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Abstract— From a control point of view, humanoid gait
generation can be seen as a problem of tracking a suitable ZMP
trajectory while guaranteeing internal stability. In the presence
of disturbances, both these aspects are at risk, and a fall
may ultimately occur. In this paper, we extend our previously
proposed Intrinsically Stable MPC (IS-MPC) method, which
guarantees stable tracking for the unperturbed case, to the
case of persistent disturbances. This is achieved by designing a
disturbance observer whose estimate is used to set up a modified
stability constraint for the QP problem. The method is validated
by MATLAB tests as well as dynamic simulations for a NAO
humanoid in DART.

I. INTRODUCTION

Interest in humanoid robotics has considerably increased
in the last decade, leading to major improvements both on
the constructive side and on the control side. Maintaining
balance while walking, however, is still a challenging task.
The problem is usually approached by controlling the po-
sition of the Zero Moment Point (ZMP), i.e., the point on
the ground where the horizontal components of the contact
moments become zero. To guarantee balance, the ZMP has
to be kept inside the robot support polygon at all times. Most
position-controlled humanoids act on the ZMP via the Center
of Mass (CoM) of the robot. However, finding a bounded
CoM trajectory that realizes the desired (or a suitable) ZMP
trajectory is not trivial; in control terms, this requirement
amounts to tracking with internal stability.

Solving the above problem for the full nonlinear hu-
manoids dynamics is an open problem. Under certain as-
sumptions, one may use a simplified linear model called
Linear Inverted Pendulum (LIP) [1]. Asymptotic tracking
with internal stability for the LIP can be obtained with the
gait generation algorithm of [2] based on LQR control with
preview; however, constraints cannot be enforced. On the
other hand, Model Predictive Control (MPC) methods [3] can
incorporate constraints but do not guarantee internal stability.

Gait generation methods based on MPC can typically
withstand the application of impulsive disturbances such as
pushes. However, when the disturbance is persistent (see
Fig. 1), these methods may easily fail to produce a solution
due to the loss of feasibility of the QP problem at the core
of the MPC. In the control literature, there exist robust MPC
schemes which are robust to bounded disturbances [4], [5],
[6]. A similar idea is used in [7], where safety margins
are derived to cope with a given set of uncertainties; this
approach can however be very conservative.

1The authors are with the Dipartimento di Ingegneria Informatica,
Automatica e Gestionale, Sapienza Università di Roma, via Ariosto 25,
00185 Roma, Italy. E-mail: lastname@diag.uniroma1.it

Fig. 1. A pendulum attached to the humanoid creates a persistent
disturbance on its dynamics.

Another path to robustness is to build a disturbance
observer and design a controller based on the disturbance
estimate. A first example is [8], where an external force is
estimated from its effect on the humanoid. Other examples
include [9] which incorporates an observer in a preview
controller, or techniques based on the divergent component
of motion [10], [11].

In [12] we proposed Intrinsically Stable MPC (IS-MPC),
a gait generation method in which bounded CoM trajectories
are obtained thanks to the inclusion of an explicit stability
constraint. IS-MPC was further developed in [13], showing
how preview information (e.g., coming from a footstep
planner) can be used in the stability constraint so as to make
the MPC scheme recursively feasible, and hence stable.

In this paper, we extend IS-MPC to handle the presence
of persistent disturbances. To this end, we incorporate an
observer which provides an estimate of the disturbance which
is then used to correct appropriately the stability constraint.

The paper is organized as follows. In the next section,
we summarize IS-MPC in the absence of disturbances.
Section III introduces the perturbed LIP model. The ideal
case of known disturbance together with the corresponding
modified stability constraint are discussed in Sect. IV. The
known disturbance hypothesis is removed in Sect. V, where
a disturbance observer is introduced and used in the stability
constraint of IS-MPC. Simulations on the LIP and dynamic
simulations on a NAO are presented to validate the proposed
approach. Section VI offers a few concluding remarks.
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II. IS-MPC: THE NOMINAL CASE

In this section we provide a brief review of the IS-MPC
gait generation method. See [12], [13] for further details.

