Robots with kinematic redundancy
Part 1: Fundamentals

Prof. Alessandro De Luca
Redundant robots

- Direct kinematics of the task: \(r = f(q) \)

\[
f : Q \rightarrow R
\]

- A robot is (kinematically) redundant for the task if \(N > M \) (more degrees of freedom than strictly needed for executing the task)

- \(r \) may contain the position and/or the orientation of the end-effector or, more in general, be any parameterization of the task (even not in the Cartesian workspace)

- “Redundancy” of a robot is thus a relative concept, i.e., it holds with respect to a given task
Some E-E tasks and their dimensions

<table>
<thead>
<tr>
<th>TASKS [for the robot end-effector (E-E)]</th>
<th>dimension M</th>
</tr>
</thead>
<tbody>
<tr>
<td>position in the plane</td>
<td>2</td>
</tr>
<tr>
<td>position in 3D space</td>
<td>3</td>
</tr>
<tr>
<td>orientation in the plane</td>
<td>1</td>
</tr>
<tr>
<td>pointing in 3D space</td>
<td>2</td>
</tr>
<tr>
<td>position and orientation in 3D space</td>
<td>6</td>
</tr>
</tbody>
</table>

A planar robot with $N = 3$ joints is redundant for the task of positioning its E-E in the plane ($M = 2$), but NOT for the task of positioning AND orienting the E-E in the plane ($M = 3$).
Typical cases of redundant robots

- 6R robot mounted on a linear track/rail
 - 7 dofs for positioning and orienting its end-effector in 3D space
- 6-dof robot used for arc welding tasks
 - task does not prescribe the final roll angle of the welding gun
- Dexterous robotic hands
- Multiple cooperating manipulators
- Manipulator on a mobile base
- Humanoid robots, team of mobile robots...
- “Kinematic” redundancy is not the only type...
 - Redundancy of components (actuators, sensors)
 - Redundancy in the control/supervision architecture
Uses of robot redundancy

- avoid collision with obstacles (in Cartesian space) ...
- ... or kinematic singularities (in joint space)
- stay within the admissible joint ranges
- increase manipulability in specified directions
- uniformly distribute/limit joint velocities and/or accelerations
- minimize energy consumption or needed motion torques
- optimize execution time
- increase dependability with respect to faults
- ...

all objectives should be quantitatively “measurable”
DLR robots: LWR-III and Justin

7R LWR-III lightweight manipulator:
- elastic joints (HD), joint torque sensing,
- 13.5 kg weight = payload

Justin two-arm upper-body humanoid:
- 43R actuated =
- two arms (2×7) + torso (3*)
- + head (2) + two hands (2×12),
- 45 kg weight

* = one joint is dependent on the motion of the other two
motion planning for DLR Justin robot in the configuration space, avoiding Cartesian obstacles and using robot redundancy
Dual-arm redundancy

two 6R Comau robots, one mounted on a linear track (+1P) coordinated 6D motion using the null-space of the right-side robot ($N - M = 1$)
Motion cueing from redundancy

Max Planck Institute for Biological Cybernetics, Tübingen

a 6R KUKA KR500 mounted on a linear track (+1P) with a sliding cabin (+1R), used as a dynamic emulation platform for human perception ($N - M = 2$)

Robotics 2
Self-motion

8R Dexter: self-motion with constant 6D pose of E-E ($N - M = 2$)

6R robot with spherical shoulder in compliant tasks for the Cartesian E-E position ($N - M = 3$)

Nakamura’s Lab, Uni Tokyo
Obstacle avoidance

6R planar arm moving on a given geometric path for the E-E \((N - M = 4) \)
Disadvantages of redundancy

- potential benefits should be traded off against
 - a greater structural complexity of construction
 - mechanical (more links, transmissions, ...)
 - more actuators, sensors, ...
 - costs
 - more complicated algorithms for inverse kinematics and motion control
Inverse kinematics problem

