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Regulation of Flexible Arms Under Gravity

Alessandro De Luca and Bruno Siciliano

Abstract—A simple controller is presented for the regulation problem
of robot arms with flexible links under gravity. It consists of a joint
PD feedback plus a constant feedforward. Global asymptotic stability of
the reference equilibrium state is shown under a structural assumption
about link elasticity and a mild condition on the proportional gain. The
result holds also in the absence of internal damping of the fiexible arm.
A numerical case study is presented.

I. MOTIVATION

The regulation problem for articulated mechanical structures is
often solved by designing simple control laws which strongly exploit
the physical properties of the system. It is well known that a rigid
robot arm can be globally asymptotically stabilized around a given
joint configuration via a PD controller on the joint errors, provided
that gravity is exactly cancelled by feedback {1]. Under a mild
condition on the proportional gain, this scheme can be simplified
by performing only a constant gravity compensation at the desired
configuration [2]. This result was extended in [3] to the case of robots
with elastic joints, under the further assumption that joint stiffness
overcomes the gradient of the gravitational term. More recently, the
design of simple controllers with guaranteed convergence has been
addressed for robots where flexibility is distributed along the links
and not concentrated at the joints. Asymptotic stability of a joint PD
controller for planar (i.e. without gravity) robot arms with flexible
links has been shown in [4], while the case of no internal damping
has been considered for a single-link arm in [5). Full state asymptotic
stabilization of flexible arms using strain measures at the link bases
was also presented in [6], still without gravity.

In this work, we consider the case of flexible manipulators under
gravity, with or without internal damping of link vibration. Inspired
by the approach of [3], we prove global asymptotic stability of a joint
PD controller, i.e. avoiding feedback from the elastic coordinates,
with constant feedforward gravity compensation (PD+ controller)
for a full nonlinear model of multilink flexible robots. A structural
assumption about link elasticity is required and a mild condition on
the proportional gain is derived. The proof goes through a classical
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Lyapunov argument. A particular expression of the inertia matrix is
then exploited to show asymptotic stability also in the absence of
internal damping. A numerical case study is developed for a two-link
flexible arm.

II. DYNAMIC MODEL OF FLEXIBLE ARMS

Consider a robot arm composed of a serial chain of links, some
of which are flexible. The Lagrangian technique can be used to
derive the dynamic model, through the computation of global kinetic
and potential energy of the system [7]. Due to link flexibility, the
dynamic model is of distributed nature. Slender links can be modeled
as Euler-Bernoulli beams satisfying proper boundary conditions at
the actuated joint and at the link tip. While a linear model is in
general sufficient to capture the dynamics of each flexible link, the
interplay of rigid body motion and flexible deflections in the multilink
case gives rise to fully nonlinear dynamic equations. However, the
usual dynamic models are valid under the assumption of small link
deformation [7]-[9].

In order to obtain a finite-dimensional model for convenient
analysis and synthesis of control laws, basis functions for describing
link deformation shapes are to be chosen with an associated set
of generalized coordinates. Let 6 denote the n X 1 vector of joint
coordinates, and § the m x 1 vector of link coordinates of an assumed
modes description of link deflections; then, the (n + m) x 1 vector
g = (8767)T characterizes the arm configuration.

We suppose to include only bending deformations limited for each
link to the plane of rigid motion. This can be enforced by proper
structural design of the links so as to avoid torsional effects. The
closed-form dynamic equations of the arm can be written as n + m
second-order nonlinear differential equations in the general form [7],
[8]:

B@i+hai)+o0+ (g0 ps )= (5)

In (1), the (n + m) x (n + m) positive definite symmetric inertia
matrix B may depend in general on both joint (rigid) and link
(flexible) coordinates. The (n+m) x 1 vector k contains Coriolis and
centrifugal forces, and can be computed via the Christoffel symbols,
i.e. via differentiation of the inertia matrix elements; it can be shown
that a factorization of h exists

h(g,9) = 5(¢,9)d )]

such that the matrix B — 25 is skew-symmetric. This is similar to
the rigid case [1] and follows from energy arguments holding for all
mechanical systems with positive definite inertia matrix. The positive
semi-definite (diagonal) matrix D in (1) describes internal modal
damping of the links, i.e. the case of no damping (D = 0) will also
be considered. Notice that we have implicitly considered clamped
boundary conditions at the joint actuators’ side; this assumption,
which is typically enforced under a joint PD feedback [9], implies
that the control does not enter directly in the equations of motion for
the flexible part.

