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Abstract—In this document, we report a number of supplemen-
tary materials to the main paper. The references here reported
are related to the bibliography of the main paper.

I. ADDENDUM ON THE RUPTURE DETECTION ALGORITHM

In the presented framework for the needle-tissue interaction
force enhancement, we have refined the rupture detection
routine by combining the CUSUM algorithm with a force
derivative threshold-based condition, so as to obtain a two-
step detection process. We observed, in fact, that the adopted
constant-frequency covariance matrix reset of the RLS algo-
rithm may alter the statistical characterization of the recon-
struction force error signal, since it fosters a higher reactivity
of the reconstructed force in tracking the ground truth force
measurement. This causes low values of the reconstruction
error along the insertion and makes difficult for the CUSUM
algorithm to distinguish between standard and abrupt change
cases, thus resulting in possibly missed detections. This force
derivative condition is easily formalized through the following
decision function gf,k:

gf,k =

{
1, (fk − fk−1) > β

0, otherwise
(1)

where β is a threshold value chosen experimentally, based
on the expected magnitude of the force variations that are
observed in the force drop signals due to tissue rupture events.

This criterion is used as a possible pre-condition for the
CUSUM detection algorithm as an intermediate detection step.
In fact, it specifies a candidate force interval in which a tissue
detection can likely occur.

In order to facilitate the explanation about how the two cri-
teria are logically connected, we could describe the detection
problem of the occurring tissue rupture events through a finite-
state machine, as shown in Fig 1. At start, we assume that
no tissue ruptures are detected. During the insertion, a tissue
rupture is assumed to be detected when the CUSUM algorithm
decision function gk raises to 1 (Detected rupture state). Al-
ternatively, if the force derivative-based decision function (1)
raises on 1 (i.e., if the force derivative signal has exceeded
the threshold β), we fall in a state where we expect that a
tissue rupture may likely occur (Expected rupture state). At
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Sapienza Università di Roma, via Ariosto 25, 00185 Roma, Italy. E-mail:
{ferro,gaz,vendittelli}@diag.uniroma1.it.

2 Centro SaNa,Via Peschiera 04011 Aprilia (LT), Italy, E-mail:
michele.anzidei@gmail.com.

∗ corresponding author.

this stage, we determine a new detected rupture if the CUSUM
function gk raises to 1, or if, despite no CUSUM detections are
observed, gf,k falls back to 0 (i.e., on its trailing edge), due to
a regularization of the measured force signal. This alternative
condition helps to detect possible missing CUSUM-based
detections, due to the high reactivity of the reconstruction error
resulting from the constant-frequency covariance matrix reset.

After the detection, the system waits for a time Tdrop,i in
order to measure the amount of force drop resulting from
the rupture (Force drop measuring state), so as to apply
the a posteriori re-weighting of the covariance matrix and
re-estimate the coefficients of the latest traversed layer for
compensation (Force compensation state). After compensation,
the system goes back to the initial state and the detection
process is repeated.

II. REMARKS ON THE COVARIANCE RESET OF THE RLS
ROUTINE

Resetting the value of the covariance matrix during the
insertion procedure is a technique used in the literature with
the purpose of making the RLS algorithm reactive to the
changes in the estimating parameters [12,13]. In the present
work we use a constant frequency reset mechanism rather
than one triggered by the uncertainty lowering below a given
threshold, as done in [12,13]. All the experiments that we have
conducted show the substantial equivalence of the mechanisms
(in both cases either the threshold or the reset frequency value
is a parameter to tune). The constant frequency strategy is
easier to implement and numerically more robust, hence our
choice.

For the considered needle insertion procedures and the
adopted interaction model, having a high-frequency reset re-
veals to be suitable for a proper convergence of the estimating
parameters, particularly when handling the considered low-
varying position and velocity input signals for the RLS algo-
rithm. In fact, resetting the covariance at a fixed rate has the
effect of increasing the excitability of the RLS input signals,
making the force estimation more reactive in tracking the
ground truth force measurements, also when it does not strictly
reflect the linearity of the considered model. This behavior has
been highlighted in the plots added here in Figs. 10, 11 and 12,
where the covariance reset is applied only in correspondence
with the detected tissue ruptures, since they represent actual
changes in the estimating parameters. The Figures highlight
the poor performance of the RLS algorithm in reconstructing
properly the force measurements, particularly in the presence
of highly nonlinear behaviours, like abrupt force drops.
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Fig. 1: Finite state machine describing the algorithm for the detection of tissue rupture events.