- find $q(t)$ that realizes the task: $f(q(t)) = r(t)$ (at all times t)
- infinite solutions exist when the robot is redundant
 (even for $r(t) = r = \text{constant}$)

 \[N = 3 > 2 = M \]

- the robot arm may have “internal displacements” that are unobservable at the task level (e.g., not contributing to E-E motion)
 - these joint displacements can be chosen so as to improve/optimize in some way the behavior of the robotic system

- self-motion: an arm reconfiguration in the joint space that does not change/affect the value of the task variables r

- solutions are mainly sought at differential level (e.g., velocity)
Redundancy resolution via optimization of an objective function

Local methods

given $\dot{r}(t)$ and $q(t)$, $t = kT_s$

optimization of $H(q, \dot{q})$

$\dot{q}(kT_s) \xrightarrow{\text{ON-LINE}}$

$q((k+1)T_s) = q(kT_s) + T_s \dot{q}(kT_s)$

discrete-time form

Global methods

given $r(t)$, $t \in [t_0, t_0 + T]$, $q(t_0)$

optimization of $\int_{t_0}^{t_0+T} H(q, \dot{q})\,dt$

$q(t), t \in [t_0, t_0 + T] \xrightarrow{\text{OFF-LINE}}$

relatively EASY (a LQ problem) \leftrightarrow quite DIFFICULT (nonlinear TPBV problems arise)
Local resolution methods

three classes of methods for solving $\dot{r} = J(q)\dot{q}$

1. Jacobian-based methods (here, analytic Jacobian in general!)
 among the infinite solutions, one is chosen, e.g., that minimizes a suitable (possibly weighted) norm

2. null-space methods
 a term is added to the previous solution so as not to affect execution of the task trajectory, i.e., belonging to the null-space $\mathcal{N}(J(q))$

3. task augmentation methods
 redundancy is reduced/eliminated by adding $S \leq N - M$ further auxiliary tasks (when $S = N - M$, the problem has been “squared”)

$$r = f(q) \quad \Rightarrow \quad \dot{r} = J(q)\dot{q}$$
Jacobian-based methods

we look for a solution to $\dot{r} = J(q)\dot{q}$ in the form

$$J = \begin{bmatrix} M \\ N \end{bmatrix} \quad \dot{q} = K(q)\dot{r} \quad K = \begin{bmatrix} N \\ M \end{bmatrix}$$

minimum requirement for K: $J(q)K(q)J(q) = J(q)$

(→ $K = \text{generalized inverse of } J$)

$$\forall \dot{r} \in \mathcal{R}(J(q)) \Rightarrow J(q)[K(q)\dot{r}] = J(q)K(q)J(q)\dot{q} = J(q)\dot{q} = \dot{r}$$

example:

if $J = [J_a \ J_b]$, $\det(J_a) \neq 0$, one such generalized inverse of J is $K_r = \begin{pmatrix} J_a^{-1} \\ 0 \end{pmatrix}$

(actually, this is a stronger right-inverse)
Pseudoinverse

\[\dot{q} = J^\#(q)\dot{r} \]

- \(J^\# \) always exists, and is the unique matrix satisfying
 \[
 JJ^\# J = J \quad J^\# JJ^\# = J^\#
 \]
 \[
 (JJ^\#)^T = JJ^\# \quad (J^\# J)^T = J^\# J
 \]

- if \(J \) is full (row) rank, \(J^\# = J^T(JJ^T)^{-1} \); else, it is computed numerically using the SVD (Singular Value Decomposition) of \(J \) (\texttt{pinv} of Matlab)

- the pseudo-inverse joint velocity is the only that minimizes the norm \(\|\dot{q}\|^2 = \dot{q}^T \dot{q} \) among all joint velocities that minimize the task error norm \(\|\dot{r} - J(q)\dot{q}\|^2 \)

- if the task is feasible (\(\dot{r} \in R(J(q)) \)), there will be no task error
Weighted pseudoinverse

\[\dot{q} = J_W^\#(q)\dot{r} \]

