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Online needle-tissue interaction model identification
for force feedback enhancement in robot-assisted

interventional procedures
Marco Ferro, Claudio Gaz, Michele Anzidei, and Marilena Vendittelli

Abstract—Many interventional procedures, e.g., biopsies and
tumor ablation, imply the insertion of a needle into soft tissues.
The interaction force at the needle tip can convey information
important for the accuracy of needle placement and the patient’s
safety. This information is essential when feedback from an
imaging system is missing or only available at a low rate. To
isolate the force exchanged at the needle tip during the insertion,
it is necessary to remove other components from the needle-tissue
interaction force. In particular, the friction along the needle shaft
becomes more and more relevant as the needle penetrates deeper
into the tissues. In this paper, we propose a method for the
identification of the friction component during needle penetration
into a multi-layered target. The proposed online identification
procedure allows, at the transition from one tissue layer to the
next, to subtract the friction contribution from the previous layers
and isolate the force relative to the layer where the needle tip is
currently located. We call this an enhanced force signal because
it improves the ratio of the useful information about the force at
the needle tip to the total force rendered. This result can be used
in teleoperated needle insertion schemes, or other robot-assisted
architectures, with the aim of facilitating the user perception of
variations in tissue properties. In the proposed implementation,
the force at the base of the needle can either be measured
or estimated by using a model-based approach. An originally
developed simulation framework provides a tool for procedure
planning and online monitoring.

Index Terms—needle insertion procedures, needle-tissue inter-
action estimation, force enhancement, 3D surgical simulator.

I. INTRODUCTION

NEEDLE insertion in soft tissues is today routinely exe-
cuted in many interventional procedures with diagnostic

or therapeutic purposes. The insertion is very often executed
blindly or with a feedback from imaging devices at a low
refresh rate. Poor visual feedback can, in principle, be com-
pensated by haptic information [1]. In particular, the force ex-
changed at the needle tip conveys important information about
puncturing or cutting of layers encapsulating critical structures
or pathological targets. This force, however, is difficult to
perceive without a finely trained sense of touch. In fact, as
the needle penetrates deeper into tissues, the friction along the
needle shaft becomes more and more relevant and can prevent
the correct perception of the interaction state at the needle tip.
This problem has led to the development of devices, e.g., [2],
for manual needle insertion, that mechanically decouple the
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needle-tissue interaction force component due to friction from
the force exchanged at the needle tip.

The appropriate rendering of the force at the needle tip is
even more important if it is inserted through a remotely op-
erated robotic manipulator because, in this case, other factors
may concur in degrading the transparency of teleoperation.
In fact, the introduction of robots and robotic technologies
in interventional procedures is today the subject of a lively
research and innovation activity because they are useful to
protect the medical staff when imaging techniques based on
ionizing radiations are used (e.g., computerized tomography
or fluoroscopy), to comply with the narrow workspace of
the imaging devices bore, and to provide to the operator
an enhanced and augmented information. Teleoperation is
key to address the above mentioned requirements. Currently
available commercial systems [3]–[5] exploit only partially the
potentialities of robotics technologies. Even though featuring
automatic needle alignment guided by images, all of them lack
in the use of real-time imaging and require manual, blind,
needle insertion. Recently, a fully automatic system for needle
insertion has reached the market [6] which, however, does not
allow real-time correction of the needle path and cannot be
operated remotely.

The motivation of this work is to provide an enhanced force
feedback in teleoperated systems. To pursue this objective, it
is necessary to properly model the needle-tissue interaction
force, along with its relevant and dominant contributions. One
of the first modeling efforts is due to the seminal work [7]
that distinguishes three main components within the needle-
tissue interaction model: a stiffness force, defined through a
nonlinear spring model and mainly due to tissue puncturing
by the needle tip; a friction force, collecting static, dynamic
and damping friction along the needle shaft; a cutting force
at the needle tip, modeled with a constant term. Validation
and experimental studies have been conducted to accurately
describe these force components [8], [9]. An analytical for-
mulation of the biomechanics underlying the needle insertion,
has been proposed recently [10]. The provided formulation
extends the categorization of the force components in order to
explicitly determine tissue puncturing and rupture phenomena,
as well as deformation forces acting on the needle shaft. The
puncturing force is expressed by a visco-elastic model, while
a nonlinear model accounting for pre-sliding, break-away and
sliding effects is considered to describe the friction force.
Energy-based formulations are exploited to formalize tissue
ruptures and to determine the cutting force component.

The models presented in the above cited works offer a
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strong and robust reference in the description of the interaction
forces, obtained through an extensive analytical effort and a
large number of available insertion datasets that are processed
offline. This setup is obviously unfeasible if the needle inser-
tion state (e.g., interaction force, needle deflection) needs to
be predicted in an online fashion during the execution of a
percutaneous procedure. In this case, simpler models should
be preferable, and the effort in determining the appropriate
ones may differ in the methodology used for their derivation,
in the intended use of models, and in the assumptions taken.

Analytical models are suited to online identification of
model parameters for real-time force prediction and rendering.
Within this perspective, models describing the interaction force
as a combination of an elastic and a damping component are
typically employed [1], [11], [12].

In [11], visco-elastic models are used to define control
schemes for the interaction between robots and soft bodies
considering only contact forces, without puncturing or cutting
events. An interaction force model suitable to needle insertion
in multi-layered volumes, i.e., taking into account needle
penetration into layers, has been proposed in [1]. In this model
the elastic component is associated to puncturing phenomena
occurring at the needle tip, while a friction term accounts for
needle shaft penetration inside tissues.

In [12], the problem of online identification of the interac-
tion force model in percutaneous needle insertions is solved
with the objective of producing a reliable prediction of the
interaction force. No guarantee about the physical plausibility
of the identified model parameters is, however, provided. This
is structurally implied by the adopted identification procedure
aiming at predicting the total force only, with the ultimate
goal of detecting tissue ruptures. The work in [13] extends
the procedure to a multi-layer tissue model but shares the
limitation of [12] in the physical accuracy of the identified
parameters value. The very recent work [14] addresses the
problem of estimating the friction along the needle shaft, but
does not consider the multi-layer tissue model, relies on US
imaging and offline preliminary insertion experiments aiming
at identifying an average friction force per unit length.

