

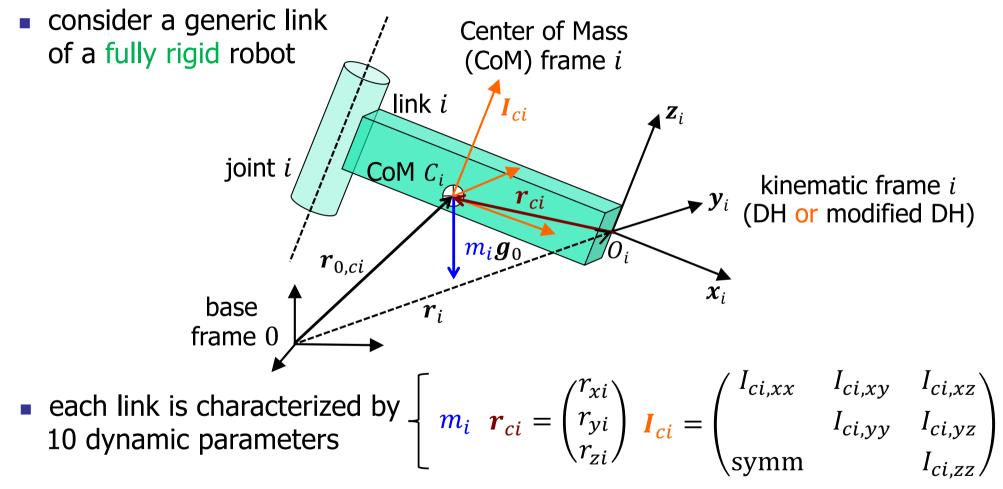
Robotics 2

Linear parametrization and identification of robot dynamics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Dynamic parameters of robot links



• however, robot dynamics depends only on some of these parameters and possibly in a nonlinear way (e.g., via the combination $I_{ci,zz} + m_i r_{xi}^2$)

Dynamic parameters of robots

- both the kinetic energy and the gravity potential energy can be rewritten so that a new set of dynamic parameters appears only in a linear way
 - need to re-express link inertia and CoM position in (any) known kinematic frame attached to the link (same orientation as the barycentric frame)
- fundamental kinematic relation

$$v_{ci} = v_i + \omega_i \times r_{ci} = v_i + S(\omega_i) r_{ci} = v_i - S(r_{ci}) \omega_i$$

kinetic energy of link i

$$T_{i} = \frac{1}{2} m_{i} v_{ci}^{T} v_{ci} + \frac{1}{2} \omega_{i}^{T} I_{ci} \omega_{i} \quad \Leftrightarrow \text{"reversing" K\"onig theorem now ...}$$

$$= \frac{1}{2} m_{i} (v_{i} - S(r_{ci}) \omega_{i})^{T} (v_{i} - S(r_{ci}) \omega_{i}) + \frac{1}{2} \omega_{i}^{T} I_{ci} \omega_{i}$$

$$= \frac{1}{2} m_{i} v_{i}^{T} v_{i} + \frac{1}{2} \omega_{i}^{T} (I_{ci} + m_{i} S^{T}(r_{ci}) S(r_{ci})) \omega_{i} - v_{i}^{T} S(m_{i} r_{ci}) \omega_{i}$$

$$\text{Steiner theorem} \qquad \downarrow_{I_{i}} = \begin{pmatrix} I_{i,xx} & I_{i,xy} & I_{i,xz} \\ I_{i,yy} & I_{i,yz} \\ \text{symm} & I_{i,zz} \end{pmatrix}$$

Standard dynamic parameters of robots

ullet gravitational potential energy of link i

$$U_{i} = -m_{i}g_{0}^{T}r_{0,ci} = -m_{i}g_{0}^{T}(r_{i} + r_{ci}) = -m_{i}g_{0}^{T}r_{i} - g_{0}^{T}(m_{i}r_{ci})$$