Resetting frequently the covariance matrix allows to keep
the performance robust against non-linear dynamics in the
interaction force and guides the estimation towards more stable
and robust values of the coefficients.

This is analogously highlighted in Figs. 13, 14, and 15,
where the covariance is applied at the frequency of 40 Hz,
while no a posteriori reweighting (i.e., Eq. (12) of the main
paper) is applied. The performance in the force reconstruction
has a significant improvement in this case. However, we also
highlight that, since no friction variance reweighting is applied,
the estimated friction values are not necessarily physically
feasible in the sense previously explained. Indeed, due to the
low magnitude of the velocity signal, the reconstructed friction
contribution is negligible and does not induce a significant
compensation.

III. ADDITIONAL EXPERIMENTAL RESULTS

In this section, we report further experimental results of
the presented needle-tissue interaction force enhancement al-
gorithm.

In a first series of experiments, two needle insertions –
a first with constant velocity and a second with sinusoidal
velocity – have been carried out on each of the three isinglass
phantoms (25%, 50% and 70% solution) depicted in Fig. 1
of the main paper, for a total of 6 experiments. Since no
latex layer was interposed, we may suppose that the interaction
force measured by the F/T sensor is totally due to friction. We
estimated the friction coefficients employing the ML model for
each experiment both by an offline analysis and by the online

RLS routine, retrieving a total of 12 estimations. In Tab. I
of the main manuscript we have reported the average value
of those estimations, with variance and corresponding %-wise
error. In Figs. 2a and 2b of the present document, we report all
the 12 estimated values of friction; in particular, Fig. 2b shows
the estimations grouped by isinglass phantom. We can observe
that, despite slight lower values when the online routine
is used and the needle moves with sinusoidal velocity (as
already discussed in the main paper), the friction coefficients
are clearly distinguishable between different layers, with no
superposition.

Fig. 3a reports the force measured by the real F/T sensor
(green line) when the needle traverses a 25% solution isinglass
phantom with a constant velocity v = 2.3 mm/s; at time
t = 12.5 s the needle tip exits the layer, so as to leave a
constant portion of the shaft inside the phantom. The blue
and the red lines represent the enhanced force (discarding the
estimated friction terms) obtained using, respectively, the KV
and the ML models. It is evident (as well as shown in Sec. V
of the main paper) that the ML model is more effective to
describe the friction phenomena acting on the needle; in fact,
the enhanced force signal offered by the ML model is closer
to zero after the layer traversal (when only a constant friction
force acts on the needle shaft) with respect to the enhanced
force signal returned by means of the KV model. Please note
that the compensated force signal after t = 12.5 s does not
vanish completely (as expected), probably because of the low
magnitude of the involved interaction force (whose range is
0.5 N). Fig. 3b reports the estimated elastic (upper panel),
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Fig. 2: (a-b) Aggregated comparison of estimated friction values in insertions through single-layer phantoms with different solution.

friction (middle panel) and cumulative friction (bottom panel)
coefficients during the experiment.

Fig. 4a shows the results obtained when the needle is
inserted in a 50% solution isinglass phantom with a constant
velocity v = 2.3 mm/s. The interaction force, measured by
the real F/T sensor, is reported in green. In this experiment
we may appreciate again a more effective interaction force
enhancement after the needle tip traverses the phantom com-
pletely (this occurs at t = 17 s) when the ML model is used
(red line) in place of the KV model (blue line). Fig. 4b reports
the estimated elastic (upper panel), friction (middle panel)
and cumulative friction (bottom panel) coefficients during the
experiment.

Figs. 5a and 6a report the results of two different experi-
ments using, respectively, a 25% and a 50% solution isinglass
phantom; the needle is moved with a sinusoidal velocity. The
green lines represent the interaction force signal measured
by a real F/T sensor, while the blue and the red lines are,
respectively, the enhanced force signal using the KV and the
ML models. In Fig. 5a we can observe that the KV model
overcompensates the friction component of the interaction
force, probably because of a poor estimation of this term.
Figs. 5b and 6b report the estimated elastic (upper panel),
friction (middle panel) and cumulative friction (bottom panel)
coefficients associated to the two experiments.

