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Abstract. In this paper the control problem for a onelink
flexible arm described by a nonlinear model is
considered. Based on the input-output inversion
algorithm, a state-feedback control law is designed which
enables exact reproduction of any desired smooth joint
trajectory. In the closed loop an unobservable dynamics
naturally arises, related to the varables describing the
arm distributed flexibility. Open vs. closed-loop strategies
are developed and compared. Simulation results are
included. Finally, extensions of this approach to end-
point based trajectory control are suggested.

1. Introduction

Lightweight flexible structures have been
recognized as offering a potential over current rigid and
massive designs 11]. Increasing attention has been paid
lately to the control problem of flexible robotic arms.
Accurate dynamic modeling is a requisite for improved
performance. Most of the existing approaches are based
on classical control methods since linear models are
used [2-5]. Other works utilize nonlinear models and
different control techniques, such as adaptve control 16],
singular perturbation [7], and pseudo-linearizaton [8].

A proper definition of what are the control
objectives to be pursued for flexible arms has not been
established yet One might be interested in regulating the
end-point around a final position, or in tracking joint
trajectories while limiting arm deflections, or even in
driving the end-point along a feasible path. This paper
addresses the following questions: i) is it possible to
exactly reproduce any given joint trajectory?, and ii) is the
resulting closed-loop system stable? It will be shown that
the answer is yes to both questions.

In particular, a nonlinear control law that meets
these requirements can be designed using the input-
output inversion algorthm [9]. It is worth mentioning here
that the inversion approach has been used already in
rigid arm control [10] and is equivalent to the well-known
computed torque method [11]. The same approach has
been successfully applied in the case of robot arms with
elasticity concentrated at the joints [121.

The most relevant result of using inversion-based
feedback control in the above two robotic applications is
the equivalence of the obtained closed-loop system to a
linear and decoupled one, i.e. to strings of input-output
integrators. However, when the same technique is
applied to flexible arms the full linearization property is
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lost. In the closed loop, a subsystem arises whose
dynamics is unobservable from the output and possibly
nonlinear. The intemal stability of tis subsystem has to
be verified in order to vaidate the chosen control design.
This issue is completely absent in the case of rigid arms
or when elastcity is concentrated at the same locatons of
the control inputs. As a matter of fact, when the output is
chosen to be the joint angle of the flexible arm, the
unobservable dynamics is the one associated with the
elastic variables which describe the arm deformation.
Although this dynamics is shown to be stable, still a
critcal point is how damped is this part.

The implementation of control laws based on
system inversion presents other interesting aspects. A
closed-loop strategy requires nonlinear static feedback
from the full state of the arm. On the other hand, pre-
computaton of open-loop torques capable of driving the
joint angle along a given time trajectory asks for the off-
line integration of a reduced order dynamic system. This
is needed for recovering the "desired" behavior of the
deflection associated to the assigned joint trajectory. The
stability properties of this reduced order dynamics are
closely related to the ones of the unobservable dynamics
arising in the closed-loop strategy [13].

The paper is organized as follows. Section 2
contains the dynamic model of a one-link flexible arm
using any number of assumed modes. In Section 3, open
and closed-loop joint-based control laws are derived.
Also, their stability is briefly analyzed. The results of a
simulation study which compares these strategies and
tests for robustness are described in Section 4. A
discussion of the possible extensions for controlling
directly the motion of the tip point or of any other point on
the structure completes the paper.