Assume that the humanoid is walking on flat horizontal
ground, and denote the position of the humanoid CoM
and ZMP as (xc, yc, zc) and (xz, yz, 0), respectively. The
dynamic equation relating the CoM and the ZMP can be de-
rived by balancing moments around the ZMP, e.g., see [14].
Assuming the CoM height zc to be constant at z̄c and
neglecting angular momentum contributions around the CoM
leads to the Linear Inverted Pendulum (LIP) model, where
the x-axis (sagittal) and y-axis (coronal) dynamics are linear,
identical and decoupled. For illustration, consider only the
sagittal motion

ẍc = η2(xc − xz),

with η =
√
g/z̄c, where g is the gravity acceleration. Note

that the ZMP position xz acts as an input in this model.
The LIP is decomposed into a stable and an unstable

subsystem by using the following change of coordinates:

xu = xc + ẋc/η

xs = xc − ẋc/η.
(1)

The dynamics of xu, also known as divergent component of
motion [15] or capture point [16], is

ẋu = η (xu − xz).

Although this dynamics is unstable, xu (and hence xc) will
not diverge with respect to xz provided that

xku = η

∫ ∞
tk

e−η(τ−tk)xz(τ)dτ. (2)

Equation (2), called the stability condition in the following,
is a relationship between the value of xu at the current time
tk, denoted by xku, and the future values of the input xz , and
is therefore non-causal [17].

Intrinsically Stable MPC (IS-MPC) is a scheme for hu-
manoid gait generation that uses a causal stability constraint
derived from condition (2) in order to guarantee that the gait
is internally stable, i.e., that the CoM remains bounded with
respect to the ZMP. The prediction model is a dynamically
extended LIPẋcẍc

ẋz

 =

 0 1 0
η2 0 −η2
0 0 0

xcẋc
xz

+

0
0
1

 ẋz, (3)

with the ZMP velocity ẋz now acting as input. IS-MPC uses
piecewise-constant inputs, i.e., ẋz(t) = ẋiz for t ∈ [ti, ti+1],
with ti+1 − ti = δ the duration of sampling intervals. The
MPC control horizon is C · δ.

Although IS-MPC can perform automatic footstep place-
ment (AFS), in this paper we will for simplicity consider the
case of given footsteps (a simulation with AFS is included
however in Section V-C). In this case, only the ZMP and the
stability constraints must be enforced.

The ZMP constraint guaranteeing dynamic balance is
expressed as

RTj

δ∑k+i−1
l=k ẋlz − x

j
f

δ
∑k+i−1
l=k ẏlz − y

j
f

 ≤ 1

2

(
fx

fy

)
−RTj

(
xkz

ykz

)
, (4)

where RTj is the rotation matrix associated to the orientation
of the j-th footstep, (xjf , y

j
f ) is its position, and fx, fy

are the dimensions of a rectangular region approximating
the footprint. The above is the expression of the constraint
during single support; the double support constraint can be
expressed in a similar way.

The stability constraint is derived from (2) using the fact
that the ZMP is piecewise-linear:
C−1∑
i=0

e−iηδẋk+iz = −
∞∑
i=C

e−iηδ ˙̃xk+iz +
η

1− e−ηδ
(xku − xkz).

(5)
Here, the left-hand side gathers the ZMP velocities
ẋkz , . . . , ẋ

k+C−1
z within the control horizon, which are the

MPC decision variables. The right-hand side depends on the
system state at tk as well as on the tail, i.e., the conjectured
values ˙̃xk+Cz , ˙̃xk+C+1

z , . . . of the ZMP velocities after the
control horizon. This conjecture, which is needed to obtain
a causal constraint, can be made using the available preview
information on the footstep plan (anticipative tail). More
details on ZMP velocity tails are given in [13].

Collecting the MPC decision variables in

Ẋk
z = (ẋkz . . . ẋk+C−1z )T

Ẏ kz = (ẏkz . . . ẏk+C−1z )T ,

the generic MPC iteration at tk consists in solving the
following Quadratic Programming (QP) problem:

min
Ẋk

z ,Ẏ
k
z

‖Ẋk
z ‖2 + ‖Ẏ kz ‖2

subject to:
• ZMP constraints (4);
• stability constraints (5) for x and y.

Once the problem is solved, the first sample ẋkz of the
optimal input sequence is used to integrate the LIP dynamics
along x (analogously for y). This results in a CoM reference
trajectory that can be tracked by the humanoid robot using
a standard kinematic controller.

