
Robotics 2

January 12, 2021

Exercise #1

The 3R robot in Fig. 1 moves in a vertical plane. Its control architecture consists of an ideal low-
level controller that is able to execute any (reasonable) reference joint velocity command q̇r ∈ R3

(including q̇r = 0), as received by a high-level control law. The assigned task requires that the end
effector is kept at a desired position Pd in the plane, while the robot minimizes the potential energy
Ug(q) due to gravity. Design a suitable high-level control law that realizes this task in a robust
way (i.e., rejecting also positioning errors for the end effector). Provide the detailed symbolic
expression of all terms needed in this law. Compute then the numerical value of q̇r at the starting
instant t = 0, assuming that the links have a uniform distribution of mass and using the data:

l1 = 0.5, l2 = 0.4, l3 = 0.3 [m], m1 = 5, m2 = 3, m3 = 2 [kg],

q1(0) = π, q2(0) = 0, q3(0) = −π/2 [rad] ⇒ Pd = (−0.9, 0.3).
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Figure 1: A planar 3R robot with a constant desired position Pd defined for its end effector.

Exercise #2

Consider again the situation of Exercise #2. Assume now that the robot is torque-controlled,
namely that the control architecture is able to impose any (reasonable) reference joint torque
command τ r ∈ R3. Design a suitable torque-level control law that realizes the same previous task
in a robust way (i.e., rejecting also position and/or velocity errors for the end effector). [Note: You
don’t have to detail the expression of the terms in the control law, just define the structure.]

Exercise #3

Derive the dynamic model of the 2R polar robot in Fig. 2, assuming that I2,xx 6= I2,yy = I2,zz.
Consider also the presence of viscous friction at the two joints.
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Figure 2: A 2R polar robot. Mass and diagonal barycentric inertia of each link is indicated.
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Exercise #4

Consider again the robot of Exercise #3. Answer the following questions on its dynamics.

a) Suppose that the first robot joint is kept at a constant speed q̇1 = Ω > 0 by a constant torque τ̄
of minimum possible norm ‖τ̄‖ applied at the joints. Find an associated constant steady-state
position q2 = q̄2 and the expressions of τ̄1 and τ̄2. Is the joint angle q̄2 unique for a given Ω > 0?
And is the associated minimum norm torque τ̄ unique?

b) Assuming that only the gravity acceleration g0 and the kinematic parameters are known for this
robot, what is the minimum number p of uncertain dynamic coefficients a that fully describe
the robot dynamics in the linearly parametrized way Y (q, q̇, q̈)a = τ? Give the symbolic
expressions for the vector a ∈ Rp and the 2× p matrix Y .

Exercise #5

A PPR robot moving on a horizontal plane may collide with some unknown obstacle in the en-
vironment at an a priori unknown point Pc along its structure, as illustrated in Fig. 3. Suppose
that a single collision occurs and that the interaction can be assumed as pointwise, modeled by an
unknown and unmeasurable pure force F c,i ∈ R2 applied to the robot, respectively with i = 1, 2,
or 3 according to which link is involved. Define the complete expression of the dynamic terms in
a model-based residual vector r ∈ R3 that can be used for collision detection and isolation. For
every possible situation, analyze if the collision can be detected or not, if the colliding link can be
isolated or not, if the colliding force F c,i can be identified (completely or in part) or not, and if
the location of the collision point Pc,i along the ith link can be determined or not.
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Figure 3: A planar PPR robot undergoing a possible collision during motion.