• by expressing vectors and matrices in frame i, both T_i and U_i will be linear in the set of 10 (constant) standard parameters $\pi_i \in \mathbb{R}^{10}$

$$T_{i} = \frac{1}{2} m_{i}^{i} v_{i}^{T}^{i} v_{i} + m_{i}^{i} r_{ci}^{T} S(^{i}v_{i})^{i} \omega_{i} + \frac{1}{2}^{i} \omega_{i}^{T}(^{i}I_{i})^{i} \omega_{i}$$

$$U_{i} = -(m_{i}) g_{0}^{T} r_{i} - g_{0}^{T} {}^{0} R_{i} \quad (m_{i}^{i} r_{ci})$$

$$\underset{(0\text{-th order moment)}}{\text{mass}} \times \text{CoM}$$

$$\underset{(0\text{-th order moment)}}{\text{position of link } i}$$

$$\underset{(1\text{-st order moment)}}{\text{moment}}$$

$$\underset{(1\text{-st order moment)}}{\text{moment}}$$

$$m_{i}^{i} r_{ci}$$

$$\underset{(vect \{^{i}I_{i}\})}{\text{moment}} = (m_{i}^{i} m_{i}^{i} r_{ci,x} \quad m_{i}^{i} r_{ci,y} \quad m_{i}^{i} r_{ci,z} \quad {}^{i}I_{i,xx} \quad {}^{i}I_{i,xy} \quad {}^{i}I_{i,xz} \quad {}^{i}I_{i,yz} \quad {}^{i}I_{i,yz} \quad {}^{i}I_{i,zz})^{T}$$

• since the E-L equations involve only linear operations on T and U, also the robot dynamic model is linear in the standard parameters $\pi \in \mathbb{R}^{10N}$

Linearity in the dynamic parameters

• using a $N \times 10N$ regression matrix Y_{π} that depends only on kinematic quantities, the robot dynamic equations can always be rewritten linearly in the standard dynamic parameters as

$$M(q)\ddot{q} + c(q,\dot{q}) + g(q) = Y_{\pi}(q,\dot{q},\ddot{q}) \pi = u$$

 $\pi^{T} = (\pi_{1}^{T} \quad \pi_{2}^{T} \quad \cdots \quad \pi_{N}^{T})$

• the open kinematic chain structure of the manipulator implies that the i-th dynamic equation can depend only on the dynamic parameters of links from i to $N \Rightarrow Y_{\pi}$ has a block upper triangular structure

$$Y_{\pi}(q,\dot{q},\ddot{q}) = \begin{pmatrix} Y_{11} & Y_{12} & \cdots & Y_{1N} \\ \hline 0 & Y_{22} & \cdots & Y_{2N} \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & Y_{NN} \end{pmatrix} \quad \text{with row vectors}$$

$$Y_{ij} \text{ of size } 1 \times 10$$

Property: element m_{ij} of M(q) depends at most on (q_{k+1}, \dots, q_N) , with $k = \min\{i, j\}$, and at most on the dynamic parameters of links h to N, with $h = \max\{i, j\}$

Linearity in the dynamic coefficients

- many standard parameters do not appear ("play no role") in the dynamic model of a given robot \Rightarrow the associated columns of Y_{π} are 0!
- some standard parameters may appear only in fixed combinations with others \Rightarrow the associated columns of Y_{π} are linearly dependent!
- one can isolate $p \ll 10N$ groups of parameters π (associated to p functionally independent columns Y_{indep} of Y_{π}) and partition matrix Y_{π} in two blocks, the second containing dependent (or zero) columns as $Y_{dep} = Y_{indep}T$, for a suitable $p \times (10N p)$ constant matrix T

$$Y_{\pi}(q, \dot{q}, \ddot{q}) \pi = (Y_{indep} \ Y_{dep}) {\pi_{indep} \choose \pi_{dep}} = (Y_{indep} \ Y_{indep} T) {\pi_{indep} \choose \pi_{dep}}$$
$$= Y_{indep} (\pi_{indep} + T\pi_{dep}) = Y(q, \dot{q}, \ddot{q}) a$$

- these grouped parameters are called dynamic coefficients $a \in \mathbb{R}^p$, "the only that matter" in robot dynamics (= base parameters by W. Khalil)
- the minimal number p of dynamic coefficients that is needed can also be checked numerically (see \rightarrow identification)