- if \(J \) is full (row) rank,
 \[J_W^\# = W^{-1}J^T(JW^{-1}J^T)^{-1} \]
- the solution \(\dot{q} \) minimizes the weighted norm
 \[\|\dot{q}\|_W^2 = \dot{q}^TW\dot{q} \quad \text{with} \quad W > 0, \text{ symmetric} \]
 (often diagonal)
- large weight \(W_i \) ⇒ small \(\dot{q}_i \) (e.g., weights can be chosen proportionally to the inverse of the joint ranges)
- it is NOT a “pseudoinverse” (4th relation does not hold ...) but shares similar properties
Singular Value Decomposition (SVD)

- the SVD routine of Matlab applied to J provides two orthonormal matrices $U_{M \times M}$ and $V_{N \times N}$, and a matrix $\Sigma_{M \times N}$ of the form

$$
\Sigma = \begin{pmatrix}
\sigma_1 & & \\
& \sigma_2 & \\
& & \ddots \\
& & & \sigma_M \\
\end{pmatrix}
\begin{pmatrix}
0_{M \times (N-M)} \\
\end{pmatrix}
\quad
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_\rho > 0
\sigma_{\rho+1} = \cdots = \sigma_M = 0
\text{singular values of } J
$$

where $\rho = \text{rank}(J) \leq M$, so that their product is

$$
J = U \Sigma V^T
$$

- the columns of U are eigenvectors of $J J^T$ (associated to its non-negative eigenvalues σ_i^2), the columns of V are eigenvectors of $J^T J$

- the last $N - \rho$ columns of V are a basis for the null space of J

$$
J v_i = \sigma_i u_i \quad (i = 1, \ldots, \rho)
J v_i = 0 \quad (i = \rho + 1, \ldots, N)
$$
Computation of pseudoinverses

- Show that the pseudoinverse of J is equal to

$$J = U \Sigma V^T \Rightarrow J^\# = V \Sigma^\# U^T \quad \Sigma^\# = \begin{pmatrix} \frac{1}{\sigma_1} \\ \vdots \\ \frac{1}{\sigma_\rho} \\ 0_{(M-\rho)\times(M-\rho)} \\ 0_{(N-M)\times M} \end{pmatrix}$$

for any rank ρ of J

- Show that matrix $J_W^\#$ appears when solving the constrained linear-quadratic (LQ) optimization problem (with $W > 0$, symmetric, and assuming J of full rank)

$$\min \frac{1}{2} \| \dot{q} \|_W^2 \quad \text{s.t.} \quad J(q) \dot{q} - \dot{r} = 0$$

and that the pseudoinverse is a particular case for $W = I$

- Show that a weighted pseudoinverse of J can be computed by SVD/pinv as

$$J_{aux} = JW^{-1/2} \quad J_W^\# = W^{-1/2} \text{pinv}(J_{aux})$$
Singularity robustness
Damped Least Squares (DLS)

unconstrained minimization of a suitable objective function

SOLUTION

\[
\dot{q} = J_{DLS}(q) \dot{\gamma} = J^T (J J^T + \mu^2 I_M)^{-1} \dot{\gamma}
\]

- induces a robust behavior when crossing singularities, but in its basic version gives always a task error \(\dot{e} = \mu^2 (J J^T + \mu^2 I_M)^{-1} \dot{\gamma} \) (as in the \(N = M \) case)
 - \(J_{DLS} \) is not a generalized inverse \(K \)
 - using SVD: \(J = U \Sigma V^T \Rightarrow J_{DLS} = V \Sigma_{DLS} U^T \), \(\Sigma_{DLS} = \begin{pmatrix}
diag \left\{ \frac{\sigma_i}{\sigma_i^2 + \mu^2} \right\} \\
\rho \times \rho & 0_{(M-\rho) \times (M-\rho)} \\
0_{(N-M) \times \rho} & 0_{(N-M) \times (M-\rho)}
\end{pmatrix} \)
 - choice of a variable damping factor \(\mu^2(q) \geq 0 \), as a function of the minimum singular value \(\sigma_m(q) \) of \(J \cong \) measure of distance to singularity
 - numerical filtering: introduces damping only/mostly in non-feasible directions for the task (see Maciejewski and Klein, *J of Rob Syst*, 1988)
Behavior of DLS solution

a. comparison of joint velocity norm with PINV (pseudoinverse) or DLS solutions

- in a direction of a singular vector \mathbf{u}, when the associated singular value $\sigma \to 0$
- PINV goes to infinity (and then is 0 at $\sigma = 0$)
- DLS peaks a value of $1/2\mu$ at $\sigma = \mu$ (and then smoothly goes to 0...)