[240 minutes (4 hours); open books]
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Solution
January 12, 2021

Exercise #1

In the absence of position error at the robot end effector level, a suitable high-level control law
satisfying the requested self-motion task is obtained by projecting the negative gradient of the
gravitational potential energy Ug(q) in the null space of the task Jacobian J(q), or

q̇r = −α
(
I − J#(q)J(q)

)
∇q Ug(q) = α

(
J#(q)J(q)− I

)
g(q). (1)

The scalar α > 0 is a step size in the anti-gradient direction −∇q Ug = − (∂Ug/∂q)
T

and g(q) is
the gravity term in the robot dynamic model1. To make the control law robust w.r.t. transient
Cartesian position errors ep = pd − p = pd − f(q), where f(q) is the (positional) task kinematics
of the robot, we modify (1) as

q̇r = J#(q)KPep + α
(
J#(q)J(q)− I

)
g(q) = −α g(q) + J#(q) (KPep + αJ(q)g(q)) , (2)

where KP > 0 is a (typically, diagonal) control gain matrix. Out of singularities, this produces
an exponentially converging error dynamics since ėp = −ṗ = −J(q)q̇r = −KPep. In order to
evaluate (2), we need the following terms (using the usual compact trigonometric notation):

f(q) =

(
l1c1 + l2c12 + l3c123

l1s1 + l2s12 + l3s123

)
,

J(q) =

(
∂f(q)

∂q

)T

=

(
−(l1s1 + l2s12 + l3s123) −(l2s12 + l3s123) −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

)
,

Ug(q) = g0 (m1dc1s1 +m2(l1s1 + dc2s12) +m3(l1s1 + l2s12 + dc3s123)) ,

g(q) =

(
∂Ug(q)

∂q

)T

= g0

 (m1dc1 + (m2 +m3)l1) c1 + (m2dc2 +m3l2) c12 +m3dc3 c123

(m2dc2 +m3l2) c12 +m3dc3 c123

m3dc3 c123

 ,

where dci > 0 is the distance of the center of mass of link i from the joint axis i, for i = 1, 2, 3.

With the given data, it is f(q(0)) =
(

0.9 0.3
)T

= pd, so that ep = 0 and we don’t need to know
the actual value of Kp. For the remaining terms in (2), we compute

J(q(0)) =

(
−0.3 −0.3 −0.3

−0.9 −0.4 0

)
⇒ J#(q(0)) =

 0.5464 −1.1475

−1.2295 0.0820

−2.6503 1.0656


and

g(q(0)) = g0

 −5.15

−1.4

0

 =

 −50.522

−13.734

0

 [Nm],

1Note that α converts here a joint torque into a joint velocity. Thus, it has dimensional units [rad·(Nm·s)−1].
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where g0 = 9.81 [m/s−2]. Setting for instance α = 1, we finally obtain

q̇r(0) =

 2.5731

−5.7895

3.2164

 [rad/s].

The first and third link start moving counterclockwise, while the second link will rotate clockwise.
Robot motion will continue until the projection of the gravity term g(q) in the null space of the
Jacobian J(q) will vanish (in general, not implying that g(q) = 0).

Exercise #2

When the robot is in a torque-controlled mode, its full dynamics

M(q)q̈ + c(q, q̇) + g(q) = τ

has to be taken into account. To address the same task as in Exercise #1 with torque control, we
apply first a feedback linearization law in the joint space, i.e.,

τ = M(q)a+ c(q, q̇) + g(q) ⇒ q̈ = a. (3)

A joint acceleration command performing a robot self-motion, as driven by the negative gradient
of the potential energy due to gravity2, is then designed as

a = −J#(q)J̇(q)q̇ −
(
I − J#(q)J(q)

)
(α g(q) +Kvq̇) . (4)

In (4), a damping velocity term −Kvq̇, with Kv > 0 and diagonal, has been added in the null
space of the task Jacobian in order to stabilize the joint motion. This is customary (and almost
mandatory) when resolving redundancy at the acceleration level.

For rejecting position and/or velocity errors that may occur around the desired constant end-
effector position, the command (4) is modified as

a = J#(q)
(
KP (pd − f(q))−KDJ(q)q̇ − J̇(q)q̇

)
−
(
I − J#(q)J(q)

)
(α g(q) +Kvq̇) , (5)

including thus a PD action, with (typically diagonal) gain matrices KP > 0 and KD > 0, on the
Cartesian position error, and taking into account that ṗd = 0. Plugging (5) into (3) yields finally
the desired torque control law

τ r = M(q)
[
J#(q)

(
KP (pd − f(q))−KDJ(q)q̇ − J̇(q)q̇

)
−
(
I − J#(q)J(q)

)
(α g(q) +Kvq̇)

]
+ c(q, q̇) + g(q).