Linear parametrization of robot dynamics

it is always possible to rewrite the dynamic model in the form

regression
$$a$$
 = vector of dynamic coefficients
$$M(q)\ddot{q} + c(q,\dot{q}) + g(q) = Y(q,\dot{q},\ddot{q}) a = u$$

$$N \times p \qquad p \times 1$$

e.g., the heuristic grouping (found by inspection) on the planar 2R robot

$$a_1 = I_{c1,zz} + m_1 d_1^2 + I_{c2,zz} + m_2 d_2^2 + m_2 l_1^2$$

$$a_2 = m_2 l_1 d_2$$

$$a_2 = m_2 l_1 d_2$$

$$a_3 = I_{c2,zz} + m_2 d_2^2$$

$$a_4 = g_0 (m_1 d_1 + m_2 l_1)$$

$$a_5 = g_0 m_2 d_2$$

Note: 4 more coefficients are added when including the coefficients $F_{V,i}$ and $F_{C,i}$ of viscous and Coulomb friction at the joints ("decoupled" terms appearing only in i –th equation, for i = 1,2)

Linear parametrization of a 2R planar robot (N = 2)

• being the kinematics known (i.e., l_1 and g_0), the number of dynamic coefficients can be reduced since we can merge the two coefficients

• therefore, after regrouping, p = 4 dynamic coefficients are sufficient

$$\begin{pmatrix} \ddot{q}_1 & l_1 c_2 (2 \ddot{q}_1 + \ddot{q}_2) - l_1 s_2 (\dot{q}_2^2 + 2 \dot{q}_1 \dot{q}_2) + g_0 c_{12} & \ddot{q}_2 & g_0 c_1 \\ l_1 (c_2 \ddot{q}_1 + s_2 \dot{q}_1^2) + g_0 c_{12} & \ddot{q}_1 + \ddot{q}_2 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = Y \ a = u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$a_1 = I_{c_1, zz} + m_1 d_1^2 + I_{c_2, zz} + m_2 d_2^2 + m_2 l_1^2 \qquad a_3 = I_{c_2, zz} + m_2 d_2^2$$

$$a_2 = m_2 d_2 \qquad a_4 = m_1 d_1 + m_2 l_1$$

- this (minimal) linear parametrization of robot dynamics is not unique, both in terms of the chosen set of dynamic coefficients α and for the associated regression matrix Y
- a systematic procedure for its derivation would be preferable

Linear parametrization of a 2R planar robot (N = 2)

- as alternative to the previous heuristic method, apply the general procedure
 - 10N = 20 standard parameters π are defined for the two links
 - from the assumptions made on CoM locations (on the kinematic axis of the links), only 5 such parameters actually appear, namely (with ${}^{i}r_{ci,x} = -l_i + d_i$)

link 1:
$$m_1d_1$$
 $I_{1,zz} = I_{c1,zz} + m_1d_1^2$ link 2: m_2 m_2d_2 $I_{2,zz} = I_{c2,zz} + m_2d_2^2$ π_1 π_2 π_3 π_4 π_5

- in the 2×5 matrix Y_{π} , the 3rd column (associated to m_2) is $Y_{\pi 3} = Y_{\pi 1} (l_1) + Y_{\pi 2} (l_2)$
- after regrouping/reordering, p = 4 dynamic coefficients are again sufficient

$$\begin{pmatrix} g_0c_1 & \ddot{q}_1 & l_1c_2(2\ddot{q}_1 + \ddot{q}_2) - l_1s_2(\dot{q}_2^2 + 2\dot{q}_1\dot{q}_2) + g_0c_{12} & \ddot{q}_1 + \ddot{q}_2 \\ 0 & 0 & l_1(c_2\ddot{q}_1 + s_2\dot{q}_1^2) + g_0c_{12} & \ddot{q}_1 + \ddot{q}_2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = Y \ a = u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

$$a_1 = m_1 d_1 + \boxed{m_2 l_1} \quad a_2 = l_{1,zz} + \boxed{m_2 l_2} = (l_{c1,zz} + m_1 d_1^2) + m_1 l_1^2 \quad a_4 = l_{2,zz} = l_{c2,zz} + m_2 d_2^2$$

- determining a minimal parameterization (i.e., minimizing p) is important for
 - experimental identification of dynamic coefficients
 - adaptive/robust control design in the presence of uncertain parameters

