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Fig. 8. Experimental scenario 1 (swing-up to q""): results with the proposed approach. For comparison, the first column shows the results without learning,
i.e., when partial feedback linearization and stable tracking for the first joint are computed on the nominal model.
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scenarios. In particular, it shows that the tracking accuracy
for ¢ does not change significantly over the iterations, while
the evolution of ¢p gets increasingly closer to the planned
trajectory, as the latter approaches feasibility thanks to the
model learning procedure.

For comparison, Fig. 9 shows the experimental results
obtained in this scenario with the method of [7] under the
same nominal information on the robot dynamic model. While
the active joint converges to its desired goal, the second joint
oscillates (with a light damping due to friction) without ever
entering the basin of attraction of the stabilizing controller.
Therefore, we can claim that the learning procedure makes
the proposed method able to withstand a level of model
uncertainty which is not tolerated by purely model-based

controllers.

Fig. 10. Experimental scenario 2 (swing-up to ¢ 41): results with the proposed
approach. Just before the end of the second iteration the state converges to a
region where the LQR controller can be successfully activated.

The second experiment is again a swing-up scenario, but
the goal is now the down-up configuration q%* = (0; ). The
planning horizon has been set to T = 2 s (N = 200). As
shown in Fig. 10, also in this case the learning procedure
allows to complete the maneuver successfully after two itera-
tions (see also the second column in Table I).

V. CONCLUSIONS

We have proposed an iterative method for planning and
controlling motions of underactuated robots in the presence of
model uncertainty. The method hinges upon a learning process
which estimates the induced perturbations on the dynamics of
the active and passive dofs. Each iteration includes an off-

TABLE I
TRACKING RMSE [rad] IN THE EXPERIMENTS

scenario 1 scenario 2 line planning phase and an on-line planning phase, which take
R P R R advantage of the learned data to improve the feasibility of the
without learning ~ 0.045 0191 0,056  0.320 planned trajectory and the accuracy of its tracku.lg. .
iteration 1 0.035 0.623 0.022 0470 The proposed approach was validated by application to the
iteration 2 0.037 0038 0023 0034 Pendubot, a well-known underactuated platform consisting of
iteration 3 0.036  0.036 - - . . .. .
a 2R planar robot with a passive elbow joint. In particular,
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numerical simulations of our iterative method starting with
considerable errors in the nominal dynamic parameters (+30%
of the true values) have shown that swing-up maneuvers and
transfers between unstable equilibria can be executed success-
fully after very few iterations. This remarkable performance
was confirmed in experimental tests on a real Pendubot.

In addition to applicability to general underactuated systems
and independence from the specific maneuver, a further aspect
of our method that deserves to be emphasized is that no torque
measurement is required. In fact, only positions, velocities
and accelerations must be available, so that implementation
is possible using only encoders. Another interesting feature is
the possibility to incorporate constraints on the robot states
and/or inputs in the planning phase, as well as to handle
(without any modification) also the presence of repetitive
external disturbances.

Future work will consider the problem of guaranteeing hard
constraints during the entire learning transient, by explicitly
taking into account the covariance of the uncertainty during
the planning phase. Moreover, we plan to test the method on
different underactuated robots, namely quadrotor UAVs and
humanoids.
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