2. Dynamic model

The one-link flexible arm of Figure 1 is considered.
The arm moves on a horizontal plane and is stiff w.rt.
torsional effects. A solution to the flexible motion of the
link can be obtained through modal analysis, under the
assumption cf small deflections

m

y(tIMt = i6t) 0 iT)
*i is the eigenfunction expressing the displacement of the
i-th assumed mode of link deflecton, 8; is the time-varying
amplitude of the i-th mode, and m is the number of modes
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used to describe the distributed link deformation.
For a clamped-tree vibrating beam the orthonormal

modal sigenfunctions are given by

01(4) = sin (R,e) - sinh (Pjt) + v1(cos (f,A4) - cosh (j3l))

sin i+ sinhJ i
v .,

cos' + coshPI
pA(2o)2fL4

pii = El

for i = 1,...,m, where 4 = 11/ L is the normalized position
along the beam of length L, A is the beam cross area, E is
its Young's modulus, I is the beam area inertia, p Rs
density, and wA is the frequency of the i-th mode.

The dynamic equations for the one-link flexible
arm are derived following a Lagrangian approach [7] and
can be written in the form

B(S8)+ (Ku +F)II
where 9 is the joint variable, 8 = (Si ... SjT is the vector of
deflections, u is the control torque at the joint locaton.

The elements bq of the positive definite symmetric
inerta matrix B(S) takes on the expressions

bl1 (8) = JO + MLL2+ b + 4(0. 8)

b, I= M 0j.1,9 + w,. j = 2 ...m+1
bl]=M 2~*+w 2

b= mb + ML .i-+J @i].
bI =ML4il,ell,+JL*11,e , i=2,...,m+1, ii

with

T. do.d (4)
¢e~~~~~n-[;Cm e tTE=

w pAL2J (4)4(d
0

i = 1t..,m

where mb and ML are respectively the beam and the load
mass, lo and JL are the joint and the load inertia, and JO is
the beam inerta relaive to the joint.

The nonlinear terms n1 and n2 can be computed
by differentation of the elements of the inertia matrix and
represents Coriolis and centrifugal terms

n(0 ,S,8) = 2MLG(0, 8) ((7(8)

n2 (9) =-MLO ( ToS

K is an equivalent spring constant matrix
K=diag(k, ... , 1)

k1=tJ[d41©]2LI d2

F is a diagonal damping matrx accounting for the intemal
viscous friction in the flexible structure. Enhancement of
such a passive damping is a feasible alternative to active

modal control [14].
Since the clamped-free assumption has been

made for the vibrating beam, there is no displacement at
the joint location. As a consequence, no control input
appears in the left hand side of the lower m dynamic
equations. Note also that the arm model is independent
from the joint angle value 9, due to the symmetry of
system dynamics around the joint axis.

In the following, the inverse D(S) of the system
inertia matrix will be used. B(S) can be conveniently
partitoned into four blocks

1(5) B,
T

B(S) =
Bl 2 B22

wth B22 of order mxm. Accordingly, the inverse can be
written explicity as

1 d11(S) DJ2 (8)
D(s) = B (S) =

DI2(8) D22(6)
with

bI1(S) - B; B22 B12
A'l(S) B

Di?2(S) =
b1 1 (5)

D22(8) = A 1(S)

and

B B T
12 12A(S) = B22 b1(

3. Joint-based Inversion control

The definition of outputs for a given dynamical
system is closely related to the chosen control objective.
When a scalar output y is associated to the flexible arm
system, one can derive the input torque u which is
capable of reproducing exactly a given trajectory yd(t) as
output, based on system inversion techniques.

In particular, if a joint-based strategy is pursued
y=

Applying the inversion algorithm [9], it is easy to see that
the input u appears explicity in the second derivative of
the output function

.. * ~~~~~T
y = d1l (8) [ u - nl(0 ,5,8) ]-D12(8) I n2(0 ,8) + KS + FS]

Since d 1(6).O always, this is true no matter what flexible
arm is considered or how many modes are assumed.

Let a = a(t) be the desired output acceleraton. The
relative control torque is obtained then setting

y=a
in the above equation and solving for u as

u =nl (0 ,8,8) + d -- [ a + D12(8) (n2(O 18,6) + 8+F)]d= 1 (5)
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The input torque u* yields the tracking of the
desired output trajectory. Indeed, exact reproducton is
guaranteed only if the trajectory is of class C' (i.e. wth at
most step discontinuities in acceleration) and if there is
matching with the initial conditons, in this case with joint
position and velocity. Otherwise, only asymptotic tracking
results.