Identification of dynamic coefficients

- in order to "use" the model, one needs to know the numeric values of the robot dynamic coefficients
 - robot manufacturers provide at most only a few principal dynamic parameters (e.g., link masses)
- estimates can be found with CAD tools (e.g., assuming uniform mass)
- friction coefficients are (slowly) varying over time
 - lubrication of joints/transmissions
- for an added payload (attached to the E-E)
 - a change in the 10 dynamic parameters of last link ...
 - ... implies a variation of (almost) all robot dynamic coefficients!
- preliminary identification experiments are needed
 - robot in motion (dynamic issues, not just static or geometric ones!)
 - only the robot dynamic coefficients can be identified (and not all the link standard parameters!)

Identification experiments

- 1. choose a motion trajectory $q_d(t)$ that is sufficiently "exciting", i.e.,
 - explores the robot workspace and involves all components in the robot dynamic model
 - is periodic, with multiple frequency components
- 2. execute this motion (approximately) by means of a control law
 - taking advantage of any available information on the robot model
 - often $u = K_P(q_d q) + K_D(\dot{q}_d \dot{q})$ (PD, no model information used)
- 3. measure q (encoders) in n_c time instants (and, if available, also \dot{q})
 - joint velocity \dot{q} and acceleration \ddot{q} can be estimated later off line by numerical differentiation (use of non-causal filters is feasible)
- 4. with such measures/estimates, evaluate the regression matrix Y (on the left) and use the applied commands u (on the right) in the expression

$$Y(q(t_k), \dot{q}(t_k), \ddot{q}(t_k)) a = u(t_k) \quad k = 1, \dots, n_c$$

Least Squares (LS) identification

set up the system of linear equations

- sufficiently "exciting" trajectories, large enough number of samples $(n_c \times N \gg p)$, and their suitable selection/position guarantee that $rank(\overline{Y}) = p$ (full column rank)
- solution by pseudoinversion of matrix \overline{Y}

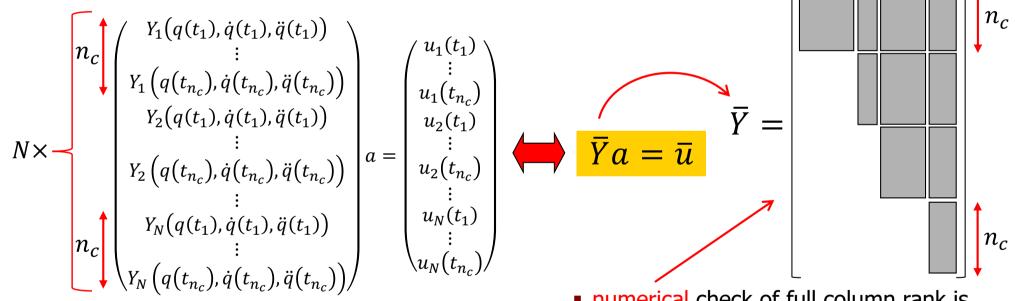
$$a = \overline{Y}^{\#} \overline{u} = (\overline{Y}^{T} \overline{Y})^{-1} \overline{Y}^{T} \overline{u} \quad (\in \mathbb{R}^{p})$$

 one can also use a weighted pseudoinverse, to take into account different levels of noise in the collected measures

Additional remarks on LS identification

 it is convenient to preserve the block (upper) triangular structure of the regression matrix, by "stacking" all time evaluations in row-by-row

sequence of the original Y matrix



further practical hints

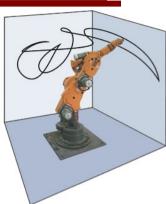
- numerical check of full column rank is more robust ⇔ rank = p (# of col's)
- outlier data can be eliminated in advance (when building Y)
- if sufficiently rich friction models are not included in Ya, discard the data collected at joint velocities close to zero

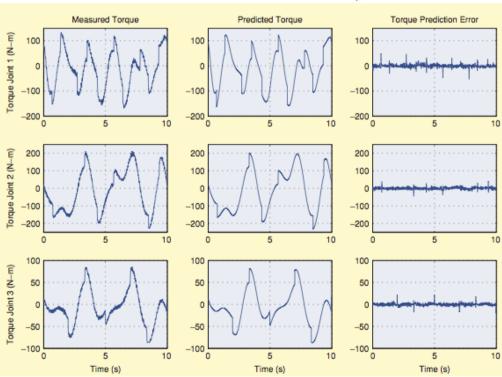
Summary on dynamic identification



J. Swevers, W. Verdonck, and J. De Schutter: "Dynamic model identification for industrial robots" IEEE Control Systems Mag., Oct 2007