A further experiment has been carried out on the stack of
three layers (see Fig. 3a of the main paper), with the middle
layer enveloped by a latex glove. The needle is moved with a
sinusoidal velocity. The results of this experiment are reported
in Fig. 7a: the green line represents the force measured by the
real F/T sensor, while the blue and the red lines represent,
respectively, the enhanced force when the KV and the ML
models are used. Comparing Fig. 7a with Fig. 12 of the main
paper (same phantom stack but constant needle velocity), we
can observe that the three layer ruptures are correctly detected
(vertical black continuous lines) even when the needle velocity
is not constant. Fig. 7b reports the estimated elastic (upper
panel), friction (middle panel) and cumulative friction (bottom
panel) coefficients during the experiment.

Fig. 8a reports the results of a needle insertion experiment
using as a phantom a real bovine liver. The insertion velocity is
constant, making this experiment equivalent to the one whose

results are reported in Fig. 13 of the main paper. Differently
from the corresponding experiment of the main paper, here the
interaction force is measured by a real F/T sensor. Comparing
Fig. 8a of this document with Fig. 13 of the main paper, we can
observe that the two layer ruptures (vertical continuous black
lines) are correctly detected in both cases: this proves once
again the effectiveness of the use of the proposed virtual F/T
sensor presented in Sec. III of the main paper. Furthermore,
even in this case the use of the ML model (red line) makes
the compensated force more effective in rendering the elastic
component of the interaction force with respect the use of the
KV model (blue line). Fig. 8b reports the estimated elastic
(upper panel), friction (middle panel) and cumulative friction
(bottom panel) coefficients during the experiment.

Finally, one last experiment has been carried out on the
medical abdominal phantom shown in Fig. 7 of the main
paper. The needle insertion velocity is sinusoidal, so as to
have the same operative conditions of the experiment whose
results are reported in Fig. 14 of the main paper. Fig. 9a
reports the force measured during the insertion by a real F/T
sensor (green line), while the blue and the red lines represent
the compensated force using, respectively, the KV and the
ML model. Comparing Fig. 9a of the present document with
Fig. 14 of the main paper, we can notice that the two layer
ruptures (vertical continuous black lines) are correctly detected
both using the real or the virtual F/T sensor.

IV. WEIGHTING THE COVARIANCE MATRIX IN THE RLS
ALGORITHM

In this section, we will detail the re-weighting procedure
mentioned in Sec. II-C of the main paper. This procedure is
carried out to overcome possible identifiability issues due to
non-exciting motions performed by the needle. For instance, if
the needle is moved according to a constant velocity, it is not
possible to discriminate between the elastic and the viscous
component of the interaction force. This is evident observing
Eqs. (4)-(6) of the main paper: indeed, for a given layer i,
in the presence of a constant needle velocity v̄ we have that
two columns of the regressor Φ are linearly dependent, thus
invalidating an offline identification procedure. Nevertheless,
even an online procedure, such as the one adopted in this
work, based on the RLS algorithm, is heavily affected by this



issue. Furthermore, we noted that even time-varying motions
may cause the same identifiability problem, if they are not
particularly exciting. This class of motions are however very
common in normal operative conditions.

Therefore we propose a method to exploit additional infor-
mation offered by the layer rupture events, to assign different
weights to the RLS covariance matrix and thus enhance the
identification algorithm even in the presence of not particularly
exciting motions.

Consider a generic needle-tissue interaction model formal-
ized as a combination of elastic and friction contributions

f(t) = fK(t) + fB(t) =
= KϕK + BϕB =
= ϕTθ

(2)

where ϕ = [ϕK , ϕB ]
T is the vector of elastic and friction

contributions, while θ = [K,B]
T is the vector of the corre-

sponding coefficients.
Eq. (2) can be detailed by the Kelvin-Voigt (KV) model,

with:

ϕ(t) =

[
ϕK

ϕB

] [
∆z(t)
v(t)

]
, (3)

where ∆z(t) is the needle tip relative depth with respect to
the initial position of the current layer Li, and v(t) is velocity
during the insertion in the target tissue. With reference to the
main paper, we formalized the multi-layer (ML) model by ex-
pressing a direct dependence of the friction component on the
needle tip position ∆z(t), and assuming a third contribution
collecting the cumulative friction of the previously traversed
tissue layers:

ϕ =

[
ϕK(t)
ϕB(t)

]
=

[
∆z(t)

∆z(t)v(t)

]
. (4)

In the formulation above, we ignored the third contribution
due to the cumulative friction term, as reported in the main
paper, since it is not informative for the following analysis.