The above control law can be implemented in an
open or in a closed-loop scheme. Assume that a desired
smooth joint trajectory B = %(t) has been given, together
with its time derivatives.

3.1 Open-loog contrlQ

In this scheme set

0 = ed (t) a = od (t)

The control u* is not completely specified by the above
identities since the knowledge of 8(t) and S'(t) is still
needed. This is essentially different from the case of rigid
arms where assigning the behavior to the joint variables
uniquely determines the required torque inputs. Here, a
dynamic generator has to be set up to recovE' the time
evolution of the elastic coordinates S associated to the
desired joint trajectory. This generator is obtained by
plugging the expression of u* into the dynamic equations,
replacing then the joint variables by their desired values.
As a result

1BT i n8=-Bk [BO21dn2(9dOS)+K8+FE]
The off-line integration of these m second-order
differental equations, starting from (5(0), 5'(0)), yields the
time evolutions (Sd (t), 8'd (t)). If the above dynamics were
unstable, the whole process of generation of the open-
loop torque would be unfeasible. Note that these
differential equations are linear tme-varying ones and
can be rewritten in state-space format as

151 1A21(Od) tlUlI
b

= A(t)I . +b(t)8 A21od) -22 b2(Bd)I Is
with

A2(1d) =-B22[ K-ML8d ((e (D)]

A22=-B22 F b2(d)=-B22 B12 0d
The resulting open-loop torque to be applied at the joint
is then

UOL = U*(Od' 9d' 5d'Id)
To gain some robustness at low expense, a linear
feedback can be used in addition to this reference torque
signal. A PD controller on the joint trajectory error is
properly designed as

UOL,PD = [( e) +ked )]

Note that this kind of law does not require any
measurement of arm deflection.

3.2 Closed-loop control

In this case u* is computed by feeding back the full
state (0, O', 8, 8) of the flexible arm. The resulting closed-
loop system equations are given by

0 = a y=0

a=-a<[>BJ2a+ n2(e,5)+ K8+ FaJ
The input-output behavior from the external input a to y
has been linearized by the inversion control law uV. Thus,
a linear PD law on the joint trajectory error is used for
stabilizing the input-output double integration path. By
choosing a as

a =Od + kV(Od -0) + kp (d -0)
with kp, > 0 and k. >0, one obins

UaPD=U((OdI ' ) + - 0)+kW(d

Once this feedback control has been applied, an
unobservable part related to the dynamics of the elastic
variables S arises (see also Figure 2). The closed-loop
stability of this sink plays a crucial role in the whole
proposed control design. In particular, one is interested in
the behavior of the elastc variables when the trqjectory is
completed. This describes the way arm vibratons damp
out near the final trajectory point, and thus accounts for
the positional accuracy of the arm tip.

The study of the dynamics of the unobservable
part in these conditions is closely related to the so-called
zero-dynamics of the given nonlinear system [15]. Setting
y(t) = 0 for all times implies y' = 0' = 0 and yw = a = 0.
Replacing these values into the closed-loop dynamics of
& gives

B-22[-n(0,8) + KS1+ FS I [K + F8
using the fact that n2 is quadratic in the joint velocity.
Thus, the internal arm dynamics associated with a
constant zero value of the joint output becomes a linear
one. When F = 0, since K and B22 are positive definite
matrices, the 2m eigenvalues are all complex pairs
located on the imaginary axis and the system is critically
stable. As soon as some passive damping is present, i.e.
F > 0, these closed-loop roots move to the open left half-
plane and asymptotic internal stability is obtained.