Some further considerations are in order regarding the terms in
(1) deriving from the potential energy U, composed of the gravity
contribution U, and of the elastic contribution Us. In view of the
small deformation hypothesis we have, in the range of validity A of
the model, that

Us = %ﬂm < Usmax <00, 6§ €ACR™ 3)
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where K is the positive definite symmetric (diagonal) stiffness matrix
associated with link elasticity. A direct consequence of (3) is that

2l‘]é,max (4)

<
Il < o 5 e

where ||v|| denotes the usual Euclidean norm of a vector v; also, we
denote by Amax{(A)(Amin(A)) the largest (smallest) eigenvalue of a
symmetrix matrix A.
Concerning the gravity contribution, the (» + m) x 1 vector of
gravity forces g = (9U,/8q)T can be partitioned as
— [ 9 (9, 6)
9(q) = ( 95(6) ) &)

where the dependence of the lower term is justified by the small
deformation hypothesis. Further, the vector g satisfies the inequality

9
oq
where ag,a1,a > 0. This can be easily proven by observing that
the gravity term contains only trigonometric functions of # and
linear/trigonometric functions of 8. Also, inequality (4) has been used
in (6). As a direct consequence of (6), we have
floa1) — g(@2)ll < ellgs — g2[l Vg € R” x A CR™™
i=1,2. @)

2U&,max =a (6)

< <
< a0 +aalléll < @0 + ey [5EES

II. A STABLE JOINT PD+ CONTROLLER
Consider the joint PD+ control law

u = Kp(Baes — 8) = KDb + go(Baes, bies)s ®)
with Kp > O (at least), Kp > O, and being d4es defined by
baes = —K "' g5(8aes)- ®

The equilibrium states of the closed-loop system (1), (8) satisfy the
equations
90(0,68) = Kp(Baes — 0) + go(Odes, bdes)
gs(8) = —K6.

(10a)
(10b)

It is easy to recognize that (10b) has a unique solution § for any
value of § € R™. Adding Kdes + gs(8des) = O to the right-hand

side of (10b) yields
KP (0] Gdes -0
O K bdes — 6

:(99(976) - ge(edes,édes) )

Kq(Qdes - q)'

95(0) — g6(facs)

=9(a2) — 9(¢des)- (11)

Under the assumption that

Amin(I{q) > a, (12)
we have, for ¢ # gdes:
1K q(gaes — @)l > Amin(Kg)l|gaes — ¢l

> allgaes — 4ll > ll9(a) — 9(gaes)l|  (13)

where the last inequality follows from (7). This implies that ¢ =
Qdes, § = 0 is the unique equilibrium state of the closed-loop system
1), ®.

Condition (12) will automatically be satisfied, provided that the
assumption on the structural link flexibility

Amin(K) >« (14)

holds, and that the proportional control gain is chosen so that the
condition

Amin(I(P) > (15)

is verified.
First, we consider the case of D > 0. The following result can
be established.
Theorem: The equilibrium state ¢ = gges,§ = 0 of system (1) is
asymptotically stable under the control (8), provided that (12) holds.
Proof: Consider the energy-based Lyapunov function candidate

lop.. 1 .
V= 54" Bi+ 5 (2 — 0)" Koq(gaes = 0)
+ Ug(g) = Ug(gaes) + (gdes — 9)T 9(gaes) > 0

which vanishes only at the desired equilibrium state, due to (10)~(13).
The time derivative of (16) along the trajectories of the closed-loop
system (1), (8) is

(16)

V=g (Bq + §Bq) ~ " Ko(qaes — )

+3"(9(g) — 9(qaes))

(G T

7 Kp(B4es — 6) . 96(qaes)
- "T( K (ban — 8) ) +d' (g“” - (giwls)))
a7

where identity (2) and the skew-symmetry of the matrix B—28S have
been used. Simplifying terms yields

V=—6"Kpb-6"Ds<0 (18)
where (9) has been utilized. When V = 0, it is ¢ = 0 and the
closed-loop system (1), (8) becomes

. KP(odes - 0) + 90(‘1des) - go(q)
Bi= ( (K6 + g5(6)) )

In view of the previous equilibrium analysis and of (12), itis § = 0
if and only if ¢ = gges, OF @ = 045 and § = b4es. Invoking LaSalle
invariance set theorem [10], asymptotic stability of the desired state
follows. Q.E.D.