III. THE PERTURBED MODEL

Consider now a disturbance1 d acting on the LIP dynamics
as follows:

ẍc = η2(xc − xz) + d. (6)

This disturbance may represent external forces acting on the
humanoids as well as unmodeled dynamics (see, e.g., [7],
[18]) and uncertainties.

1In general, the disturbance will be a vector (dx, dy) and will include
a component acting along y. However, in the following we focus on the x
dynamics and therefore we shall simply write d in place of dx.
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The prediction model (3) is therefore modified to include
the disturbance asẋcẍc

ẋz

=

 0 1 0
η2 0 −η2
0 0 0

xcẋc
xz

+

0
0
1

 ẋz+

0
1
0

 d. (7)

Applying the same change of variables (1), the unstable
component xu is now found to be affected by d:

ẋu = η (xu − xz) + d/η.

To guarantee boundedness of the CoM with respect to the
ZMP in the perturbed case, the stability condition (2) must
be modified accordingly:

xku = η

∫ ∞
tk

e−η(τ−tk)xz(τ)dτ − 1

η

∫ ∞
tk

e−η(τ−tk)d(τ)dτ.

(8)
A causal implementation of this condition would require,
in addition to the conjecture on the ZMP velocities after
the control horizon, also knowledge of d from tk up to
infinity. In the next section, we will temporarily assume that
knowledge is indeed available in order to devise an IS-MPC
for the perturbed case. This hypothesis will be removed in
Sect. V by introducing a disturbance observer to be used for
implementing the stability constraint.

IV. IS-MPC: THE KNOWN DISTURBANCE CASE

Assume that the disturbance d is known over [tk,∞).
From (8) we can then derive the following computable
expression of the stability constraint (compare with (5))
C−1∑
i=0

e−iηδẋk+iz =−
∞∑
i=C

e−iηδ ˙̃xk+iz +
η

1− e−ηδ
(xku−xkz+∆k

d),

(9)
having denoted by ∆k

d the correction term due to the distur-
bance

∆k
d =

1

η

∫ ∞
tk

e−η(τ−tk)d(τ)dτ. (10)

Consistently with the assumption made for xz in Sect. II,
suppose that the disturbance is piecewise-linear

d(t) = di + ḋi(t− ti), t ∈ [ti, ti+1)

with di = d(ti). Then, a simple computation gives

∆k
d =

1− e−ηδ

η3

∞∑
i=0

e−iηδḋk+i +
dk

η2
. (11)

Replacing constraint (5) in the QP formulation with con-
straint (9), where ∆k

d is given by (11), and similarly for
y, leads to an IS-MPC scheme where the control inputs
(the ZMP velocities within the control horizon) are directly
modified by the profile of the disturbance, realizing a form of
indirect disturbance compensation2. In particular, recursive
feasibility will be achieved if sufficient preview information
is available, and in turn this will guarantee internal stabil-
ity [13, Props. 5 and 6].

2Direct compensation is not possible for system (7) because the control
input and the disturbance act at different levels.

CoM

xc 

x

Fext

xz

¢d

z

Fig. 2. Balancing in the presence of a known constant force acting on
the CoM: IS-MPC with disturbance compensation produces a steady-state
displacement between the ZMP and the COM that can be interpreted as the
humanoid “leaning against” the force. This displacement is exactly equal to
the disturbance-related term in the stability constraint.

To appreciate the effect of the compensation, consider
the special case in which the humanoid must balance (i.e.,
footsteps are fixed) in the presence of a constant disturbance
d̄ = F̄ext/m, arising from a constant force F̄ext pushing on
the CoM, with m the total mass of the robot. Under the
action of IS-MPC with disturbance compensation, the robot
converges to a steady state where — consistently with eq. (6)
— the displacement of the ZMP with respect to the COM is

xz − xc =
F̄ext

mη2
.

This can be interpreted as the humanoid “leaning against”
the force in order to counteract it (see Fig.2). Interestingly,
eq. (11) in this case readily provides

∆k
d = ∆d =

d̄k
η2

=
F̄ext

mη2
,

showing that the correction term due to the disturbance in
the stability constraint (9) is exactly equal to the steady-state
ZMP-COM displacement.