The above analysis holds only at the terminal point
cf the trajectory. Indeed, one has also to guarantee that
the elastic deflections are kept limited during the point-to-
point motion in order to avoid too much stressing of the
beam. The simulations reported in the next section
confirn that this is indeed the case. Note that the
deflected configuration of the arm at the end of the
trajectory provides the initial conditions for the above
linear differential equations governing the residual
oscillatory behavior.

In general, it is quite difficult to extract accurate
information about the structural damping. Thus, it seems
reasonable to take out the term F8' from the control law
U*. The resulting closed-loop system will be described by
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..T
0 =a-D12(8) F8

1=-Ba [B12a+n2(08)+KSJ-D2(8)FS
It follows that exact tracking of joint trajectories is not
possible anymore. The actual trajectory will typically lag
behind the desired one by a small amount depending on
the modal damping coefficients in F. However, the
stability properties are preserved.

4. Simulation results

The above joint-based inversion control laws have
been simulated using the two-modes model of the one-
link flexible arm considered in [3,7]. The first two
eigenfrequencies of this 4 ft long arm are 2.12 and 14.3
Hz. The equivalent spring coefficients associated to the
two considered modes are ki = 5.54 and k2 = 198.56.

The desired trajectory specifies a joint motion from
0(0) = 0 to 0(T) = 90 deg, with a velocity profile Od@(t) =
(90 / T) [1 - cos (360 t/T)] deg/sec, where T = 2 sec. The
gains of the linear PD controllers used for the input-
output stabilization are the same for all simulations, and
are chosen as kp = 2500, k, = 100, corresponding to a
crtical response with a double pole at -50.

Figures 3-5 show the results of a 4 sec simulation,
when the closed-loop scheme with ucL,pD is used for the
arm without passive damping (F = 0). The sampling time
is 1 msec. The plots are respectively the joint error, the x-
component of the end-effector error, and the torque input.
The time-behavior of the two flexible modes is reported in
Figures 6-7. The desired joint trajectory is reproduced
accurately (.006 deg as maximum error) and even less
error could be obtained with higher gains. However, the
oscillations left in the arm result in small displacements of
the tip around the final point. These are of the order of .01
ft. Note that some control effort is present also after T = 2
sec, and is needed for keeping the joint angle at its
desired final value.

Figures 8-9 are relative to a doubling in value of
the load parameters ML and JL Ripples are present in the
joint position error, but the achieved result indicates the
robustness of the control scheme w.r.t. these variations.

In Figures 10-11 the open-loop strategy UOL,PD iS
evaluated for the nominal plant. Although in this case the
joint maximum error is doubled and the joint angle keeps
on oscillating even after T = 2 sec, the end-effector error
is practically the same as in closed-loop control. Also the
required torque input, not reported here, is very similar.
Thus, a cheap implementation of the proposed inversion
control law, with no use of deformation measures, is a
feasible alternative.

The effects of a passive damping in the structure is
investigated next. A diagonal matrix F is added to the
model, with elements f1 = 0.2 (k )1J2, i = 1,2. In the control
law no compensation of this damping is done. The
benefits of this structural modification are apparent from
Figures 12-13, which refer to closed-loop control with a
doubling of load parameters. A small delay in the tracking
of the joint trajectory can be recognized. On the other
hand, oscillations in the tip position vanish immediately

after the completion of the joint trajectory.
Not surprisingly, passive damping is of great help

also in the case of open-loop control as shown in Figures
14-15 for the nominal case.

5. Discussion

It has been shown that any assigned smooth joint
trajectory can be exactly reproduced for matched initial
conditions using inversion control techniques. Closed-
loop and open-loop strategies were compared. If a good
dynamic model is available, open-loop computation of
joint torque plus a linear PD joint trajectory controller
yields a satisfactory performance, particularly when
passive damping is present in the flexible arm. The
above results were obtained for a one-link robotic arm,
but it is easy to see that the joint-based approach can be
extended in general to multi-link flexible arms.