b. graphical interpretation of “damping” effect (here $M = N = 2$, for simplicity)

$$H(\dot{q}) = \frac{\mu^2}{2} \| \dot{\mathbf{q}} \|^2 + \frac{1}{2} \| \dot{\mathbf{r}} - \mathbf{J} \dot{\mathbf{q}} \|^2$$
Numerical example of DLS solution

planar 2R arm, unit links, close to (stretched) singular configuration \(q_1 = 45^\circ, q_2 = 1.5^\circ \)

\[H = \frac{\mu^2}{2} \| \dot{q} \|^2 + \frac{1}{2} \| \dot{r} - J \dot{q} \|^2 \]

<table>
<thead>
<tr>
<th>(\mu^2)</th>
<th>0</th>
<th>(10^{-4})</th>
<th>(10^{-3})</th>
<th>(10^{-2})</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(| \dot{q} |)</td>
<td>(\sqrt{2})</td>
<td>.8954</td>
<td>.4755</td>
<td>.4467</td>
<td>.1490</td>
</tr>
<tr>
<td>(| \dot{e} |)</td>
<td>0</td>
<td>6.6 \cdot 10^{-3}</td>
<td>1.4 \cdot 10^{-2}</td>
<td>1.6 \cdot 10^{-2}</td>
<td>.6668</td>
</tr>
<tr>
<td>(H_{\text{min}})</td>
<td>0</td>
<td>7.7 \cdot 10^{-5}</td>
<td>2.2 \cdot 10^{-4}</td>
<td>1.2 \cdot 10^{-3}</td>
<td>3.4 \cdot 10^{-1}</td>
</tr>
</tbody>
</table>

\[\dot{q}_{\text{DLS}} = (0.472, 0.055) \quad (\mu^2 = 10^{-3}) \]

\[\dot{q}_{\text{DLS}} = (0.133, 0.066) \quad (\mu^2 = 10) \]

\(\dot{r} = \begin{pmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \)

\(\in \mathcal{R}(J) \) even @singularity!

exact solution (\(\mu = 0 \))
Limits of Jacobian-based methods

- no guarantee that singularities are globally avoided during task execution
 - despite joint velocities are kept to a minimum, this is only a local property and "avalanche" phenomena may occur
- typically lead to **non-repeateable** motion in the joint space
 - cyclic motions in task space do not map to cyclic motions in joint space

\[
q(t) = q(0) + \int_0^t K(q(\tau)) \dot{r}(\tau) \, d\tau
\]

\(q_{\text{in}} = q(0) \quad \rightarrow \quad q_{\text{fin}} \neq q_{\text{in}} \) after 1 tour
Drift with Jacobian pseudoinverse

- a 7R KUKA LWR4 robot moves in the vicinity of a human operator
- we command a cyclic Cartesian path (only in position, $M = 3$), to be repeated several times using the pseudoinverse solution
- (unexpected) collision of a link occurs during the third cycle ...