KUKA IR 361 robot and optimal excitation trajectory





results after identification (first three joints only)

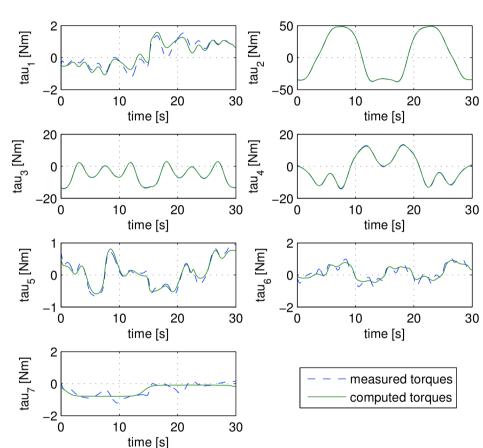
Dynamic identification of KUKA LWR4

video

data acquisition for identification

dynamic coefficients: 30 inertial, 12 for gravity

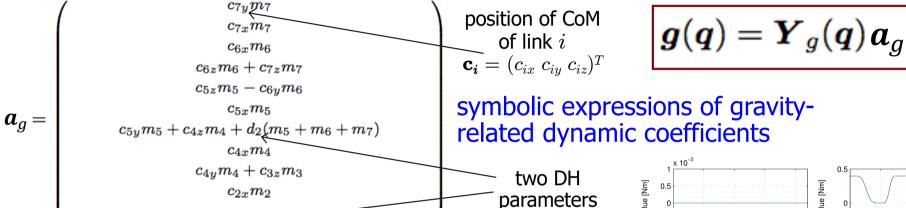
C. Gaz, F. Flacco, A. De Luca: "Identifying the dynamic model used by the KUKA LWR: A reverse engineering approach", IEEE ICRA 2014



validation after identification (for all 7 joints):
on new desired trajectories, compare
torques computed with the identified model
and torques measured by joint torque sensors

Identification of LWR4 gravity terms

using the linear parametrization, gravity terms can also be identified separately



 9.5457×10^{-4}

 -2.9826×10^{-4}

 8.3524×10^{-4}

 $c_{2z}m_2-c_{3y}m_3+d_1(m_3+m_4+m_5+m_6+m_7)$

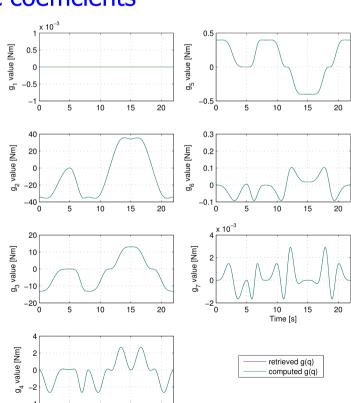
some small values may also be discarded ...

$$\widehat{\boldsymbol{a}}_g = \begin{bmatrix} 0.0286 \\ -0.0407 \\ -6.5637 \times 10^{-4} \\ 1.334 \\ -0.0035 \\ -4.7258 \times 10^{-4} \\ 0.0014 \\ 9.4532 \times 10^{-4} \\ 3.4568 \end{bmatrix}$$