Assuming that a measurement of the interaction force is
available (e.g., from a F/T sensor or a residual-based recon-
struction – see Sec. III of the main paper), and chosen one of
the models (3) or (4), we estimate the unknown dynamic co-
efficients through the Recursive Least Square (RLS) algorithm
at a given time k:

θ̂k = θ̂k−1 +
Ψ̂k−1ϕkek

λk +ϕT Ψ̂k−1ϕk

Ψk = Ψk−1 −
Ψk−1ϕkϕ

T
kΨk−1

λk +ϕTΨk−1ϕk

(5)

where Ψ is the covariance matrix of the associated estimation
θ̂, ϕ is the input vector, ek = fk − θ̂

T

k−1ϕ is the force
reconstruction error and λk (by default = 1) is the forgetting
factor. The RLS algorithm is shown to be strongly dependent
on a proper initialization of the covariance matrix Ψ0 at time
0. A typical approximated initialization is given by

Ψ0 =

[
σ2
0 0

0 σ2
0

]
= σ2

0I3, (6)

with σ0 ∈ R. We can generalize (6) and consider different
values for the corresponding coefficients to be estimated, as:

Ψ′0 =

[
σ2
K 0
0 σ2

B

]
. (7)

Without loss of generalization, In particular, matrix Ψ′0 can
be considered as a weighted version of Ψ0, as we can write:

Ψ′0 = WΨ0 =

[
w2

K 0
0 w2

B

] [
σ2
0 0

0 σ2
0

]
(8)

such that σ2
K = w2

Kσ
2
0 and σ2

B = w2
Bσ

2
0 . Alternatively, Eq. (8)

can be also written as

Ψ′0 = WΨ0 = ΛΨ0Λ
T = ΛΨ0Λ, (9)

being

Λ =

[
wK 0
0 wB

]
(10)

Based on (9), replacing Ψ with Ψ′ in (5), we get
θ̂k = θ̂k−1 +

ΛΨk−1Λϕkek
λk +ϕTΛΨk−1Λϕk

Ψk = ΛΨk−1Λ−
ΛΨk−1Λϕkϕ

T
kΛΨk−1Λ

λk +ϕTΛΨk−1Λϕk

=


θ̂k = θ̂k−1 + Λ

Ψk−1ϕ
′
kek

λk +ϕ′Tk Ψk−1ϕ′k

Ψk = Λ

(
Ψk−1 −

Ψk−1ϕ
′
kϕ
′T
k Ψk−1

λk +ϕ′Tk Ψk−1ϕ′k

)
Λ

=

(11)
where we set

ϕ′k = Λϕk (12)

In our experimental setup, we considered in a first stage a
linear trajectory with constant velocity, i.e.,

z(t) =
t

T

v(t) =
∂z(t)

∂t
=

1

T
= v̄ = const.

(13)

Relationships above show that a given weighting of the
covariance matrix through a matrix W = ΛΛT (see Eq. 9)
affects the RLS update step and in particular the input vector
ϕ through Eq. (12). Within this perspective, the normalization
of the damping coefficient in the ML model by the depth d
of the current layer can be actually seen as a weight on the
input vector

ϕ′ = Λdϕ =

[
1 0

0
1

d

] [
∆z(t)

∆z(t)v(t)

]
. (14)

Therefore, applying the following weighting matrix W d

W d = ΛdΛ
T
d

[
1 0

0
1

d2

]
. (15)

is equivalent at normalizing the input vector ϕ by the depth
value d. Furthermore, we also apply an additional weight W h



on the covariance matrix Ψ in order to make the input signals
z(t) and v(t) homogeneous in magnitude:

W h =

1 0

0
d2

v2

 (16)

Therefore, combining the weight matrices W h and W d, we
get a final weight matrix W :