(6)

Exercise #3

Kinetic energy

T1 =
1

2
I1,yy q̇

2
1 T2 =

1

2
m2‖vc2‖2 +

1

2
ωT

2 I2ω2 =
1

2
m2‖vc2‖2 +

1

2
2ωT

2
2I2

2ω2

2In this case, α converts a joint torque into a joint acceleration. Thus, it has dimensional units [rad·Nm−1·s−2].
Similarly, the units of Kv are [s−1].

4



pc2 =

 dc2 cos q2 cos q1

dc2 cos q2 sin q1

dc2 sin q2

 =

 dc2 c1c2

dc2 s1c2

dc2 s2

 ⇒ vc2 = ṗc2 =

 −dc2(s1c2 q̇1 + c1s2 q̇2)

dc2(c1c2 q̇1 − s1s2 q̇2)

dc2 c2 q̇2


⇒ ‖vc2‖2 = d2c2

(
q̇22 + c22q̇

2
1

)
1ω1 =

 0

q̇1

0

 ⇒ 1ω2 =

 0

q̇1

q̇2

 ⇒ 2ω2 = 1RT
2 (q2) 1ω2 =

 c2 s2 0

−s2 c2 0

0 0 1


 0

q̇1

q̇2

=

 s2q̇1

c2q̇1

q̇2



⇒ T2 =
1

2
m2 d

2
c2

(
q̇22 + c22q̇

2
1

)
+

1

2

(
s2q̇1 c2q̇1 q̇2

) I2,xx 0 0

0 I2,yy 0

0 0 I2,zz


 s2q̇1

c2q̇1

q̇2


=

1

2
m2 d

2
c2

(
q̇22 + c22q̇

2
1

)
+

1

2
I2,zz q̇

2
2 +

1

2

(
I2,xxs

2
2 + I2,yyc

2
2

)
q̇21

T (q, q̇) = T1 + T2 =
1

2
q̇TM(q)q̇

Inertia matrix

M(q) =

(
I1,yy + I2,xxs

2
2 +

(
I2,yy +m2d

2
c2

)
c22 0

0 I2,zz +m2d
2
c2

)
(7)

=

(
I1,yy + I2,xx +

(
I2,yy +m2d

2
c2 − I2,xx

)
c22 0

0 I2,zz +m2d
2
c2

)

=

(
a1 + a2 c

2
2 0

0 a3

)
=

(
m1(q2) m2

)
Potential energy and gravity vector

U1 = 0 U2 = g0m2dc2s2 U(q) = U1 + U2

⇒ g(q) =

(
∂U(q)

∂q

)T

=

(
0

g0m2dc2c2

)
=

(
0

a4 c2

)
Coriolis and centrifugal vector

C1(q) =
1

2

((
∂m1

∂q

)
+

(
∂m1

∂q

)T

−
(
∂M

∂q1

))
=

(
0 −a2s2c2

−a2s2c2 0

)
c1(q, q̇) = q̇TC1(q)q̇ = −2 a2s2c2 q̇1q̇2 = −a2 sin(2q2)q̇1q̇2

C2(q) =
1

2

((
∂m2

∂q

)
+

(
∂m2

∂q

)T

−
(
∂M

∂q2

))
=

(
a2s2c2 0

−0 0

)
c2(q, q̇) = q̇TC2(q)q̇ = a2s2c2 q̇

2
1

⇒ c(q, q̇) =

(
−2 a2s2c2 q̇1q̇2

a2s2c2 q̇
2
1

)
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Dynamic model (including viscous friction)