For the case of no internal damping (D = 0), further analysis is
needed to show asymptotic stability. To this purpose, we introduce
two additional hypotheses:

H1: The inertia matrix B is a function of 8 only.

H2: The inertia sub-matrix relative to the flexible variables Bss
is constant.

The first hypothesis corresponds to approximating the kinetic
energy of the system with that pertaining to the instantaneously
undeformed arm configuration [9], [11]; this is a common engineering
practice in the modeling of flexible structures, e.g., [8]. The second
hypothesis is conveniently satisfied by a proper selection of boundary
conditions [12] and naturally generalizes the structure of the single-
link inertia matrix. Therefore, the inertia matrix takes on the following
partitioned expression:

_ [ Bss(8)
B= (Beﬂ(ﬁ)

As a consequence of (20), the vector of Coriolis and centrifugal forces
h contains only quadratic terms in 8,6, and 6,6, for any i, j, k, and
then A = 0 when 6 = 0.

Upon these premises, asymptotic stability of the equilibrium state
g = qdes,¢ = 0 of system (1) under the control (8) can be proved
also for the case of no internal damping.

(19)

Bss
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Corollary: Under hypotheses H1 and H2, the thesis of Theorem
1 holds also for D = 0.

Proof: Proceeding as above leads to
V=-—6TKpfd<o0 @1

so that V = 0 if and only if 6 = 0. In this situation, § = 4 and
8 = 0, and the closed-loop system (1), (8) becomes eventually

Bos(8)5 + go(0,6) = Kp(Bacs — 0) + g6 (s, baes)  (22)
B5,§5 + g&(é) + Ké6=0. (23)

A factorization of gs always exists so that
90(8,8) = Go(8)5 + v(6) (24)

for a constant §. The solution §(¢) to the linear equation (23) is

8(t) = 6o(t) — K" gs(8) @5)
where the homogeneous solution 8o(t) is of the form
bo(t) = Zc;u; cos(wit + ;) (26)

i=1

being w? the distinct eigenfrequencies of the matrix Bj; K, u;
the associated right eigenvectors, and ¢; constant coefficients [11].
Differentiating (26) twice, using (24) and substituting into (22) gives

(Go(8) — Bos(9)Byz' K)bo(t) = Kp(8aes — 8) + go(Baes, bes)
— ¥(0) + Gs(8)K " g5(8)

= constant. 27

This set of » linear equations can be compactly rewritten as Abo(t) =
b or, in view of (26), as

AUcol - {ci cos(wit + ¢i)} = b (28)

with U = (u;---um). Since the system eigenfrequencies w; are
all distinct, identity (28) is a contradiction, equating a finite sum of
independent time-varying functions to a constant. This means that
the harmonic term (26) must vanish, and then the unique solution to
(23) (e, when V = 0) is

6=-K""gs(8) 29)

and thus 6 = 0. In sum, V = 0 implies ¢ = 0 and the result follows
from (19) as in Theorem 1. Q.ED.

We remark that in the present case of flexible link arms, we could
not use the existence of a strict triangular form for the inertia sub-
matrix Bgs as in the case of elastic joint robots [3]. This basic
difference has motivated the above alternate proof.

IV. DISCUSSION

The above simple joint PD+ controller for robots with flexible
links guarantees global asymptotic stability of a desired constant arm
configuration in the presence of gravity. The following comments
are in order.

+ The control law does not require any feedback from the deflec-
tion variables, and is composed by a linear term plus a nominal
feedforward term.

e Satisfaction of the structural assumption Amin(K) > « is not
restrictive in general, and depends on the relative importance
of stiffness vs. gravity. When compared with the joint elastic
case (3], link stiffness is usually much smaller than transmission
stiffness but the lightweight nature of the links greatly reduces
also the magnitude of the gravity terms.

Fig. 1.

A planar two-link flexible arm.