When dealing with robot arms, the most relevant
concern should be the accurate control of the end-
effector behavior. Indeed, joint-based strategies are only
a means for obtaining this goal. Another issue to be
better understood is the relevance of the problem of exact
tracking of trajectories for the arm tip w.r.t. regulation
around the trajectory final point. In any case, the
oscillatory behavior of the flexible arm should be kept
limited, and possibly under a prescribed level, even
when exact joint trajectory following is achieved.

Extensions could be made to the proposed
approach to cope with the above requirements. Some
alternafives are discussed next.

a) Inversion control for end-point motion. This may
seem the most natural modification of the joint-based
strategy. Unfortunately, the design of a controller capable
of reproducing exactly smooth trajectories for the arm tip
leads in general to unstable behavior. This is due to the
non-minimum phase nature of the end-effector control
problem for flexible arms [2,5,13]. Some results on end-
effector trajectory control were obtained in [4], using an
approximate linear model of a one-link flexible arm. It is
well-known that in the linear case, input-output inversion
for all smooth trajectories is not possible if the plant has
zeros in the right-plane.

A nonlinear equivalent can be given to the concept
of non-minimum phase linear systems, i.e. a nonlinear
system with unstable zero-dynamics [15]. For the model
of the arm considered in the previous section, one can
define as output

y ot1 + 02 82
y=0+ ~L

which is the linearized expression of the angle pointing at
the arm end-point. An inversion-based control law leads
to a fourth-order nonlinear unobservable subsystem in
the closed loop which is unstable. In fact, by just looking
at the linear approximaton around 8'1 = 8'2 = 0 of the
zero-dynamics, one finds in this case two pairs of real
poles in S1,2 = ± 12.95 and S3,4 = ± 79.43.

As a result, limited confidence should be given to
exact reproduction of end-point trajectories. Probably, a
slight relaxation of this constraint leads to a successfull
design.
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b) Addftion of actve damping control. In this cs
the joint-based strategy is modified by the parallel
additon of a controller which tries to limit arm deflections
and/or end-point errors. Of course, exact reproduction of
trajectores in the joint space is lost

A modal damping approach was proposed in (161,
where LQ techniques have been used; the derivation is
somewhat involved and the method works only in a local
fashion, since it requires linearization around a point.

The design of two-time scales controllers in the
singular perturbation approach [7] follows a similar
phylosophy for reducing the vibrational behavior. As a
matter of fact, the fast linear control ensures limited
deflections around the motion prescribed by the slow
control law. Note that, in principle, the latter may be
replaced by the joint-based inversion control proposed
here.

c) Inversion control for te moton of a point on the
arm. A third hybrid method may be devised, based on the
following considerations. There may exist one or more
points along the structure, other than at the arm joint, for
which an exact trajectory can be assigned without the
occurrence of instabilities. If so, this point will safely
behave in a wrigid way. For a one-link flexible arm it is
convenient to define as output the joint angle pointirg to
a generic point along the arm. A simple scalar
parametrization of such an output follows. Thus, a critical
value of this parameter separates the outputs (i.e. the
points on the arm) which give rse to a stable behavior
from those leading to unstable behavior of the closed-
loop unobservable part. Indeed, the joint-based output
considered in this paper belongs to the first class while
the arm end-point is usually an element of the latter.

In linear models, beyond this critical output point
the system has a transfer function with non-minimum
phase zeros. Since in the nonlinear case this crtical
point moves along the structure during system operation,
a conservative choice should be taken.

Wih this approach one is able to control exactly
the motion of a certain point located on the arm, using
inversion techniques. The underlying assumption is that
the closer this point is to the end-effector, the smaller the
tip oscillations will be - although possibly of higher
frequency -

The feasibility of this design has been shown in
[13] for a simple arm with concentrated flexibility and is
now under investigation for more realistic models of
flexible arms.
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Figure 1 - The one-link flexible arm
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