M(q)q̈ + c(q.q̇) + g(q) + F q̇ = τ ⇐⇒

{(
a1 + a2 c

2
2

)
q̈1 − 2 a2s2c2 q̇1q̇2 + f1q̇1 = τ1

a3q̈2 + a2s2c2 q̇
2
1 + a4 c2 + f2q̇2 = τ2

(8)

Exercise #4

a) With reference to eqs. (8), set q̇1 = Ω > 0, q̈1 = 0, q2 = q̄2, q̇2 = q̈2 = 0 for the desired steady
state. We get

f1Ω = τ1 (9)

a2 sin q̄2 cos q̄2 Ω2 + a4 cos q̄2 = τ2 (10)

From (9), the torque on joint 1 should necessarily compensate the loss of energy due to viscous
friction when the joint is rotating with a speed Ω, so τ̄1 = f1Ω. Because of the minimum norm
requirement for the steady-state torque τ̄ , we seek then a solution q̄2 in (10) for τ2 = τ̄2 = 0. This
is possible in two cases.

𝑞"#

m2g0

𝑞̇% = Ω

⨁
dc2

reaction
force centrifugal

force

Figure 4: Equilibrium of forces for a polar robot spinning its first joint at a constant q̇1 = Ω > 0.

• For q̄2 = ±π/2 (second link vertical, up or down along the first joint axis). Indeed, cos q̄2 = 0 and
(10) will be an identity with zero applied torque. However, these equilibria are both unstable:
small perturbations to this steady-state condition will let the second robot joint deviate from
any of these two configurations.

• When a2 sin q̄2 Ω2 + a4 = 0. This corresponds to a special balancing between the vector sum of
the gravity force (pointing vertically and downward) and centrifugal force (pointing horizontally
and radially from the first joint axis), both applied to the center of mass of link 2, and the
internal reaction force by the rigid robot structure (see Fig. 4). This balance is obtained for

q̄2 = arcsin
−a4
a2 Ω2

= − arcsin
g0m2dc2

(I2,yy +m2d2c2 − I2,xx) Ω2
∈
(
−π

2
, 0
)
. (11)

The domain of definition for q̄2 follows from dc2 > 0 and from the fact that I2,yy +m2d
2
c2 > I2,xx

always holds, namely that the inertia of link 2 around an axis belonging to its base is less than
the baricentral inertia around an axis stretching along the link length. Such inequality can be
proven for any rigid body, no matter what mass it has and how the mass is distributed in the
body volume3. For low values of Ω, the angle in (11) would be close to −π/2; for large values of
Ω, we have instead q̄2 → 0−. It can be shown that this equilibrium is dynamically stable.

3Triangular inequalities hold among the elements of a diagonal barycentric inertia matrix of a rigid body (or for
the elements on its principal axes), such as Iyy + Izz > Ixx. In addition, the inertia I around any barycentric axis
of a body of mass m is smaller than md2, where d is the distance from the CoM to a parallel axis at the body end.
These two physical properties together prove the inequality in the text.
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In any case, we note that the (minimum norm) torque for this dynamic equilibrium will be the
same:

τ̄ =

(
f1Ω

0

)
, ‖τ̄‖ = f1 |Ω| .

Indeed, when considering also a constant torque τ̄2 6= 0 applied at the second joint (and thus, a
total torque with ‖τ̄‖ > f1 |Ω|), we may find other steady-state solutions for q̄2.

b) The minimum number of dynamic coefficients required is p = 6. From eqs. (8), one has

Y =

(
q̈1 c22q̈1 − 2s2c2 q̇1q̇2 0 0 q̇1 0

0 s2c2 q̇
2
1 q̈2 c2 0 q̇2

)
, a =



a1

a2

a3

a4

a5

a6


=



I1,yy + I2,xx

I2,yy +m2d
2
c2 − I2,xx

I2,zz +m2d
2
c2

g0m2dc2

f1

f2


⇒ Y (q, q̇.q̈)a = τ .