Robotics 2
Null-space methods

general solution of \(J\dot{q} = \dot{r} \)

\[
\dot{q} = J^\# \dot{r} + (I - J^\# J) \dot{q}_0
\]

a particular solution (here, the pseudoinverse) in \(\mathcal{R}(J^T) \)

all solutions of the associated homogeneous equation \(J\dot{q} = 0 \) (self-motions)

“orthogonal” projection of \(\dot{q}_0 \) in \(\mathcal{N}(J) \)

properties of projector \([I - J^\# J]\)

- symmetric
- idempotent: \([I - J^\# J]^2 = [I - J^\# J]\)
- \([I - J^\# J]^\# = [I - J^\# J]\)
- \(J^\# \dot{r} \) is orthogonal to \([I - J^\# J] \dot{q}_0\)

Even more in general...

\[
\dot{q} = K_1 \dot{r} + (I - K_2 J) \dot{q}_0
\]

... but with less nice properties!

how do we choose \(\dot{q}_0 \)?
Geometric view on Jacobian null space

in the space of velocity commands

\[\dot{\mathbf{q}} = \mathbf{r} \]

- \[\dot{\mathbf{q}} = 0 \]
- \[\mathbf{J} \dot{\mathbf{q}} = \mathbf{r} \]
- Minimum norm solution
- Final solution
- Subspace \(\mathcal{N}(\mathbf{J}) \)
- Null space correction

A correction is added to the original pseudoinverse (minimum norm) solution

i) which is in the null space of the Jacobian

ii) and possibly satisfies additional criteria or objectives
Linear-Quadratic Optimization

generalities

\[
\min_x H(x) = \frac{1}{2} (x - x_0)^T W (x - x_0)
\]

\[
\text{s.t. } J x = y
\]

\[
W > 0 \text{ (symmetric)}
\]

\[
x \in \mathbb{R}^N
\]

\[
y \in \mathbb{R}^M
\]

\[
\text{rank}(J) = \rho(J) = M
\]

\[
L(x, \lambda) = H(x) + \lambda^T (Jx - y)
\]

\[
\nabla_x L = \left(\frac{\partial L}{\partial x} \right)^T = W (x - x_0) + J^T \lambda = 0
\]

\[
\nabla_\lambda L = \left(\frac{\partial L}{\partial \lambda} \right)^T = Jx - y = 0
\]

\[
\nabla_x^2 L = W > 0
\]

\[
\lambda = (JW^{-1}J^T)^{-1}(Jx_0 - y)
\]

\[
x = x_0 - W^{-1}J^T \lambda
\]

\[
x = x_0 + W^{-1}J^T (JW^{-1}J^T)^{-1}(y - Jx_0)
\]
Linear-Quadratic Optimization
application to robot redundancy resolution

PROBLEM

\[
\min_{\dot{q}} H(\dot{q}) = \frac{1}{2} (\dot{q} - \dot{q}_0)^T W (\dot{q} - \dot{q}_0)
\]
\[
\text{s.t. } J\dot{q} = \dot{r}
\]

\dot{q}_0 \text{ is a “privileged” joint velocity}

SOLUTION

\[
\dot{q} = \dot{q}_0 + W^{-1} J^T (J W^{-1} J^T)^{-1} (\dot{r} - J\dot{q}_0)
\]

minimum weighted norm solution (for \(\dot{q}_0 = 0\))

\[
\dot{q} = J_W^# \dot{r} + (I - J_W^# J) \dot{q}_0
\]

“projection” matrix in the null-space \(\mathcal{N}(J)\)
Projected Gradient (PG)

\[\dot{q} = J^\# \dot{r} + (I - J^\# J) \dot{q}_0 \]

the choice \(\dot{q}_0 = \nabla_q H(q) \) → differentiable objective function

realizes one step of a constrained optimization algorithm

while executing the time-varying task \(r(t) \)

the robot tries to increase the value of \(H(q) \)

for a fixed \(\tilde{r} \): \(S_q = \{ q \in \mathbb{R}^N : f(q) = \tilde{r} \} \)

\[\Rightarrow \dot{q} = (I - J^\# J) \nabla_q H \]

\((I - J^\# J) \nabla_q H = 0\)

is a necessary condition of constrained optimality
Typical objective functions $H(q)$

- **manipulability** (maximize the “distance” from singularities)
 \[H_{\text{man}}(q) = \sqrt{\det[J(q)J^T(q)]} \]

