positive definite; the ‘damping’ factor k; has to
be chosen so to satisfy this condition. Since the
proposed acceleration scheme includes second-order
terms in the Taylor expansion (27), the solution uses
the curvature information represented by the Hes-
sian, possibly resulting in a faster convergence when
close to optimality.

A simplified version of the algorithm may be de-
vised, neglecting second-order terms in (27). The
following solution is obtained (assuming k; # 0)

1 k
= I = =(I -3 =277 !
qg=Jr T(I JTI(qo + lel qL;qo). (31)

The null-space acceleration vector is here a linear
combination of the two gradients of H w.r.t. q and
q. Note that this form requires less computations
than differentiating a first-order solution. e.g. (9).

Simulation Results

The discrete-time (DT) algorithm (31) has been
compared to the PG method (9) for resolving re-
dundancy in a planar arm with three rotating joints
and equal unitary link lengths. The chosen com-
mon objective is to maximize manipulability during
a motion starting from the initial configuration
q(0) = (=3°.-5°,170°). (32)
which is close to singularity. The end-effector is re-
quired to trace a circular path centered at the ori-
gin. at the constant angular speed « = 180°/sec.
Simulation time is 1 second. with a sampling time
T = (.01 seconds. Using absolute joint angies g;
(w.r.t. the z-axis), the Jacobian of this robot is

—sing; —singa —sings ’
cos qq oS g2 cosqs |

J(q):: (33)
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while a convenient manipulability measure is

H(q) = sin®(g2 — q1) + sin’(g3 ~ ¢2). (34)

Figures 1-3 refer to the first-order PG method
with o = 0.1, showing the arm motion, the norm
of the joint velocity, and the value of the crite-
rion. Note that large joint velocities result, espe-
cially to get out of the singularity. A larger o leads
in this case to a jerky behavior. For the second-
order discrete-time method, the arm has the same
initial joint velocity obtained with the PG method

q(0) = (179.5°,180.5°, 180°)/sec. (35)
Using the coefficients ky = 1 and k; = 1000 in (31)
provides a motion very similar to Fig. 1. However,
Joint velocities are significantly reduced (Fig. 4) at

practically no expense of performance, as shown by
the criterion in Fig. 5.

Conclusions

Optimal first and second-order methods for using
the redundant degrees of freedom of a robotic arm
have been analyzed. pointing out the relationships
among existing techniques and classifying them into
exact or iterative.

Three new results were presented.

1) Under the full rank assumption for the robot
Jacobian, a necessary and sufficient condition was
given for the equivalence between a velocity ‘and an
acceleration solution method.

2) A second-order version of the Extended Jacobian
technique was introduced for the exact optimization
of objective functions depending on joint velocity.
Optimality of the initial state of the robot arm is
required in this case.

3) An iterative algorithm has been proposed for
optimizing at the acceleration level a criterion de-
pending on joint position and velocity, based on a
discrete-time approach.
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Fig 5 - Manipulability with the DT method