« Stability is guaranteed even in the absence of link internal
damping. Physically, some small damping will always exist but
the regulation transients could be very slow. If desired, a passive
increase of damping can be achieved by structural modification,
e.g., viscoelastic layer damping treatment [13].

« Tt is not necessary to compensate gravity for all configurations.
In fact, the nonlinear control law

U= KP(Gdes - 9) - KDé + 90(996)

leads to a similar stability result. Note that, in any case, the
extra term appearing either in (8) or in (30) does not include the
whole gravity force appearing in the model (1).

» The knowledge of the link stiffness K and of the complete
gravity term g is needed mainly for defining the steady-state
deformation 64es. Indeed, uncertainty in the associated model
parameters produces a different asymptotically stable equilib-
rium state. This can be rendered arbitrarily close to the desired
one by increasing Kp, provided that the arm is stiff enough.

« If the tip location is of interest, p = kin(#, 6), then f4.s can be
computed by inverting for 8 the direct kinematic equation

kin(8, —K "' g5(8)) = paes

(30)

@n

so as to achieve end-effector regulation at steady-state.

* All the above derivation is based on a ‘generic’ finite-
dimensional approximation of a distributed parameter model
with the assumption of small link deformation and no torsion.
If this is not the case, the same result may still hold but a more
complex approach would be probably needed for the analysis.

V. CASE STUDY

In order to test the proposed controller, a planar two-link flexible
arm under gravity was considered. The arm is sketched in Fig.
1 together with its frame assignments, allowing computation of
kinematic quantities needed for model derivation. The following
parameters were set up for the links and the tip payload:

p1 = p2 = 1.0kg/m (link uniform density)
¢, = £2 = 0.5 m (link length)
dy = d2 = 0.25m (link center of mass)
my = mo = 0.5m (link mass)
mp1 = mp2 = 1kg (hub mass)
my, = 0.1kg (payload mass)
Jo1 = Joz = 0.0083kg m® (link inertia)
Jh1 = Jpa = 0.1kg m? (hub inertia)
J, = 0.0005kg m? (payload inertia)
(EI), = (EI); = 10N m? (flexural link rigidity).
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Fig. 2. Time history of joint angles and torques, and of link modal deflections.

The Lagrangian dynamic model of the arm was derived as in [8]. A
modal expansion with two clamped-mass assumed modes was taken
for each link, i.e. the link deflection w; is expressed as

wi = de(mi)éij(i),

=1

We obtained the natural frequencies of vibration:

1=1,2.

fir=1.40Hz f;, =5.10Hz
f21 = 5.21Hz f22 =32.46Hz

the stiffness coefficients of the diagonal matrix K:

k11 = 38.79N  ky2 = 513.37TN
k21 = 536.09N k22 = 20792.09N,

and the coefficients related to the mode shapes:

#11,e =039  ¢1z.=0.36

Pr1,e =134  ¢hy.=-1.38

¢21,e = 1.49 $22,e = —0.75

ba1,e =430  $h . = —15.49
v = 0.069 vig = 0.12
ve1 = 0.28 ve2 = 0.30

where the primes denote spatial derivatives, the subscript e refers to
evaluation of ¢;; and ¢;; for z; = £;, and

45
vij =/ pidi(xi)dx;, i,j =12
0

Further, the coefficients of the matrix D were related to those of K as
d;; = 0.1y/k;;,

corresponding to relatively small internal damping of the link modes.
The expressions of all terms in the model (1), i.e. B(q) and h(qg, ¢),
can be found in [8], except for the gravity term g(g). Hence, it is
reported below for completeness (standard abbreviations are used for
sine and cosine):

L3 =12

o= 07 g=( g g g7

with
a1 = gncr+ (12611 + g13612)51 + graciz
+ (915611 + g16612 + g17621 + g18622)512
g2 = g21c12 + (922611 + 923612 + g24621 + g25622)512
g3 = gs1c1 + ga2cC12
g4 = ga101 + gaz¢12
g5 = gs1C12
g6 = ge1C12,
where the constant coefficients are
g1 = go(midy + (ma + mpz + my)ty)
g12 = —go((m2 + maz2 + mp)P11e + v11)
913 = —go((ma + mp2 + mp)d12. + v12)
go(mada + mpls)

g14
Jis = —go(mzdz + mpfz)¢'11,e

g16 = —go(mady + mpl2)dls .
@17 = —go(mpdar.e + va1)
918 = —go(mpdaz,e + va2)

921 = go(mady + mpfy)
—go(mady + mpta)oy, .

g22
923 = —go(madz + mpla)dya .