In this paper, we present an identification procedure pro-
viding not only an accurate prediction of the total force due
to the interaction of a rigid needle with multi-layered tissues,
but also of the main components of this force. Adopting a
visco-elastic interaction model, this will enable to render the
force exchanged at the needle tip by removing the viscous
component, arising along the needle shaft, from the total force.
We propose the implementation of this procedure using either
measurements from a force/torque (F/T) sensor at the base
of the needle, or model-based interaction force estimation
methods [15]. With respect to [13], we provide in the present
study a refined identification model based and a new identi-
fication procedure improving the adherence of the identified
components to the real ones. The proposed approach does
not need information from imaging nor a preliminary offline
estimation of the friction per unit length because it exploits the
information from rupture events in an original way, as will be
explained in Sect. III-B.

The original contribution of the presented work can be
summarized in the following points: i) a new online iden-

tification procedure providing physically plausible values of
the force model parameters; the procedure takes advantage
of the information provided by rupture events and does not
require additional information from imaging devices and/or
prior information about the friction characteristics of the tissue
to be punctured; ii) an extensive experimental validation and
comparison of dynamic needle-tissue interaction models in
synthetic multi-layered environments; iii) experimental vali-
dation of the identification procedure using information about
the interaction force coming either from a F/T sensor or from
a momentum observer of the robot executing the insertion;
iv) the development of an integrated environment including
a 3D simulator that integrates the different technological
components of the setup.

The paper is organized as follows: in Section II two visco-
elastic interaction models are analysed, resorting to a system-
atic offline analysis, with the aim to provide a ground truth
reference for the online identification, described in Sec. III.
Section IV summarizes a method for the estimation of the
total interaction force based on the robot model. When used
in combination with the proposed identification procedure,
this estimate of the force is shown to represent a valid
alternative to force measurement. In Section V, the software
architecture of the whole framework is described. Section VI
discusses the experimental results obtained in the validation
of the proposed force identification and enhancement method.
Finally, Section VII concludes the paper and draws directions
of future research.

II. OFFLINE IDENTIFICATION OF NEEDLE-TISSUE
INTERACTION DYNAMICS

This section presents the results of preliminary experiments
for offline parameter identification of two different interaction
models. The identified parameters will be used as reference
values for the validation of the online identification algorithm
described in the next Sect. III. Note that, both the offline and
the online procedures rely on the following assumptions: i) the
needle-tissue interaction force is described by a linear visco-
elastic model; ii) the force arising in the i-th layer depends
only on the stiffness and the friction characteristics of tissue in
layer i and of the preceding layers j = 1, . . . , i−1. Interaction
with layer i+ 1 arise only during the puncturing phase of this
layer as a damping component. This contribution is collected
in the friction of the layer i. If the puncturing occurs at the
first layer, this will result in the definition of a fictitious layer,
as will be explained later; iii) the biomechanical properties of
the traversed tissues are homogeneous over the geometry of
the target; iv) the interaction force cannot grow unbounded:
force growth is either followed by a sudden force drop or the
needle is completely inserted into the tissue, and the procedure
stops. Layer thickness and tissue rupture events are instead
assumed to be known in the offline analysis, while no a priori
information about the target geometry is available online.

In the considered operative setup, a surgical rigid unbeveled-
tip needle is mounted at the end-effector of a robotic manip-
ulator and inserted through different tissue layers stacked on
each other (see Fig. 1a). The interaction force can be expressed
through a linear visco-elastic relationship as [12]:

f(t) = fK(t) + fB(t) = ϕTθ (1)
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(a) (b)

Fig. 1: (a) Schematic representation of a needle insertion through different tissue types,
with the expression of the force components acting on the needle in each layer; (b)
Four examples of isinglass phantoms used in the proposed analysis. From top-left, in
clockwise order: targets with 25%, 50% and 70% isinglass solution and a composed
multi-layer gel phantom.

where fK(t) and fB(t) are respectively the elastic and friction
components of the force. In vector notation it is expressed
through the input vector ϕ and the parameter vector θ.
Denoting by z(t) the needle tip position along the insertion
axis, and by v(t) the corresponding velocity, the generalized
Kelvin-Voigt (KV) model specifies Eq. (1) as [12]:

f(t) = −K(t)z(t)−B(t)v(t)

=
(
−z(t) −v(t)

) (
K(t) B(t)

)T
, (2)

where K(t) is a time-varying stiffness coefficient collecting
elastic contributions of the interaction and B(t) is the time-
varying viscous friction coefficient of the tissue in contact with
the needle. In this model, the friction force fB(t) = B(t)v(t)
does not depend on the needle tip position z(t) and the
damping components of the force due to the interaction of the
needle shaft with the penetrated layers of tissue are neglected.

The KV model formulation (2) can be adapted to allow
the consideration of a multi-layer target tissue. To this end, a
damping component, which depends on the penetration depth,
is introduced in the force [1]:

f(t) = −Ki(t)∆zi(t)−Bi(t)∆zi(t)v(t)− B̄dv(t)

= −
(

∆zi ∆ziv v
) (

Ki Bi B̄d

)T
, (3)

where we have dropped time dependencies in the second line.
In the above model, ∆zi(t) = z(t) − z̄i−1 is the needle tip
relative penetration inside the i-th layer Li which starts at z̄i−1,
Ki and Bi are the stiffness and friction coefficients, di is the
layer thickness along the insertion axis and B̄d =

∑i−1
j=1Bjdj

is the constant cumulative friction term due to contact of the
needle shaft with the previous layers Lj , with j = 1, . . . , i−1.

Differently from Eq. (2), the friction force in Eq. (3) is a
function also of the needle displacement ∆zi , representing
the amount of needle shaft in contact with the layer Li of the
tissue. Furthermore, current and cumulative friction terms are
kept separated to preserve the model linearity with respect to
its parameters. Henceforth, we will denote Eq. (3) as multi-
layer (ML) model.

The result of the following offline analysis suggests that
ML has a better descriptive potential with respect to KV.
The experimental setup includes a set of isinglass phantoms
that have been realized in such a way to preserve – at
best – density homogeneity for each of the different layers.

The objective is to acquire a priori information on the Bi

parameters to be used later, as a ground truth, in the validation
of the online procedure. We prepared gel phantoms with 25%,
50% and 70% isinglass solution and considered stacks with
different combinations of these three layers. Stacks have been
placed over a pair of separated panels, to allow the needle to
completely traverse the phantom (see Fig. 1b). In this way,
the force measured when the needle tip exits the phantom, at
the opposite point of the entry, is dominated by the friction
component due to the adherence of the shaft to the tissue [7],
[9], [16].