A comment is in place on the alternative definition of coefficients in (7), before introducing the
trigonometric substitution s22 = 1 − c22. When I2,yy = I2,zz, as in the present case, only three
independent dynamic coefficients would appear anyway in the inertia matrix, although with the
different definitions

a′1 = I1,yy, a′2 = I2,xx, a′3 = I2,yy +m2d
2
c2 = I2,zz +m2d

2
c2 = a3,

whereas a′i = ai for the remaining i = 4, 5, 6. Although the associated regressor matrix Y ′ would
look slightly different, both parametrizations are minimal (p = 6). On the other hand, this would no
longer be true for the parametrization suggested by (7) in case I2,yy 6= I2,zz: 4 dynamic coefficients
would then be used in M , leading to a total of 7 coefficients in the dynamic model.

Exercise #5

We shall derive first the terms in the dynamic model of the planar PPR robot in Fig. 3, following
a Lagrangian approach. In the absence of gravity, we have

M(q)q̈ + S(q, q̇)q̇ = τ + τ c, τ c = JT
c (q)F c,

where Sq̇ is a factorization of the quadratic velocity terms such that Ṁ − 2S is a skew-symmetric
matrix (or, equivalently, Ṁ = S + ST ), τ c is the joint torque resulting from a collision with a
force F c, and Jc is the Jacobian of the collision point along the structure.

The kinetic energy of the first two links, moved by two prismatic joints with orthogonal axes, is

T1 + T2 =
1

2
m1q̇

2
1 +

1

2
m2

(
q̇21 + q̇22

)
.

From

pc3 =

(
q1 + dc3c3

q2 + dc3s3

)
⇒ vc3 = ṗc3 =

(
q̇1 − dc3s3q̇3
q̇2 + dc3c3q̇3

)
, ω3 = q̇3,

the kinetic energy of the third (rotational) link is computed as

T3 =
1

2
m3‖vc3‖2 +

1

2
I3 ω

2
3 =

1

2
m3

(
q̇21 + q̇22 + d2c3q̇

2
3 + 2 dc3(−s3q̇1 + c3q̇2)q̇3

)
+

1

2
I3q̇

2
3 .
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From the kinetic energy of the system,

T = T1 + T2 + T3 =
1

2
q̇TM(q)q̇,

the inertia matrix is extracted as

M(q) =

 m1 +m2 +m3 0 −m3dc3s3

0 m2 +m3 m3dc3c3

−m3dc3s3 m3dc3c3 I3 +m3d
2
c3

 .

The (purely) centrifugal terms c(q, q̇) = S(q, q̇)q̇ are derived using the Christoffel symbols, i.e.,
for each component

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

(
∂mi(q)

∂q
+

(
∂mi(q)

∂q

)T

− ∂M(q)

∂qi

)
, i = 1, 2, 3

being mi the ith column of the inertia matrix M . We obtain

C1(q) =

 0 0 0

0 0 0

0 0 −m3dc3c3

 ⇒ c1(q, q̇) = −m3dc3c3q̇
2
3

C2(q) =

 0 0 0

0 0 0

0 0 −m3dc3s3

 ⇒ c2(q, q̇) = −m3dc3s3q̇
2
3

C3(q) = 0 ⇒ c3(q, q̇) = 0,

and thus

c(q, q̇) =

 −m3dc3c3q̇
2
3

−m3dc3s3q̇
2
3

0

 .

Using again the Christoffel symbols, a suitable factorization matrix for c is computed as

S(q, q̇) =

 q̇TC1(q)

q̇TC2(q)

q̇TC3(q)

 =

 0 0 −m3dc3c3q̇3

0 0 −m3dc3s3q̇3

0 0 0

 ,

The model-based residual for collision detection and isolation can then be evaluated in all its terms,
namely

r(t) = KI

(
M(q)q̇ −

∫ t

0

(
τ + ST(q, q̇)q̇ + r

)
ds

)
, KI > 0, (12)

where we have assumed that q̇(0) = 0 (the robot starts at rest). In particular, we have for the
second term in the integral