924 = —go(mpga1,e + v21)

g25 = —go(mpdaz,e + va2)

931 = go((ma + ma2 + mp)d11,e + v11)
g32 = go(mads + my2)ey, .

941 = go((m2 + maz + mp)P12,c + v12)
ga2 = go(madz + mpla)dy .

g51 = go(mpda1,e + v21)

ge1 = go(mpaz e + va2)

being go the gravity acceleration. It is worth noticing that the model is
linear with respect to the coefficients grx (see also [8]). Also, verify
that g5 is only a function of 8, as anticipated.
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The arm was initially placed in the vertical equilibrium configu-
ration

8=(-90 0)"[deg] 6=( 0 0 0) [m].
The desired joint configuration was chosen
faes = (—45  0)7 [deg].

From (9), with the above values of stiffness coefficients, the residual
deflections at the desired state were computed as

bace = (—0.15  —0.0045 —0.0056 — 0.000076)" [m).
The PD feedback gains were chosen as
Kp = diag(18, 18)[Nm/rad}
Kp = diag(10, 2)[N m s/rad].

The resulting arm behavior under the PD+ control (8) is described by
the plots in Fig. 2. It is easy to see that the desired state (fqes, 6des)
is asymptotically reached, well within 2 s. Notice the large control
effort at the start of the motion and the constant torques resulting
at steady-state so as to compensate for gravity. The simulations also
revealed the following facts.

* We computed a value for « in (6) a posteriori for the simulated
trajectory, obtaining o = 17.67; thus, both conditions (14) and
(15) are actually satisfied. Indeed, those conditions are only
sufficient, and we achieved satisfactory results even for smaller
values of proportional gains.

* When increasing the gains, the system remained stable at the
expense of high initial torques though. We observed, however,
that too large values caused numerical instabilities, especially in
association with large initial errors. A typical remedy for this
inconvenience would be to impose an interpolating trajectory
from the initial to the desired state even if the required motion
is a point-to-point task.

e We verified that the nonlinear control law (30) leads to very
similar results, not reported here for brevity; in particular, it
was found that the initial control effort is reduced in view
of the gravity compensation performed for the actual system
configuration.
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Control of Flexible Arms with Friction in the Joints

Vicente Feliu, Kuldip S. Rattan, and H. Benjamin Brown, Jr.

Abstract— The control of flexible arms with friction in the joints is
studied. A method to identify the dynamics of a flexible arm from its
frequency response (which is strongly distorted by Coulomb’s friction)
is proposed. A robust control scheme that minimizes the effects of this
friction is presented. The scheme consists of two nested feedback loops: an
inner loop to control the motor position and an outer loop to control the
tip position. It is shown that a proper design of the inner loop eliminates
the effects of friction while controlling the tip position and significantly
simplifies the design of the outer loop. The proposed scheme is applied
to a class of lightweight flexible arms, and the experiments show that the
control scheme results in a simple controller. As a result, the computations
are minimized and, thus, high sampling rates may be used.

I. INTRODUCTION

A major research effort has been made in the last five years to
control flexible structures and, in particular, flexible arms. Several
papers have appeared on this topic studying different aspects: Cannon
and Schmitz [1] and Matsuno et al. [2] are examples of controlling
the endpoint position using state-space techniques; Harahima and
Ueshiba [3], Siciliano er al. [4], and Rovner and Cannon [5] used
different adaptive control schemes to account for changes in the
load; and Ower and Van de Vegte [6] used classical frequency-domain
techniques to control a two-degree-of-freedom flexible arm. However,
very little effort has been devoted to the control of flexible arms when
static and dynamic frictions are present in the joints, although this is
common in practice. The effects of friction are especially important
in very lightweight, flexible arms or in flexible arms moving at low
speeds and accelerations.

Several methods have been proposed to minimize the effects of
friction in the control of dc motors. The simplest method uses a
high-gain linear feedback. This method is based on the well-known
property that the robustness of a closed-loop system to perturbations
and changes in its parameters may be improved by increasing the
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