For each stack, we performed autonomous insertions with
constant and time-varying (sinusoidal profile) velocity through
a KUKA LWR 4+ robot manipulator, equipped with an ATI
Mini45 6D Force/Torque sensor and an unbeveled-tip needle at
its end-effector. For each insertion, we observed the entire F/T
sensor force signal f(t) over time and manually determined
the instants ti corresponding to transitions from layer Li−1 to
Li, such that z(ti) = z̄i. Hence, we built the input signals:

ϕKi
(t, ti, ti+1) =

{
∆zi, ti < t ≤ ti+1

0, otherwise
,

ϕBi
(t, ti, ti+1) =


∆ziv, ti < t ≤ ti+1

div, t ≥ ti+1

0, otherwise

(4)

where the second case collects in ϕBi
also the contribution

of the preceding layers that falls in B̄d in the ML model (3).
Note that, it is straightforward to derive a similar expression
of ϕBi

for the KV model (2), by letting ϕBi
= v for t ≥ ti+1.

For i = 1, . . . , `, being ` the number of layers of the target
multi-layer tissue, the input signals of Eq. (4) are collected to
build the following regression matrix:

Φ =
[
ϕK1

ϕB1
. . . ϕK`

ϕB`

]
(5)

and the vector θ = (K1, B1, . . . ,K`, B`)
T is found in a least-

square fashion as
θ̂ = Φ#f . (6)

where # denotes the matrix pseudoinversion operator.
Figure 2 reports the identification and force prediction

results for four experiments. In the upper panels, we compared
the measured force (green line) with the force predicted by
KV and ML models (blue and red lines, respectively). Bottom
panels show the reconstruction errors for the two models, with
the corresponding Root Mean Square Error (RMSE). In the
upper panel of Fig. 2a, the needle enters with constant insertion
velocity and completely traverses a 70% isinglass phantom,
before the needle tip exits the layer and is completely extracted
(with the same velocity, opposite in sign); in Fig. 2b, the same
needle motion is repeated with a stack of three layers of 25%,
50% and 70% isinglass phantoms. Analogously, Fig. 2c and
Fig. 2d report the result of two experiments for the same pair
of phantoms, with sinusoidal motion of the needle. The force
signals (a)-(b), related to constant insertion velocity, present
similar features: a linear increase – with different slope for
each layer – of the measured force (green line) is present as
long as the needle traverses the layers, being the tip inside the
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Fig. 2: Comparison of the reconstructed force (top row) and error (bottom row) signals obtained through offline identification, on gel stack phantoms with different isinglass solution
layers. Autonomous insertion velocity is constant ((a)-(b)) and sinusoidal ((c)-(d)). Displayed signals are F/T sensor measurement (green), force reconstruction with KV (dashed
blue line) and ML model (continuous red line).
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Fig. 3: (a) The three-layered phantom with the latex glove enveloping the intermediate
layer. (b) Reconstructed forces with KV (dashed blue line) and ML (continuous red line)
models.

phantoms; as soon as the tip exits the layers (approximately at
15s in (a) and 20s in (b)), a drop in the force is observed and
a constant value is retrieved, until the needle stops its motion.
When the motion is reversed, the same constant force, but
opposite in sign, is detected by the F/T sensor until the needle
is completely extracted and the measured force becomes null.
The observed plateaux in the force value are due exclusively
to friction acting on a portion of the needle shaft of constant
length (equal to the sum of the layer thicknesses), being the
tip in the free space in the corresponding time interval.

Force signals in (c)-(d), instead, highlight a slightly different
behavior due to the sinusoidal motion of the needle. In
particular, as highlighted in the bottom plots of Fig. 2, we
observe a higher reconstruction error when the needle exits
the layers for both models, showing the presence of not
modeled force contributions. This is likely due to rigid-soft
complex interactions, such as presliding and memory effects,
that violate the linearity between the measured force and the
input velocity [7], [10]. In the experimental section it will be
shown that this does not limit our purpose to identify and
compensate for a plausible value of the friction component in
the interaction force.

The analysis is concluded with a further experiment in
which we used a latex glove to envelop the intermediate
phantom of the stack (see Fig. 3a), so as to simulate tissue
puncturing and rupture phenomena possibly occurring in tran-
sitions between different tissue layers. In this experiment, we
modeled the presence of the glove as an additional elastic

contribution, formally analogous to ϕK in (4) on the second
and third phantom of the stack, i.e., ϕKg

= ϕKi
(t, ti, tri),

where tri 6= ti+1 is the time instant of the rupture event for
the layer Li. The reconstructed force with both KV and ML
models, for constant needle velocity, is shown in Fig. 3b. Also
in this case, the visual inspection of the figure clearly shows
that the ML model is able to track the signal variations, and
capture the relevant signal feature, closer than the KV.

The described offline estimation process has been conducted
over 14 datasets corresponding to insertions on different
phantoms built as combination of the considered gelatin lay-
ers. All the experiments prove that the ML model is more
reliable than KV model in capturing the elastic and friction
phenomena occurring during the insertions and reconstructing
the measured force, as can be also appreciated by the RMSE
values reported in the legends of the bottom panels of Fig. 2.

The values of the Bi parameters identified in this phase are
reported in Table 10 and used in the discussion of the online
procedure results.

III. ONLINE IDENTIFICATION OF NEEDLE-TISSUE
INTERACTION DYNAMICS

In the offline analysis of the previous section we have
assumed the thickness di, and instants ti and tri to be known.
This assumption is here removed and the above variables
are estimated during the online procedure. In particular, the
thickness di of the i-th layer is identified for the first layer as
the distance traveled by the needle between the first contact
and the first rupture. For the subsequent layers, it is set as the
distance between two consecutive detected ruptures.

For the online identification of the model parameters, we
adopt the methodology based on the Recursive Least-Square
(RLS) algorithm, as in [13]. In that work, the interaction force
was correctly reconstructed according to the KV model (2), al-
though no assessment was made about the physical consistency
of the estimated friction component. Indeed, we have shown
in Sect. II that the ML model (3) actually outperforms KV in
the offline interaction force reconstruction, thus being a more
suitable model choice. The online identification of the ML
model with the RLS may, however, incur in observability is-
sues for slowly-varying needle motions which produce poorly
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excited RLS input signals. This can be also highlighted by
observing that the portions of the input signals ϕBi

and ϕKi
in

the regression matrix (5), corresponding to the traversal of an
arbitrary layer Li, are very close to be linearly dependent when
the insertion velocity v is almost constant. As a consequence,
the online estimated parameters, while accurately reconstruct-
ing the measured interaction force, are non-unique and may
be even physically unfeasible. Therefore, some expedients in
the online identification methodology must be considered, so
as to successfully tackle the RLS observability issue due to
input excitation and allow to retrieve estimated parameters of
the ML model consistently with the offline analysis conducted
in Sect. II.