numerical values identified through experiments

 d_1, d_2

gravity joint torques prediction/evaluation on new validation trajectory

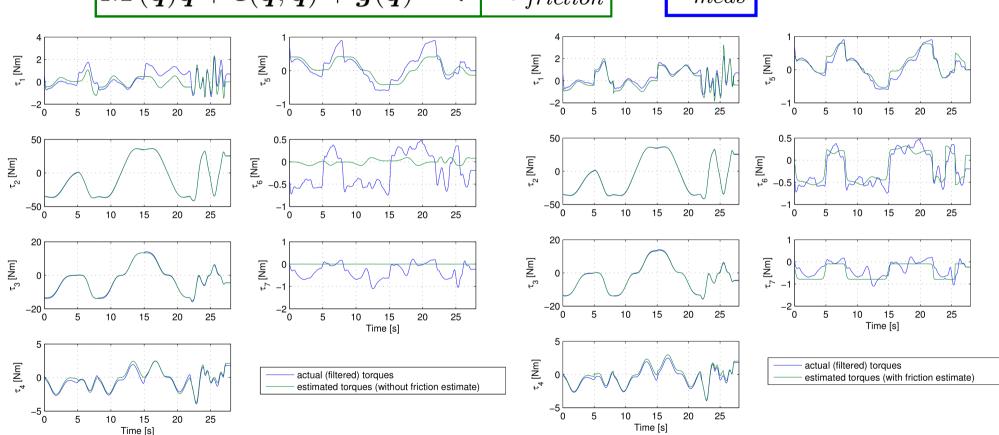


Role of friction in identification

KUKA LWR4 dynamic model estimation vs. joint torque sensor measurement

$$oxed{M(oldsymbol{q})\ddot{oldsymbol{q}}+oldsymbol{c}(oldsymbol{q},\dot{oldsymbol{q}})+oldsymbol{g}(oldsymbol{q})=oldsymbol{ au}oldsymbol{ au}_{friction}}$$

 $oldsymbol{ au}_{meas}$



without the use of a joint friction model

including an identified joint friction model

$$\tau_{f,j}(\dot{q}_j) = \frac{\varphi_{1,j}}{1 + e^{-\varphi_{2,j}(\dot{q}_j + \varphi_{3,j})}} - \frac{\varphi_{1,j}}{1 + e^{-\varphi_{2,j}\varphi_{3,j}}}$$

Dynamic identification of KUKA LWR4

video

using more dynamic robot motions for model identification

J. Hollerbach, W. Khalil, M. Gautier: "Ch. 6: Model Identification", Springer Handbook of Robotics (2nd Ed), 2016 free access to multimedia extension: http://handbookofrobotics.org

- in several industrial applications, changes in the robot payload are often needed
 - using different tools for various technological operations such as polishing, welding, grinding, ...
 - pick-and-place tasks of objects having unknown mass
- what is the rule of change for dynamic parameters when there is an additional payload?
 - do we obtain again a linearly parameterized problem?
 - does this property rely on some specific choice of reference frames (e.g., conventional or modified D-H)?

Rule of change in dynamic parameters

- only the dynamic parameters of the link where a load is added will change (typically, added to the last one link n as payload)
 - last link dynamic parameters: m_n (mass), $\boldsymbol{c}_n = (c_{nx} \ c_{ny} \ c_{nz})^T$ (center of mass), \boldsymbol{I}_n (inertia tensor expressed w.r.t. frame n)
 - payload dynamic parameters: m_L (mass), $\mathbf{c}_L = (c_{Lx} \ c_{Ly} \ c_{Lz})^T$ (center of mass), \mathbf{I}_L (inertia tensor expressed w.r.t. frame n)
- mass

$$m_n \to m_n + m_L$$

center of mass

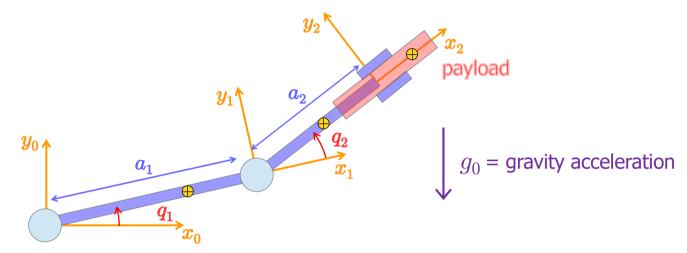
$$c_{ni}m_n
ightharpoonup rac{c_{ni}m_n + c_{Li}m_L}{m_n + m_L} \ (m_n + m_L) = rac{c_{ni}m_n + c_{Li}m_L}{m_n + m_L}$$
 (weighted average) where $i = x, y, z$

inertia tensor

$$I_n \rightarrow I_n + I_L$$
 valid only if tensors are expressed w.r.t. the same reference frame (i.e., frame n)!