- **joint range** (minimize the “distance” from the mid points of the joint ranges)
 \[q_i \in [q_{m,i}, q_{M,i}] \]
 \[\bar{q}_i = \frac{q_{M,i} + q_{m,i}}{2} \]
 \[H_{\text{range}}(q) = \frac{1}{2N} \sum_{i=1}^{N} \left(\frac{q_i - \bar{q}_i}{q_{M,i} - q_{m,i}} \right)^2 \]
 \[\dot{q}_0 = -\nabla_q H(q) \]

- **obstacle avoidance** (maximize the minimum distance to Cartesian obstacles)
 also known as “clearance”
 \[H_{\text{obs}}(q) = \min_{\substack{a \in \text{robot} \atop b \in \text{obstacles}}} \| a(q) - b \|^2 \]

potential difficulties due to non-differentiability (this is a max-min problem)
Singularities of planar 3R arm

the robot is redundant for a positioning task in the plane \(M = 2 \)

\[
H(q) = \sin^2 q_2 + \sin^2 q_3
\]

this \(H \) is not \(H_{\text{man}} \) but has the same minima

iso-level curves of \(H(q) \)

links of \textbf{equal} (unit) length

unconstrained maxima of \(H(q) \)

independent from \(q_1 \)!
Minimum distance computation in human-robot interaction

LWR4 robot with a finite number of control points $a(q)$ (8, including the E-E) a Kinect sensor monitors the workspace giving the 3D position of points b on obstacles that are fixed or moving (like humans)

Distances in 3D (and then the clearance) are computed in this case as

$$\min_{a \in \{\text{control points}\}, \ b \in \text{human body}} \|a(q) - b\|^2$$
Comments on null-space methods

- the projection matrix $(I - J^# J)$ has dimension $N \times N$, but only rank $N - M$ (if J is full rank M), with some waste of information.

- actual (efficient) evaluation of the solution

\[\dot{q} = J^# \dot{r} + (I - J^# J)\dot{q}_0 = \dot{q}_0 + J^# (\dot{r} - J\dot{q}_0) \]

but the pseudoinverse is needed anyway, and this is computationally intensive (SVD in the general case).

- in principle, the additional complexity of a redundancy resolution method should depend only on the redundancy degree $N - M$.

- a constrained optimization method is available, which is known to be more efficient than the projected gradient (PG) —at least when the Jacobian has full rank …
Decomposition of joint space

- if \(\rho(J(q)) = M \), there exists a decomposition of the set of joints (possibly, after a reordering)

\[
q = \begin{cases}
(q_a) & \text{for } M \\
q_b & \text{for } N - M
\end{cases}
\]

such that \(J_a(q) = \frac{\partial f}{\partial q_a} \) is nonsingular

- from the implicit function theorem, there exists an inverse function \(g \)

\[
f(q_a, q_b) = r \quad \rightarrow \quad q_a = g(r, q_b)
\]

with \(\frac{\partial g}{\partial q_b} = \left(\frac{\partial f}{\partial q_a} \right)^{-1} \frac{\partial f}{\partial q_b} = -J_a^{-1}(q)J_b(q) \)

- the \(N - M \) variables \(q_b \) can be selected independently (e.g., they are used for optimizing an objective function \(H(q) \), “reduced” via the use of \(g \) to a function of \(q_b \) only)

- \(q_a = g(r, q_b) \) is then chosen so as to correctly execute the task
Reduced Gradient (RG)

- $H(q) = H(q_a, q_b) = H(g(r, q_b), q_b) = H'(q_b)$, with r at current value
- the Reduced Gradient (w.r.t. q_b only, but still keeping the effects of this choice into account) is
 \[
 \nabla_{q_b} H' = \left[- (J_a^{-1} J_b)^T \ I_{N-M} \right] \nabla_q H
 \]
 \[
 (\neq \nabla_{q_b} H \text{ only!!})
 \]
- algorithm

\[\dot{q}_b = \nabla_{q_b} H' \]
\[J_a \dot{q}_a + J_b \dot{q}_b = \dot{r} \]
\[\dot{q}_a = J_a^{-1} (\dot{r} - J_b \dot{q}_b) \]