In the following, we will briefly summarize the methodol-
ogy presented in [13]. Then, we will describe how we modified
the approach in order to robustly retrieve physically plausible
estimation of the ML model parameters.

A. Online identification methodology

The RLS algorithm reconstructs, for each discrete time
instant k, an estimation θ̂ of the tissue layer parameters as:

θ̂k = θ̂k−1 +
Ψk−1ϕkek

λk +ϕT
k Ψk−1ϕk

, (7)

Ψk = Ψk−1 −
Ψk−1ϕkϕ

T
k Ψk−1

λk +ϕT
k Ψk−1ϕk

, (8)

where Ψk is the covariance matrix and λk ∈ (0, 1] the
forgetting factor, typically set to 1. Hence, it is possible to
evaluate, for each k, the error ek = fk− f̂k between the force
fk, measured by a force sensor on the robot wrist where the
needle is mounted, and the predicted force f̂k = ϕT

k θ̂k−1.
To foster the algorithm responsiveness to the variations of the
mechanical properties of a target multi-layer tissue and allow
the parameters estimation to change accordingly, a Covariance
Resetting (CR) mechanism is employed.

The transition between two subsequent tissues is auto-
matically detected through the CUSUM algorithm [17], that
adopts a specific decision function g depending on the pair of
variances σ0 and σ1, related to standard and abrupt change
cases, respectively:

gk = max(gk−1 + e2k − ν, 0) > γ , g0 = 0, (9)

being γ = (σ2
1 − σ2

0)/2 and ν = (σ2
1 + σ2

0)/2.
Note that, in [13], the effects of the CR condition on the

online estimation results are not analysed. Yet, manipulating
properly the covariance matrix related to the estimating param-
eters reveals to play a key role in addressing the input signal
excitation problem. It allows, in particular, to retrieve, among
the set of possible solutions, estimates of the parameters
that are consistent with the values obtained offline. This is
discussed in the next Section.

B. Identification procedure refinement

This section illustrates a revision of the online procedure
used in [13] consisting in re-weighting, at the end of each
traversed layer of the target tissue, the covariance matrix, with
consequent re-estimation of the corresponding parameters,
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Fig. 4: Relevant intervals and events for the evaluation of the force components
distribution in the novel online identification methodology.

based on direct measurements of the force drops occurring
after tissue ruptures.

In fact, rupture events, and the corresponding force drops
in the measured signal, provide reliable information about
how elastic and friction contributions are distributed in the
measured force. This information is used to re-weight, a
posteriori, the initial value of the covariance matrix Ψ0. The
newly acquired information is then back-propagated by re-
running the RLS-CR algorithm on the input data of the latest
traversed layer. This drives the algorithm to converge to the
parameters that best describe the distribution of the elastic
and friction contributions, in accordance with the information
provided by the rupture event, while still minimizing the force
error.

Specifically, after each detected rupture, the revised pro-
cedure considers a waiting interval Tdrop,i to measure the
force drop fdrop,i occurring after the rupture. With reference
to Fig. 4, we compute fdrop,i as

fdrop,i = f(tri)− f(tri + Tdrop,i) ' fK(tri). (10)

Once fdrop,i is properly measured, the elastic and friction
force ratio, rK,i and rB,i, is determined:

rK,i =


fdrop,i
f(tr,i)

, i = 1

fdrop,i

f(tr,i)−
∑i−1

j=1 B̂j d̂jv(tr,i)
, i ≥ 2

rB,i = 1− rK,i.

(11)

In the above equation, d̂j is the estimate of the j-th layer thick-
ness which is obtained using the detection of the consecutive
rupture instants trj−1

and trj , achieved through the CUSUM
algorithm, as described in Sect. III-A.

At this stage, this latter information allows to assign differ-
ent weights to the elastic and friction components.

In order to determine the appropriate scale factor of the
covariance matrix, we do the following considerations. For a
given initialized covariance matrix Ψ0 = diag(σ2

Ki,0
, σ2

Bi,0
),

we can formalize the weighting as Ψ′0 = WΨ0 = ΛTΨ0Λ,
with Λ = diag(wK , wB). From (7)-(8), it can be shown
that applying W to the covariance is equivalent to run a
weighted update step of the RLS algorithm with input vector
ϕ′ = Λϕ. Therefore, we can tackle the problem of poor
exciting input signals by first balancing the magnitude of the
position and velocity signals, z(t) and v(t), through the weight
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W 1 = diag(1, d2i /v̄
2
i ), where v̄i is the average velocity of

the needle while traversing the i-th layer. Then, we consider
a further weighting matrix to evaluate the friction per unit
length, i.e., W 2 = diag(1, 1/d̄2i ). Finally, we apply a third
weight to reflect the evaluated ratios rBi

and rKi
on the

variances of the parameters, i.e., W 3 = diag(1, rBi
/rKi

).
As a result, the RLS algorithm can be re-run with the data
collected along the last traversed layer, by considering the re-
initialized weighted covariance matrix Ψ′0 = W 1W 2W 3Ψ0,
resulting in the following rescaling of the friction variance:

σ2
Bi
′,0 =

1

v̄2i

rBi

rKi

· σ2
Bi,0. (12)

Further details about the derivation of the reported weights
can be found in the accompanying Supplementary material.

Re-weighting the covariance matrix according to (12),
and re-estimating the model parameters of the last traversed
layer with the modified covariance matrix, force the RLS to
converge towards more reliable estimation of stiffness and
friction coefficients even in case of non-exciting motion. In
particular, for insertion in single-layer isinglass phantoms, we
show in Sect. VI that the online estimated parameters are
close to the physically plausible values retrieved in the offline
analysis, proving the effectiveness of the refinement procedure.
It is worth noticing that the back-propagation procedure does
not produce unnatural artifacts in the force rendering. The
subtraction of a physically feasible friction component at each
layer transition will let the user perceive only the interaction
force due to the penetration of the tip in the current layer.