A similar compensation effect occurs when walking. Fig-
ure 3 shows a gait generated using IS-MPC with disturbance
compensation in the presence of a constant force acting
on the CoM, in comparison with the gait generated by
IS-MPC in the absence of disturbance. The simulation is
run in MATLAB with quadprog as QP solver, and uses
the following parameters: m = 4.5 kg, z̄c = 0.33 m,
fx = fy = 0.05 m, duration of the single and double support
phases 0.2 and 0.3 s, respectively, δ = 0.01 s, C = 100; in
the perturbed case, the external force along the x axis is
1.8 N, corresponding to a CoM acceleration of 0.4 m/s2,
and the same along the y axis. Again, observe how the robot
is leaning against the disturbance, as the CoM trajectory is
pushed in the opposite direction to the force.

Overall, the behavior of IS-MPC with disturbance com-
pensation can be interpreted as a natural anticipative action
aimed at counteracting the effect of the disturbance.
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Fig. 3. Gait generation in the presence of a known constant force acting
on the CoM: result of IS-MPC with disturbance compensation (top). Note
the arrow indicating the direction of the force. For comparison, the gait
produced by IS-MPC when no disturbance acts on the system is also shown
(bottom).

V. OBSERVER-BASED IS-MPC

The previous assumption of complete knowledge of the
disturbance can be justified in some special cases (e.g., when
walking on an inclined plane of known slope), but will not
be verified in general. To this end, we design in this section
a disturbance observer and discuss its use within an IS-
MPC scheme with disturbance compensation. We will then
showcase the performance of the resulting gait generation
method via simulations on the LIP model and dynamic
simulations on the NAO humanoid robot.

A. Disturbance observer

In general, the value of the disturbance d is unknown.
However, we can estimate it from other measurements; in
particular, in the following we assume that the coordinates of
the CoM and the ZMP, respectively xc and xz , are measured
(this is a rather standard occurrence in humanoids). Since d
is piecewise-linear (see Sect. IV), we can adopt the following
disturbance model (exosystem):

d̈ = 0,

and use it to extend the perturbed model (7), obtaining a
system with state x = (xc, ẋc, xz, d, ḋ) and characterized by
the following matrices

A =


0 1 0 0 0
η2 0 −η2 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

 B =


0
0
1
0
0


C =

(
1 0 0 0 0
0 0 1 0 0

)
.

(12)

Since the system is easily found to be observable, we can
build an asymptotic observer

˙̂x = Ax̂+Bu+G(Cx̂− y) (13)

where x̂ is the observer state and y are the available mea-
surements. The gain matrix G can be computed by simple
pole placement. This observer is guaranteed to reconstruct
asymptotically any piecewise-linear disturbance signal.

B. Observer-based stability constraint

To perform IS-MPC with disturbance compensation in the
general case when d is unknown, the estimate d̂ provided
by the asymptotic observer (13) can be used in the stability
constraint (9–10). Since the observer only produces the
current value d̂k of d̂ and does not perform any kind of
prediction, the straightforward choice is to compute the
correction term ∆k

d by replacing d(τ) with d̂k in the integral:

∆k
d =

d̂k

η2
.

While this is obviously an approximation, it should be
considered that in the MPC algorithm ∆k

d is recomputed
at each sampling instant; as a consequence, observer-based
IS-MPC can provide compensation also for slowly-varying
signals. This will be shown via simulations in the remainder
of this section, which also discusses some additional ideas
for achieving compensation of a larger class of disturbances.

C. Simulations on the LIP

We describe now some MATLAB simulations of the
perturbed LIP under the action of observer-based IS-MPC.
The parameters are the same of the simulation in Sect. IV.

In the first simulation, shown in Fig. 4, the LIP is subject to
the same constant disturbance of Fig. 3, i.e., d̄ = 0.4 m/s2 on
both x and y. The observed disturbance d̂ converges therefore
to the actual value d̄. As a consequence, the resulting gait
is almost indistinguishable from that generated by IS-MPC
when the disturbance is known (compare with Fig. 3).

In the second simulation, we add on both x and y the
disturbance d(t) = 0.2 + 0.15 sin(0.45πt) m/s2, which is
outside the piecewise-linear family. As shown in Fig. 5,
observer-based IS-MPC is still able to produce a stable gait.
This proves that the proposed method is robust to two distinct
sources of discrepancy: (1) the fact that the observer cannot
provide an asymptotically exact estimate of d and (2) the use
of the constant value d̂k in the stability constraint.