ST(q, q̇)q̇ =

 0

0

−m3dc3 (s3q̇2 + c3q̇1) q̇3

 .
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The residual r in (12) is affected, through the joint torque τ ci, by a collision force F ci =
(
Fx Fy

)T
acting at the collision point Pci on the robot link i as

ṙ = KI (τ ci − r) = KI

(
JT

ci(q)F ci − r
)
, i = 1, 2, 3,

except for some singular cases. Essentially, there are directions along which the point Pci cannot
be given a linear instantaneous velocity in the motion plane by means of a joint velocity q̇ ∈ R3.
Next, we shall distinguish between collisions on the first, second, or third link and analyze the
various possible situations in terms of collision detection and isolation, as well as collision force
identification and localization. Assuming that sufficiently large gains can be chosen in the diagonal
matrix KI , we will have

r ≈ τ ci,

and the residual r (in particular, its components ri) can be used as a proxy for τ ci when reasoning
about the nature of collisions. In the following, all quantities will be expressed in the world frame
RFw of Fig. 3.

• Collision on link 1. The position of the collision point along the first link4 and the associated
Jacobian and joint torque are

pc1 =

(
q1 − ρ1

0

)
, with ρ1 ∈ [0, 2l1,max] ⇒ Jc1 =

(
1 0 0

0 0 0

)
⇒ τ c1 = JT

c1F c1 =

Fx

0

0

.
Clearly, a collision is not detected at all when

F 0
c1 =

(
0

Fy

)
⇒ JT

c1F
0
c1 = 0.

Only the intensity Fx of F c1 can be identified. The closer is the alignment of F c1 to the axis
of joint 1, the poorer will be the detection. Moreover, we will never have an information on the
localization of the collision point Pc1.

• Collision on link 2. The position of the contact point along the second link and the associated
Jacobian and joint torque are

pc2 =

(
q1

q2 − ρ2

)
, with ρ2 ∈ [0, 2l2,max] ⇒ Jc2 =

(
1 0 0

0 1 0

)
⇒ τ c2 = JT

c2F c2 =

Fx

Fy

0

.
Thus, the collision will always be detected and the collision force F c2 fully identified. However,
once again, no information on the localization of the collision point Pc2 is provided by the
residual. This is also critical for the isolation of the actual link in collision. In fact, when Fy = 0
in F c2, we obtain τ c2 = τ c1 and there will be no way to understand whether the collision
occurred on link 1 (with the force intensity being possibly identified only in part) or on link 2
(with direction and intensity of the collision force being fully identified).

• Collision on link 3. The position of the contact point along the third link and the associated
Jacobian and joint torque are

pc3 =

(
q1 + ρ3 c3

q2 + ρ3 s3

)
, with ρ3 ∈ [0, L] ⇒ Jc3(q) =

(
1 0 −ρ3 s3
0 1 ρ3 c3

)
4For simplicity, assume that the prismatic joints have limited excursions, i.e., qi ∈ [−li,max, li,max], for i = 1, 2.
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⇒ τ c3 = JT
c3(q)F c3 =

 Fx

Fy

ρ3 (c3Fy − s3Fx)

.
The first two components of τ c3 (in practice, of its proxy r) show again that the collision is always
detected, and that the collision force F c3 is fully identified as well. In this case, localization of the
actual collision point Pc3 (i.e., the value ρ3) is also possible, provided that the third component
τc3,3 6= 0. In fact, we can estimate then ρ3 as

ρ3 =
τc3,3

c3Fy − s3Fx
=

τc3,3
c3τc3,2 − s3τc3,1

≈ r3
c3r2 − s3r1

= ρ̂3.

Such localization will fail when

F c3 = ‖F c3‖
(
c3

s3

)
⇒ τc3,3 = 0,

namely F c3 is aligned with the third link. Moreover, in this situation we obtain τ c3 = τ c2 and
also the isolation of the actual link in collision will fail. In fact, we cannot distinguish between
a collision occurred on link 2 or 3. The same happens when a force F c3 hits the third link at its
base (being then ρ3).

∗ ∗ ∗ ∗ ∗
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