Along with the presented covariance re-weighting mecha-
nism, we also mention that, with respect to [13], we revised the
CR condition so as to be triggered on a time basis according
to a constant reset frequency fCR. In fact, since the CR
condition mechanism makes the RLS reactive to the changes
in the estimating parameters of the different tissue layers, it
can be exploited to artificially increase the excitability of the
RLS input signals. This results in an improved force tracking
accuracy and in more stable and robust estimated parameters.

It should be noted, however, that this also alters the statisti-
cal characteristics of the reconstruction error ek, making hard
for the CUSUM algorithm to distinguish properly between
abrupt change and standard cases for tissue rupture detection.
To avoid possibly missing detection, a two-step decision
process is implemented in a finite-state machine fashion. The
revised procedure considers a force derivative-based condition
as second criterion, evaluating the derivative of the measured
force and triggers a detection event when the signal exceeds
a given threshold β. Additional details and a representation of
the finite-state machine associated to the detection algorithm
are provided in the Supplementary material.

As last remark, having in mind the assumptions listed at
the beginning of Sec. II, we point out that, for the proper
online detection of the first tissue layer, the instant t0 of the
first contact with the outer layer, and the corresponding needle
tip position z(t0) = z̄0, are known. If the first layer has a
membrane to be punctured, the arising damping component
is collected in a friction contribution that will be assigned to
a fictitious layer with thickness d1 = z(tr1) − z̄0. While this
does not reflect the real geometry of the target tissue, it allows

to correctly capture the involved interaction component along
the insertion and provide more reliable results. The behavior
is observed and described in the cumulative friction effect
analyzed in Sect. VI-B.

In the presented workflow, we assumed to operate in ideal
conditions where a F/T sensor provided a direct measurement
of the needle-tissue interaction force during the insertion. This
may be not always desirable, particularly if a light and mini-
malist robotic system is appropriate, e.g., in an interventional
scenario. In the next Section, we show how to retrieve an
indirect measurement of the interaction force relying on the
knowledge of the robot model and based on the robot on-
board sensors only, thus realizing a virtual F/T sensor that
prevents the use of dedicated devices for force measuring. The
proposed method will also account for possible uncertainties in
the robot model and consider a refinement process to improve
the accuracy of the resulting measurement.

IV. MODEL-BASED INTERACTION FORCE ESTIMATION

Consider a n-DoFs robot manipulator, employed in the
surgical workspace to perform a needle insertion operation;
the needle is mounted at the robot end-effector and inserted
into tissues to reach a given anatomical target. To retrieve an
indirect measurement of the interaction force without relying
on external dedicated sensors, we consider and estimation
approach based on the computation of the momentum-based
observer, also called residual vector [15].

The computation of the residual vector, henceforth r, re-
quires a reliable knowledge of the dynamic model of the robot
and provides an estimation of the external torques τ c acting
on the robot joints. It can be proved that, for t→∞, one gets
r ≈ τ c and, specifically, the residual vector r is a low-pass-
filtered version of τ c.

Assuming that no contact occurs along the kinematic chain
of the robot (and integrating the additional dynamic parameters
of the needle and its adapter in the dynamic model according
to [18]), a corresponding estimation of the 6-D external wrench
F ext can be computed from τ c as

F ext = JT#

ee (q)τ c (13)

being Jee the 6×n Jacobian matrix at the robot end-effector.
A correct reconstruction of the external contact forces is

ensured if we have a perfect knowledge of the dynamic
model, obtaining r = τ c = 0 in absence of external forces.
In practice, a perfect model is difficult to provide, because
of possible unmodeled phenomena or unavailable dynamic
parameters. In this case, identification algorithms should be
employed [19]–[21], but model inaccuracies may still affect
the overall estimation, thus providing a residual r 6= 0 in
absence of external forces. While these inaccuracies should
be addressed through finer identification procedures, since the
considered needle insertion task involves a limited workspace,
we only consider a local refinement (i.e., in the neighborhood
of the initial configuration) of the available model-based
residual vector, by subtracting an initial offset r0 measured at
the initial insertion time instant t0, so as to obtain r(t0) = 0.

The four panels in Fig. 5 report the comparison between the
interaction force measured by a real F/T sensor (blue lines),
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Fig. 5: Results of the residual-based force estimation. In all panels, the blue (red) lines represent the F/T data retrieved (estimated) along the needle axis, during experiments
in which the needle traverses completely, with constant velocity, a single gelatin layer (panels (a) and (c)), and a stack of three gelatin layers with a latex tissue enveloping the
middle layer (panels (b) and (d)). The needle is retracted after traversing the layers in both experiments. The force estimation error is evaluated as RMSE = 0.2444 [N] and
RMSE = 0.285 [N] for the single-layer and the three-layered-stack phantoms, respectively.
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Fig. 6: (a) Software architecture of the framework for robot-assisted needle insertion
procedures. (b) 3D modeling of the insertion targets. From top to bottom: the simple
multi-layer stack of isinglass gel phantoms; the abdominal phantom under CT scan;
intermediate semi-autonomous segmentation and labelling process of the diagnostic scans
in 3DSlicer software; the reconstructed 3D model in the virtual scene.

and the reconstruction given by Eq. (13) (red lines): Fig. 5a
and Fig. 5b show the two force signals over time, related
to insertions with constant velocity in the 70% single-layer
phantom and in the three-layered-stack phantom with glove,
respectively. The estimation error is highlighted with a black
line. Fig. 5c and Fig. 5d show, for the same dataset, the force
signals as function of the needle tip position along z.

V. THE INTERACTIVE FRAMEWORK

To provide clinicians an assisting tool combining interaction
and visual information for surgical procedures, we devel-
oped a modular framework with the following features: i)
the integration with a set of external systems and devices,
including an interactive simulator; ii) a versatile set of robot
control and estimation methodologies; iii) a 3D rendering of
the target volume of interest. The simulator is based on the
dynamic robotic simulation environment CoppeliaSim [22]
and models the robot platform with other components of the
surgical scenario in a virtual environment. The result is a
virtual reconstruction of the needle insertion procedure with
enhanced visualization properties, used to assess the progress

of the insertion throughout the layers, by providing a visual
reference of the detected tissue transitions.

In the remainder of this section, we detail the mentioned
features of the framework.