The disturbance signal used in the third simulation is
d(t) = 0.2+0.15 sin(2πt) m/s2, which includes a sinusoidal
term that varies more rapidly. Pure observer-based IS-MPC
fails in this case because it becomes unfeasible (results not
shown). However, feasibility can be recovered by applying
a suitable restriction of the ZMP constraints with respect
to their original size; the result is shown in Fig. 6. Indeed,
it can be formally shown that ZMP constraint restriction is
beneficial in general for recursive feasibility. Note how the
gait is quite different from that produced by IS-MPC if the
disturbance is known, also shown in Fig. 6.
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Fig. 4. Gait generation in the presence of an unknown constant disturbance
acting on the CoM: result of observer-based IS-MPC.
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Fig. 5. Gait generation in the presence of an unknown slowly-varying
disturbance acting on the CoM: result of observer-based IS-MPC.

Finally, we have simulated an observer-based IS-MPC
scheme with automatic footstep placement in the presence
of a constant disturbance d̄ = 0.4 m/s2 acting along the y
axis. To perform AFS, the footstep positions are added to
the decision variables of the MPC, while the cost function is
modified by including a term for tracking a reference velocity
of the CoM [12], in this case 0.1 m/s along the x axis. In
the resulting gait, shown in Fig. 7, one observes the expected
displacement of the footsteps due to the disturbance.

D. Dynamic simulations on NAO

As further validation, we performed dynamic simulations
of our method for a NAO humanoid in DART . The
qpOASES library was used to solve the QP. The robot and
gait parameters are the same as in the previous simulations,
except for δ = 0.05 s and C = 20.

In the first dynamic simulation, a constant external force
of 3.8 N along the sagittal axis is applied to the CoM. As
shown in Fig. 8, the robot falls when nominal IS-MPC is
used, whereas observer-based IS-MPC allows to counteract
the disturbance successfully, producing the expected effect
of leaning against the force. An interesting aspect of this
simulation, clearly shown in the bottom plot, is that the
observer does not estimate only the constant force, as it also
reacts to dynamic effects that are not modeled in the LIP.

In the second simulation, a force Fext =2+3.8 sin 0.45πt
N, which includes a sinusoidal component, acts on both
x and y. Figure 9 shows a comparison between the CoM
trajectories generated by nominal vs. observer-based IS-
MPC. Once again, the first fails while the second is able
to maintain balance while walking.
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Fig. 6. Gait generation in the presence of an unknown rapidly-varying
disturbance acting on the CoM: result of observer-based IS-MPC with ZMP
constraint restriction.
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Fig. 7. Gait generation in the presence of an unknown constant disturbance
on the CoM: result of observer-based IS-MPC with automatic footstep
placement. Note the direction of the disturbance.

In a third simulation, we considered a scenario where the
disturbance is not directly applied to the CoM. A 0.2 kg
pendulum is attached to the humanoid arm (this could
represent, e.g., an oscillating shopping bag), as in Fig. 1.
Thanks to the use of observer-based IS-MPC, the robot
successfully counteracts the disturbance as shown in Fig. 10,.

Movie clips of the above dynamic simulations are shown
in the video attachment.

VI. CONCLUSIONS

We have presented an extension of our previously pro-
posed IS-MPC scheme which is able to generate stable
humanoid gaits in the presence of persistent disturbances.
To this end, it incorporates a disturbance observer providing
an estimate which is then used to correct appropriately the
stability constraint. The resulting observer-based IS-MPC
scheme was validated via simulations on a LIP model and
a NAO humanoid, showing successful gait generation for a
wide range of applied disturbances. Future work will include:

• experimental validation of the proposed scheme (note
that the computational load of observer-based IS-MPC
is virtually the same of the standard IS-MPC, so that a
real-time implementation is possible);

• adaptation to more general classes of disturbances;
• a study of the conditions for recursive feasibility of the

observer-based IS-MPC algorithm.
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Fig. 8. NAO dynamic simulation in the presence of an unknown constant
force acting on the CoM. With IS-MPC, the robot is unable to maintain
balance (top left). With observer-based IS-MPC, the robot successfully
counteracts the disturbance (top right). Also shown is the observed force
against the actual force (bottom).
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Fig. 9. NAO dynamic simulation in the presence of a slowly-varying force
acting on the CoM. With nominal IS-MPC, the robot is unable to maintain
balance, whereas with observer-based IS-MPC a stable gait is achieved.
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