 linear parametrization is preserved with any kinematic convention (the parameters of the last link will always appear in the form shown above)

Example: 2R planar robot with payload



unloaded robot dynamics $Y\pi = \tau$

$$Y\pi= au$$

loaded robot dynamics $Y\pi^L = \tau^L$

$$oldsymbol{Y}oldsymbol{\pi}^L = oldsymbol{ au}^L$$

$$\boldsymbol{\pi} = \begin{pmatrix} \frac{1}{2} \left(m_2 a_2^2 + I_{2zz} \right) + a_2 c_{2x} m_2 \\ c_{2x} m_2 + a_2 m_2 \\ c_{2y} m_2 \\ \frac{1}{2} \left(I_{1zz} + a_1^2 m_1 + a_1^2 m_2 \right) + a_1 c_{1x} m_1 \\ c_{1x} m_1 + a_1 m_1 + a_1 m_2 \\ c_{1y} m_1 \end{pmatrix} \qquad \boldsymbol{\pi}^L = \begin{pmatrix} \frac{1}{2} \left(a_2^2 \left(m_2 + m_L \right) + I_{2zz} + I_{Lzz} \right) + a_2 \left(c_{2x} m_2 + c_{Lx} m_L + a_2 \left(m_2 + m_L \right) \right) \\ c_{2x} m_2 + c_{Lx} m_L + a_2 \left(m_2 + m_L \right) \\ c_{2y} m_2 + c_{Ly} m_L \\ \frac{1}{2} \left(I_{1zz} + a_1^2 m_1 + a_1^2 \left(m_2 + m_L \right) \right) + a_1 c_{1x} m_1 \\ c_{1x} m_1 + a_1 m_1 + a_1 \left(m_2 + m_L \right) \\ c_{1y} m_1 \end{pmatrix}$$

 $\frac{1}{2} \left(a_2^2 \left(m_2 + m_L \right) + I_{2zz} + I_{Lzz} \right) + a_2 \left(c_{2x} m_2 + c_{Lx} m_L \right)$ $c_{1u}m_1$

Note 1: position of the center of mass of the two links and of the payload may also be asymmetric Note 2: link inertia & center of mass are expressed in the DH kinematic frame attached to the link (e.g., I_{2zz} is the inertia of the second link around the axis z_2)

Validation on the KUKA LWR4 robot

video

Interface: Using initialization file "D:\Kuka_software\Fast_resea ib\FRILibrary\etc\980039-FRI-Driver.init". Please, mount the payload/tool; press [ENTER] when it is mounted

C. Gaz, A. De Luca: "Payload estimation based on identified coefficients of robot dynamics – with an application to collision detection" IEEE IROS 2017, Vancouver, September 2017

Robotics 2 22

Bibliography

- J. Swevers, W. Verdonck, J. De Schutter, "Dynamic model identification for industrial robots," *IEEE Control Systems Mag.*, vol. 27, no. 5, pp. 58–71, 2007
- J. Hollerbach, W. Khalil, M. Gautier, "Model Identification," Springer Handbook of Robotics (2nd Ed), pp. 113-138, 2016
- C. Gaz, F. Flacco, A. De Luca, "Identifying the dynamic model used by the KUKA LWR: A reverse engineering approach," IEEE Int. Conf. on Robotics and Automation, pp. 1386-1392, 2014
- C. Gaz, F. Flacco, A. De Luca, "Extracting feasible robot parameters from dynamic coefficients using nonlinear optimization methods," *IEEE Int. Conf. on Robotics and Automation*, pp. 2075-2081, 2016
- C. Gaz, A. De Luca, "Payload estimation based on identified coefficients of robot dynamics with an application to collision detection," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3033-3040, 2017
- C. Gaz, E. Magrini, A. De Luca, "A model-based residual approach for human-robot collaboration during manual polishing operations," *Mechatronics*, vol. 55, pp. 234-247, 2018
- C. Gaz, M. Cognetti, A. Oliva, P. Robuffo Giordano, A. De Luca, "Dynamic identification of the Franka Emika Panda robot with retrieval of feasible parameters using penalty-based optimization," *IEEE Robotics and Automation Lett.*, vol. 4, no. 4, pp. 4147-4154, 2019

KUKA LWR4 (7R)