A. Framework architecture
The architecture of the proposed framework is depicted in

Fig. 6a and is designed as a multi-layer pattern.
At the top layer (highlighted in blue in in Fig. 6a), a set

of proxy objects provide an interface for each external system
that requires to be connected with the framework (i.e., robot
platform, F/T sensor, CoppeliaSim simulator). To improve the
manoeuvrability of the insertion and integrate teleoperation
control, we also interfaced a haptic device enabling users to
send commands to the robot remotely.

At the middle layer (yellow box in Fig. 6a), we consider
objects implementing high-level routines that need to gather
and coordinate data from different proxies and objects of
higher and lower layers (e.g., robot motion generation, surgical
planning and estimation tasks), along with a system manager
collecting and scheduling the activities based on user requests
or changing environment conditions.

At the lower layer (red in Fig. 6a), a set of abstract objects
refer to atomic components of the setup (e.g., robot, target
phantom, F/T sensor) or mathematical tools (e.g., algorithms,
kinematic constraints), used by the higher-level routines in
order to store, load and process local data of each component
(e.g., update of the robot kinematics and dynamics, execution
of the RLS algorithm), as well as perform write-read oper-
ations on the file-system for data logging and storage (gray
layer in Fig. 6a).

The resulting system allows to easily implement the nec-
essary aspects for the realization of the needle insertion
procedure supported by the robot platform, as well as the
fulfillment of the identification task.

B. Robot control
The designed framework provides different robot control

modalities and kinematic constraints, guiding the needle mo-
tion. The considered control modalities are: i) manual guid-
ance, for a rough positioning of the robot through external
forces exerted by the user on the manipulator structure; ii)
teleoperation, for fine regulation, possibly including motion
scaling, through the use of a master haptic device; iii) au-
tonomous, to automatically perform predefined trajectories.
The manual guidance, that enables robot motion by simply
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Fig. 7: The integration of the CoppeliaSim simulator in the presented framework:
the experimental scenario (left) required for needle insertion procedures is faithfully
replicated in real-time in the virtual environment (right).

pushing/pulling it along its kinematic chain, is used to set a
first rough placement of the needle tip and is implemented
through the residual vector described in Sect. IV. The con-
sidered kinematic constraints are: i) decoupled motion, to
separately set linear and angular velocities and command a
more intuitive motion; ii) virtual fixture, to constrain the robot
to move along the needle shaft direction and prevent undesired
lateral motions; iii) Remote Center of Motion (RCM), to allow
needle insertion motion through the entry point in the patient’s
body, and rotation about the point [23]. Both control modalities
and kinematic constraints are modeled as kinematic control
tasks. Exploiting the manipulator redundancy, these can be
solved simultaneously resorting to a task-priority formulation:
we consider a stack of the k assigned tasks expressed in
the form ṫi = J iq̇, with i = 1, . . . , k, and generate the
joint velocity vector q̇ as a recursive solution, with priorities
enforced through task null-space projectors. For the i-th task of
the stack, an exponential decay for the task error ei = td,i− t
is obtained by imposing a linear closed-loop dynamics.

C. 3D target volume modeling

The modeling properties of the CoppeliaSim environment
allow to create geometrically simple shapes, through which
we may model, e.g., the stacks of isinglass gel phantoms (see
top image of Fig. 6b). However, a more rigorous approach is
required for volumes with more complex geometry.

For this purpose, we built the 3D model of a medical
abdominal phantom from images acquired through 3D CT
scan imaging. The modeling process is shown in Fig. 6b:
after performing the CT scan on the phantom (second im-
age of Fig. 6b), the acquired images are processed in the
3DSlicer open-source software [24] through semi-autonomous
segmentation and labelling tools (third image of Fig. 6b), in
order to highlight inner structures, organs and tissues inside
the phantom over the three scan axes. The final result is a
3D model of the segmented volumes that is imported in the
CoppeliaSim simulated scene (bottom image of Fig. 6b).

To replicate faithfully the real environment where the in-
sertion is performed, an image registration routine is im-
plemented, in order to place the 3D model of the phantom
with respect to the robot manipulator, consistently with the
real world. The registration procedure is accomplished by
collecting a set of landmarks in the 3D model and robot
reference frames, estimating the corresponding transformation
in a least-square fashion through the ICP algorithm [25]. A

complete 3D simulated scene is shown in Fig. 7 and in the
accompanying video of this manuscript.

VI. RESULTS

The novel needle-tissue interaction identification algorithm
and the integration with the residual-based force measure-
ments have been validated through experiments performed
over several targets, with different interaction properties and
increasing geometrical complexity: i) isinglass single- and
multi-layer phantoms with different solution and latex glove,
to increase the elastic behavior during the interaction; ii) a
slice of bovine liver; iii) a professional abdomen phantom with
inner anatomical structures and organs.

Insertion experiments have been conducted in the same
operative conditions described in Sect. II, i.e., considering
an empty space below the target to allow full traversal of
the considered layers. For the presented experimental results,
based on a statistical analysis performed over a number of
insertion force signals for each class, we set σ0 = 0.01
and σ1 > 0.08, while the force derivative threshold is set
to β = 0.075. The CR condition of the RLS algorithm is
triggered, with a constant reset frequency fCR = 40 Hz. In
the following, these classes of experiments are discussed in
detail.

A. Experiments on isinglass phantoms

Figure 8 reports the online estimation results for an insertion
in a 70% solution target phantom with constant velocity
v = 2.3 mm/s. The force profile (Fig. 8a) is analogous to the
behavior described in Sect. II: a linearly incremental force is
sensed by the F/T sensor (green line) during the layer traversal,
until an abrupt decrease occurs at the layer exit, bringing the
force measurement to a constant value when the needle tip is in
the empty space below the phantom. The reconstructed force
f̂ computed by the RLS (yellow dashed line) fits accurately
the measured force, with a spike at the detected rupture instant
of the single layer L1 (tr1 ' 15 s, shown with vertical black
solid line). This spike is due to the discontinuity of ϕ caused
by the re-initialization of the initial position z̄2 = z(tr1), for
the expected next layer L2 (corresponding to the empty space).

To properly measure the force drop at the rupture as
described in Sect. III-B, the tissue relaxation time can be mod-
eled as inversely proportional to the insertion velocity [26].
Therefore, we set Tdrop = kvv

−1(tr1), where kv = 1 is
heuristically chosen for all experiments. After Tdrop,1 seconds
from the detected rupture (highlighted in vertical dashed black
line), the force drop for the current layer is measured and the
RLS algorithm is re-run, in accordance with Sec. III-B, to
generate a robust estimation of elastic and friction coefficients.