W = W hW d =

1 0

0
d2

v2

[1 0

0
1

d2

]
=

[
1 0

0
1

v2

]
, (17)

that explains the expression of the re-scaling of σB in Eq. (12)
of the main paper.
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Fig. 3: Experimental results of the friction compensation algorithm on the 25% solution gel phantom, with unknown layer depth. The needle insertion occurs with a constant
velocity. (a) Measured (green), predicted (yellow) and compensated forces using the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the
rupture detection time tr (continuous line) and the compensation time tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and
cumulative friction (bottom panel) parameters for the presented experiment.
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Fig. 4: Experimental results of the friction compensation algorithm on the 50% solution gel phantom, with unknown layer depth. The needle insertion occurs with a constant velocity.
(a) Measured (green), predicted (yellow) and compensated forces using the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the rupture
detection time tr (continuous line) and the compensation time tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative
friction (bottom panel) parameters for the presented experiment.
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Fig. 5: Experimental results of the friction compensation algorithm on the 25% solution gel phantom, with unknown layer depth. The needle insertion occurs with a sinusoidal
velocity. (a) Measured (green), predicted (yellow) and compensated forces using the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the
rupture detection time tr (continuous line) and the compensation time tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and
cumulative friction (bottom panel) parameters for the presented experiment.
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Fig. 6: Experimental results of the friction compensation algorithm on the 50% solution gel phantom, with unknown layer depth. The needle insertion occurs with a sinusoidal
velocity. (a) Measured (green), predicted (yellow) and compensated forces using the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the
rupture detection time tr (continuous line) and the compensation time tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and
cumulative friction (bottom panel) parameters for the presented experiment.

0 5 10 15 20 25

0

1

2

3

4

5

6

7

8

(a)

0 5 10 15 20 25

0

200

400

0 5 10 15 20 25

-200

0

200

400

600

800

0 5 10 15 20 25
0

1000

2000

(b)

Fig. 7: Experimental results of the friction compensation algorithm on the stack of three gel phantom (from top to bottom: 20%, 50% and 70% solution), with unknown layer depth
and with the middle layer enveloped by a latex glove. The needle insertion occurs with a sinusoidal velocity. (a) Measured (green), predicted (yellow) and compensated forces using
the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the rupture detection time tr (continuous line) and the compensation time tr + Tdrop

(dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative friction (bottom panel) parameters for the presented experiment.
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Fig. 8: Experimental results of the friction compensation algorithm on the bovine liver. The needle insertion occurs with a constant velocity. (a) Measured (green), predicted (yellow)
and compensated forces using the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the rupture detection time tr (continuous line) and the
compensation time tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative friction (bottom panel) parameters for the
presented experiment.
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Fig. 9: Experimental results of the friction compensation algorithm on the abdominal phantom. The needle insertion occurs with a sinusoidal velocity. (a) Measured (green), predicted
(yellow) and compensated forces using the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the rupture detection time tr (continuous line)
and the compensation time tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative friction (bottom panel) parameters
for the presented experiment.
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Fig. 10: Performance of the RLS reconstructed force (a) and related estimated coefficients (b) when the covariance matrix is reset only at the detected rupture events, over a
single-layer 70% isinglass phantom with constant insertion velocity.
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Fig. 11: Performance of the RLS reconstructed force (a) and related estimated coefficients (b) when the covariance matrix is reset only at the detected rupture events, over a
multi-layer isinglass phantom with sinusoidal insertion velocity.
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Fig. 12: Performance of the RLS reconstructed force (a) and related estimated coefficients (b) when the covariance matrix is reset only at the detected rupture events, over a bovine
liver target with constant insertion velocity.
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Fig. 13: Performance of the RLS reconstructed force (a) and related estimated coefficients (b) with constant-frequencty covariance reset and no a posteriori covariance re-weighting,
over a single-layer 70% isinglass phantom with sinusoidal insertion velocity.
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Fig. 14: Performance of the RLS reconstructed force (a) and related estimated coefficients (b) with constant-frequencty covariance reset and no a posteriori covariance re-weighting,
over a multi-layer isinglass phantom with sinusoidal insertion velocity.
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Fig. 15: Performance of the RLS reconstructed force (a) and related estimated coefficients (b) with constant-frequencty covariance reset and no a posteriori covariance re-weighting,
over a bovine liver target with constant insertion velocity.