$\nabla_{q_b} H' = 0$ is a “compact” (i.e., $N - M$ dimensional) necessary condition of constrained optimality.
Comparison between PG and RG

- **Projected Gradient (PG)**
 \[\dot{q} = J^# \dot{r} + (I - J^#J) \nabla_q H \]

- **Reduced Gradient (RG)**
 \[\dot{q} = \begin{pmatrix} \dot{q}_a \\ \dot{q}_b \end{pmatrix} = \begin{pmatrix} J_a^{-1} \\ 0 \end{pmatrix} \dot{r} + \begin{pmatrix} -J_a^{-1}J_b \\ I \end{pmatrix} (-J_a^{-1}J_b)^T (I) \nabla_q H \]

- RG is **analytically simpler and numerically faster** than PG, but requires the search for a non-singular minor \((J_a)\) of the robot Jacobian.

- If \(r = \text{cost} \& N - M = 1\) \(\Rightarrow\) **same (unique) direction** for \(\dot{q}\), but RG has automatically a **larger** optimization step size

- Else \(\Rightarrow\) RG and PG methods provide always **different evolutions**
Analytic comparison

PPR robot

\[J = \begin{pmatrix} 1 & 0 & -ls_3 \\ 0 & 1 & lc_3 \end{pmatrix} = (J_a \mid J_b) \quad q_a = (q_1) \quad q_b = q_3 \]

RG:
\[\dot{q} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \dot{r} + \begin{pmatrix} ls_3 \\ -lc_3 \end{pmatrix} \begin{pmatrix} ls_3 & -lc_3 & 1 \end{pmatrix} \nabla_q H \]

PG:
\[\dot{q} = J^\# \dot{r} + (I - J^\# J) \nabla_q H \]

\[J^\# = \frac{1}{1 + l^2} \begin{pmatrix} 1 + l^2 c_3^2 & l^2 s_3 c_3 \\ l^2 s_3 c_3 & 1 + l^2 s_3^2 \end{pmatrix} \quad I - J^\# J = \frac{1}{1 + l^2} \begin{pmatrix} l^2 s_3^2 & l^2 s_3 c_3 & ls_3 \\ l^2 s_3 c_3 & l^2 c_3^2 & -lc_3 \\ ls_3 & -lc_3 & 1 \end{pmatrix} \]

always < 1!!
Joint range limits

\[q = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \theta = T \theta \]

\[\theta = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} \]

\[q = \begin{pmatrix} 1000 \\ 1100 \\ 1110 \\ 1111 \end{pmatrix} \]

\[\theta = \begin{pmatrix} 1000 \\ -1100 \\ 0010 \\ 0001 \end{pmatrix} \]

\[-90^\circ \leq \theta_i \leq 90^\circ \]

\[-90^\circ \leq q_i - q_{i-1} \leq 90^\circ \]

numerical comparison among pseudoinverse (PS), projected gradient (PG), and reduced gradient (RG) methods

Robotics 2
Numerical results
minimizing distance from mid joint range

![Graphs showing joint movements](image)

Joint 1 vs joint 2
Joint 3 vs joint 4

Upper limit
Steps of numerical simulation

Robotics 2
Numerical results
self-motion for escaping singularities

\[
\max H(q) = \sum_{i=1}^{3} \sin^2(q_{i+1} - q_i)
\]

this function is NOT
the manipulability index,
but has the same minima (= 0)

\(r \equiv 0 \) (almost singular)

RG is faster than PG
(keeping the same accuracy on \(r \))

Robotics 2
3 Task augmentation methods

- an auxiliary task is added (task augmentation)

\[f_y(q) = y \quad S \leq N - M \]

corresponding to some desirable feature for the solution

\[r_A = \begin{pmatrix} r \\ y \end{pmatrix} = \begin{pmatrix} f(q) \\ f_y(q) \end{pmatrix} \quad \Rightarrow \quad \dot{r}_A = \begin{pmatrix} J(q) \\ J_y(q) \end{pmatrix} \dot{q} = J_A(q) \dot{q} \]

- a solution is chosen still in the form of a generalized inverse

\[\dot{q} = K_A(q) \dot{r}_A \]

or by adding a term in the null space of the augmented Jacobian matrix \(J_A \)
Augmenting the task ...