Since, at the full traversal of the phantom, the dominating
contribution of the measured force is due to the friction
between the layer and a constant portion of the needle shaft,
an accurate identification will result in an almost zero com-
pensated force after the rupture. From Fig. 8a, we observe
that the ML model (red dashed) is more accurate than KV
model (yellow dashed), since the corresponding compensated
force is closer to 0. In Fig. 8b, the estimated elastic (top
panel) and friction (middle panel) coefficients are reported; the
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Fig. 8: Experimental results of the friction compensation algorithm on the 70% solution gel phantom, with unknown layer depth. The needle insertion occurs with a constant
velocity. (a) Measured (green), predicted (yellow) and compensated forces using the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the
rupture detection time tr (continuous line) and the compensation time tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and
cumulative friction (bottom panel) parameters for the presented experiment.
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Fig. 9: Experimental results of the friction compensation algorithm on the 70% solution gel phantom, with unknown layer depth. The needle insertion occurs with a sinusoidal
velocity. (a) Measured (green), predicted (yellow) and compensated forces using the KV (blue line) and the ML (red line) models. With vertical black lines are highlighted the
rupture detection time tr (continuous line) and the compensation time tr + Tdrop (dashed line). The normalized profile of the sinusoidal velocity is also shown (dashed gray), to
highlight its variation along the insertion. (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative friction (bottom panel) parameters for the presented
experiment.

Fig. 10: Comparison of the estimated friction coefficients of the three considered single-
layer isinglass phantoms, for constant (blue) and sinusoidal (red) insertion velocity.
Triangles denote friction values retrieved from offline analysis, while stars represent
parameters estimated through the online identification methodology with covariance re-
weighting procedure.

bottom panel reports the cumulative estimated friction term,
here equivalent to the friction of the single considered layer.

A second experiment on the same 70% solution gelatin
phantom, with sinusoidal insertion velocity, is shown in Fig. 9,
where we also show the normalized profile of the insertion
velocity to highlight the motion variation with respect to
the reported measured force. For the considered motion, we
used an amplitude A = 7 cm and a frequency equal to
fHz = 0.016 Hz. Although none of the two models captures
the linearity of the friction component, the ML model succeeds

Isinglass phantom Offline Avg. ± variance (%−error) Online Avg. ± variance (%−error)
25% 113± 14 (∼ 12%) 84± 10 (∼ 12%)

50% 283± 21 (∼ 7%) 232± 16 (∼ 6.8%)

70% 534± 56 (∼ 10%) 481± 37 (∼ 7.73%)

TABLE I: Average value and variance of the estimated friction for insertions in single-
layer isinglass phantoms, evaluated over the two constant and sinusoidal velocity profiles.
Units are [Ns/m].

in returning a value of the friction closer to the real one.
For this experiment, we observe that the behavior of the
compensated force (after the detected rupture at tr1 ' 20 s)
reflects the presence of unmodeled dynamics, already men-
tioned in Sect. II, that affects the fitting of the selected
models with respect to the experimental measured force data,
in case of non-constant insertion velocity. In fact, the rais-
ing curve observed in Fig. 9a is comparable to the fitting
deviation evaluated, for the same class of target phantom, in
the bottom panel of Fig.2c. Analogous results are obtained
for gelatin phantoms with 25% and 50% solution, reported
in the accompanying Supplementary material. The quality of
the online estimation results obtained with the ML model
are also confirmed in Tab. I and Fig. 10, where we reported
a comparison of the estimated friction in the considered
single-layer isinglass phantoms, between offline and online
estimation procedures. For each phantom, the Table reports



10

8 10 12 14 16 18 20 22 24 26

0

0.5

1

1.5

2

2.5

(a)

8 10 12 14 16 18 20 22 24 26

0

50

100

150

8 10 12 14 16 18 20 22 24 26

0

1000

2000

8 10 12 14 16 18 20 22 24 26

0

1000

2000

(b)

Fig. 11: Experimental results of the friction compensation algorithm on the 70% solution gel phantom, with unknown layer depth. The needle insertion occurs with a constant
velocity. In this experiment, the real F/T sensor is replaced with the virtual sensor based on the momentum-based residual. (a) Estimated (green), predicted (yellow) and compensated
forces using the ML (red line) model. F/T measured force is reported in gray for comparison. The vertical black lines highlight the rupture detection time tr (continuous line) and
the compensation time tr +Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative friction (bottom panel) parameters for the
presented experiment.
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Fig. 12: Experimental results of the friction compensation algorithm with unknown layer depth of a multi-layer gel target, composed by a 25%, 50% and 70% solution gel layers.
A latex glove is placed around the intermediate layer to include additional elastic interaction. The needle is inserted with a constant velocity. In this experiment, the real F/T sensor
is replaced with the virtual sensor based on the momentum-based residual: (a) Estimated (green), predicted (yellow) and compensated forces using the ML (red line) model. F/T
measured force is reported in gray for comparison. With vertical black lines are highlighted the rupture detection time tr (continuous line) and the compensation time tr + Tdrop

(dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative friction (bottom panel) parameters for the presented experiment.

the average friction value, with variance and corresponding
%-wise error, obtained from two insertions with constant and
sinusoidal velocity: the obtained results are comparable to
the estimations retrieved from the offline analysis, proving
the validity of the online identification methodology with
covariance re-weighting. In Fig. 10, we also observe that the
online friction values underestimate the corresponding values
reconstructed from offline analysis. This is explained with
possible inaccuracies in the tissue rupture detection: if the
detection is delayed with respect to the actual rupture event,
the friction B̂i(tri) evaluated at the corresponding instant may
be slightly below the maximum value assumed at the peak.

The presented results show how the ML model outperforms
the KV model in identifying physically plausible friction
coefficients of the traversed layers, starting from acquired force
measurements of a real F/T sensor. From now on, we will show
friction identification and compensation results for the only
ML model, starting from the model-based interaction force
estimation that acts as a virtual F/T sensor.

Figure 11 reports the results for the insertion experiment
with constant velocity on the 70% gelatin phantom: with
respect to the results shown with the real F/T sensor, our
approach performs satisfactorily, as can be appreciated also by

observing the estimated values of the coefficients in Fig. 11b,
where we report in dashed gray, for comparison, the analogous
coefficients estimated in Fig. 8b with the F/T sensor.

A final experiment for this class has been carried out on
the three-layered phantom already described in Fig. 3a, with a
constant insertion velocity v = 3 mm/s. Results are depicted
in Fig. 12, showing that three layer ruptures are correctly
detected: the first two ruptures (at time tr1 ' 10.5 s and
tr2 ' 16.5 s) are relative to the rupture of the thin latex layer
of the envelope enclosing the middle gelatin layer, while the
last detected rupture (tr3 ' 20.5 s) corresponds to the exit of
the needle tip at the opposite point of the entry of the phantom.

While replicating more realistic conditions, the presence of
the glove introduces, for each layer i, an artificial nonlinearity
in the corresponding force signal, altering the estimation of the
thickness d̂i and resulting in possible misleading estimations
of the friction component. This is also reflected in a time-
varying behavior of the estimated coefficients within the same
layer (see Fig. 12b). However, the estimated values of the
coefficients are still suitable enough to guarantee at least a
physical feasibility, as confirmed by the resulting enhanced
force signal that is close to zero after the exit of the needle
tip from the phantom.
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Fig. 13: Experimental results of the friction compensation algorithm on a bovine liver target of unknown layer depths, moving with constant needle velocity. In this experiment, the
real F/T sensor is replaced with the virtual sensor based on the momentum-based residual: (a) estimated (green), predicted (yellow) and compensated forces using the ML (red line)
model. F/T measured force is reported in gray for comparison. With vertical black lines are highlighted the rupture detection time tr (continuous line) and the compensation time
tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative friction (bottom panel) parameters for the presented experiment.
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Fig. 14: Experimental results of the friction compensation algorithm on the abdominal phantom target, with the needle moving with constant velocity. In this experiment, the real
F/T sensor is replaced with the virtual sensor based on the momentum-based residual: (a) estimated (green), predicted (yellow) and compensated forces using the ML (red line)
model. F/T measured force is reported in gray for comparison. With vertical black lines are highlighted the rupture detection time tr (continuous line) and the compensation time
tr + Tdrop (dashed line). (b) Estimation of the elastic (upper panel), local friction (middle panel) and cumulative friction (bottom panel) parameters for the presented experiment.

B. Experiments on real organic tissues

As a second class of insertion targets, we consider a portion
of a bovine liver. In this case, a ground truth about the internal
geometry is not available, but it is possible to validate a
posteriori the identified ruptures by a simple visual inspection
of the retrieved/estimated F/T signal.

In Fig. 13, we show the estimation and compensation results
for an insertion with constant velocity v = 2.3 mm/s, with
two layer transitions correctly detected by our algorithm (at
tr1 ' 16.5 s and tr2 ' 25.5 s).

The presented experiment shows the behavior already de-
scribed in Sect. III-B: since the liver has an external membrane
to be perforated before penetrating the inner tissues, the space
between the external contact and the first detected rupture
(occurring at tr1 ' 16.5 s) is identified as a first layer L1,
despite the needle is still outside the liver in that interval.
However, the measured force after the rupture is not null,
although very low (∼ 0.25 N) due to the damping component
resulting from the puncturing phase of the layer below.

We also highlight that, despite the model-based force esti-
mation (green line) has a slightly larger value than the F/T
sensor measurement (gray line), the identification algorithm
will return a friction contribution that allows the enhanced
force signal (red line in Fig. 13a) to almost vanish (as

expected) when the needle tip entirely traverses the liver. This
shows that the identified parameters are consistent in terms of
cumulative friction and also account for the model inaccuracies
present in the model-based estimation force.

C. Experiments on a medical abdominal phantom

As last category of insertion target, we conducted an
experiment on an abdominal phantom, integrating the
corresponding 3D model in the simulation scene, as detailed
in Sect. V-C, so as to provide a visual reference to observe
the progress of the insertion (see Fig. 7). We considered here
an insertion with sinusoidal velocity, with A = 11.5 cm and
fHz = 0.02 Hz. In the planned insertion trajectory, the needle
is expected to traverse through simulated fat, muscle and liver
layers. Fig. 14 reports the interaction force estimated by the
virtual F/T sensor (green line): the first transition in the first
fat layer is not detected due to the smooth force segment that
does not highlight abrupt changes at the phantom entrance.
However, since it is the only external transition, it can be
observed through a visual inspection of the insertion in the
surgical scenario. Instead, muscle and liver layer transitions
are correctly detected at tr2 ' 27.5 s and tr3 ' 35 s, with
estimated friction components that, after compensation,
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generate a feasible enhanced force signal.

As a final comment to the presented results, we briefly
discuss the presence of negative values that can be observed
in the plots of the coefficient estimates for all the described
experiments. The estimates, in fact, may assume negative
value when the force signal input in the RLS algorithm is
negative, both when relying on the F/T sensor and on the
momentum-based measurements. In the former case, possible
estimation inaccuracies of the cumulative friction term of the
previous layers may result in a slight over-compensation after
the rupture. Similarly, in the latter case, the cause of the
negative values is due to estimation errors resulting from the
momentum-based force reconstruction. In both cases, this only
occurs during a short transient phase.

A visualization of these experiments, performed with the
support of the developed framework and the CoppeliaSim
environment, is shown in the accompanying video of the paper.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a novel methodology to predict online
the needle-tissue interaction force, to identify and subtract the
friction component, in order to generate a reliable enhanced
force signal during robot-assisted needle insertion procedures.

We first showed how to exploit the mathematical model of
the needle-tissue interaction to identify the friction component,
by relying on a real F/T sensor located at the robot end-
effector. A refinement process with robust online update of
the interaction model parameters is described to handle poorly
exciting input signals and observability issues.

Next, we described the use of the momentum-based residual
signal to realize a virtual F/T sensor and generate a reliable
estimation of the force. We showed that friction identification
and subtraction can equivalently adopt virtual and real F/T
sensors, by providing comparable enhanced force signals.

The approach has been validated against ground-truth results
obtained offline in a wide array of experiments on different
targets.

We aim at integrating the force enhancing algorithm in a
teleoperation scheme to provide the operator with the most
appropriate haptic rendering of the features of interest in the
needle-tissue interaction force. As further improvement, we
will complete the integration of a visual simulator in the
presented framework for a full visuo-haptic feedback during
needle-insertion procedures, by also including virtual reality
experience, analogously to what we have done in [27]. We
also aim at extending the current simulator functionalities to
account for rendering of soft tissues and deformable objects.
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