- **advantage:** better shaping of the inverse kinematic solution

- **disadvantage:** algorithmic singularities are introduced when

\[
\rho(J) = M \quad \rho(J_y) = S \quad \text{but} \quad \rho(J_A) < M + S
\]

To avoid this, it should be always \(\mathcal{R}(J^T) \cap \mathcal{R}(J^T_{y}) = \emptyset \)

difficult to be obtained globally!

rows of \(J \) AND rows of \(J_y \)
are all together linearly independent
Augmented task example

\[r(t) \]

\[N = 4, M = 2 \]

\[f_y(q) = q_4 = \pi/2 \quad (S = 1) \]

last link is to be held vertical...
Extended Jacobian \((S = N-M)\)

- **square** \(J_A\): in the absence of **algorithmic** singularities, we can choose
 \[
 \dot{q} = J_A^{-1}(q) \dot{r}_A
 \]

- the scheme is then **repeatable**
 - provided no singularities are encountered during a complete task cycle*

- when the \(N - M\) conditions \(f_y(q) = 0\) correspond to necessary (and sufficient) conditions for constrained optimality of a given objective function \(H(q)\) (see RG method, slide #36), this scheme guarantees that constrained **optimality** is locally **preserved** during task execution

- in the vicinity of algorithmic singularities, the execution of both the **original task** as well as the **auxiliary task(s)** are affected by **errors**
 (when using DLS inversion)

* there exists an unexpected phenomenon in some 3R manipulators having “generic” kinematics: the robot may sometimes perform a pose change after a full cycle, even if no singularity has been encountered during motion (see J. Burdick, *Mech. Mach. Theory*, 30(1), 1995)
Extended Jacobian example

MACRO-MICRO manipulator

\[N = 4, M = 2 \]

\[
\begin{align*}
\dot{r} &= J(q_1, \ldots, q_4)\dot{q} \\
\dot{y} &= J_y(q_1, q_2)\dot{q} \\
J_A &= \begin{pmatrix} * & * \\ * & 0 \end{pmatrix}_{4\times4}
\end{align*}
\]
Task Priority

if the original (primary) task $\dot{r}_1 = J_1(q)\dot{q}$ has higher priority than the auxiliary (secondary) task $\dot{r}_2 = J_2(q)\dot{q}$

- we **first** address the task with highest priority

$$\dot{q} = J_1^\# \dot{r}_1 + (I - J_1^\# J_1) v_1$$

- and **then** choose v_1 so as to satisfy, if possible, also the secondary (lower priority) task

$$\dot{r}_2 = J_2 \dot{q} = J_2 J_1^\# \dot{r}_1 + J_2 (I - J_1^\# J_1) v_1 = J_2 J_1^\# \dot{r}_1 + J_2 P_1 v_1$$

the general solution for v_1 takes the usual form

$$v_1 = (J_2 P_1)^\# (\dot{r}_2 - J_2 J_1^\# \dot{r}_1) + \left(I - (J_2 P_1)^\# (J_2 P_1) \right) v_2$$

v_2 is available for the execution of further tasks of lower (ordered) priorities
Task Priority (continue)

- substituting the expression of v_1 in \dot{q}

$$\dot{q} = J_1^# \dot{r}_1 + P_1 (J_2 P_1)^# (\dot{r}_2 - J_2 J_1^# \dot{r}_1) + P_1 (I - (J_2 P_1)^# J_2 P_1) v_2$$

$P(BP)^# = (BP)^#$

when matrix P is idempotent and symmetric

- main advantage: highest priority task is ideally no longer affected by algorithmic singularities (error is restricted only to secondary task)

task 1: follow

task 2: vertical third link

WITHOUT task priority

WITH task priority

possibly $= 0$