

Robotics 2

Introduction

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Robotics 2 — 2024-25

- II semester February 26 May 28, 2025
- schedule Monday (8:00-10:00) Wednesday (14:00-17:00), room B2
- master courses Artificial Intelligence and Robotics & Control Engineering
- credits 6 = 150h (1 ECTS = 25h of student work)
 - regular lectures in the classroom (~60h)
 - individual study and exercises (~90h)
 - if needed, see the video lectures (recorded in 2019-20) on YouTube in the <u>Robotics 2 playlist</u> of the <u>Video DIAG – Sapienza</u> channel
- G-group https://groups.google.com/a/diag.uniroma1.it/g/robotics2_2024-25

active links below these!

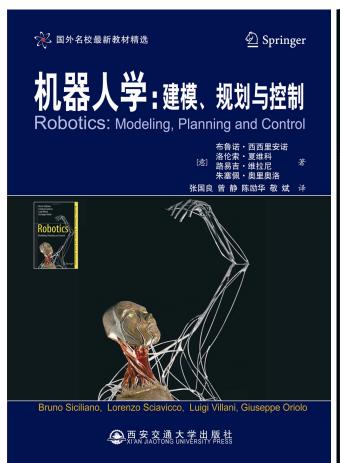
General information

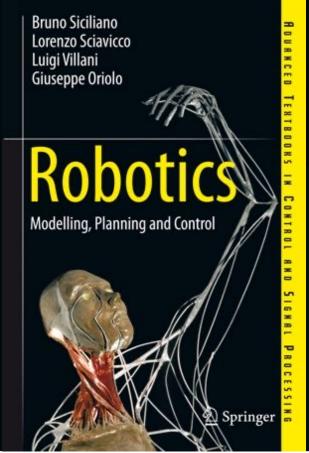
prerequisites

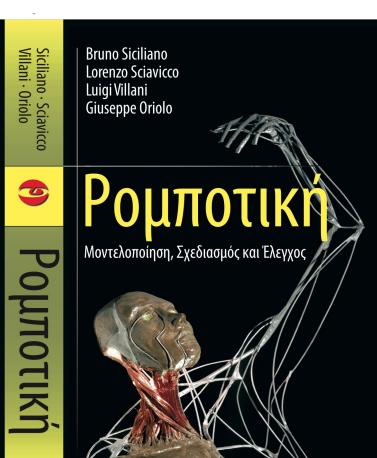
Robotics 1 as a prerequisite (mandatory for the exam)

aims

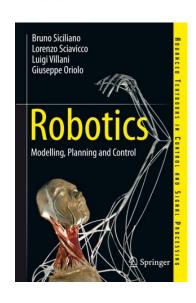
- advanced kinematics & dynamic analysis of robot manipulators
- design of feedback control laws for free motion and interaction tasks

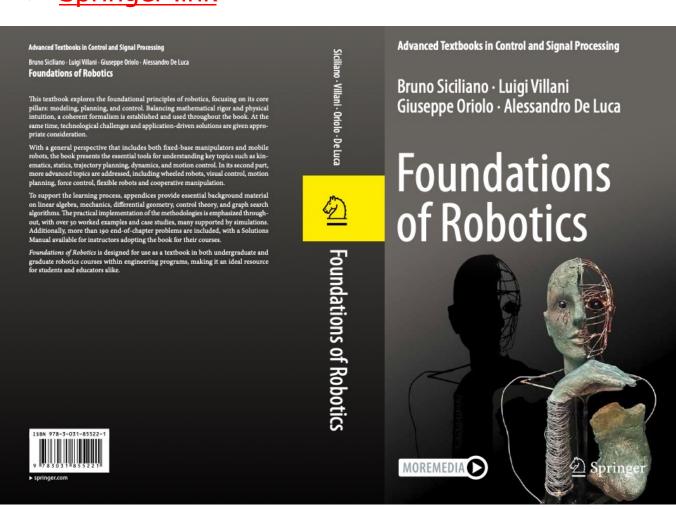

related courses


- Autonomous and Mobile Robotics 1st semester of year 2, 6 credits
- Elective in Robotics whole year 2, 12 credits (four modules)
 or Control Problems in Robotics 6 credits (two out of four modules)
- Probabilistic Robotics 1st semester of year 2, 6 credits
- Medical Robotics 2nd semester of year 2, 6 credits
- research video channel www.youtube.com/user/RoboticsLabSapienza



B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: *Robotics: Modelling, Planning and Control*, 3rd Edition, Springer, 2009




B. Siciliano, L. Villani, G. Oriolo, A. De Luca: **Foundations of Robotics** appears in April 2025 ⇒ Springer link

700+ pages covering

- Robotics 1
- Robotics 2
- Autonomous and Mobile Robotics

Robotics

- algorithms for robotics*
 - process inputs from sensors that provide noisy and partial data
 - build geometric and physical models of the robot and the world
 - plan high- and low-level actions at different time horizons
 - execute these actions on actuators with uncertainty/limited precision
- design & analysis of robot algorithms raise a unique combination of questions from many fields
 - control theory
 - computational geometry and topology
 - geometric and physical modeling
 - reasoning under uncertainty
 - probabilistic algorithms and game theory
 - theoretical computer science

* = modified from intro to WAFR 2016

Program - 1

- advanced kinematics
 - kinematic calibration

- **Q:** are <u>redundant robots</u> "special" manipulators?
- kinematic redundancy and related control methods
- dynamic modeling of manipulators
 - direct and inverse dynamics
 - Euler-Lagrange formulation
 - Newton-Euler formulation
 - properties of the dynamic model
 - identification of dynamic parameters
 - inclusion of flexibility at the joints
 - inclusion of geometric constraints


Q: why/when do we need dynamics for robot control?

Task-related redundancy

video of ABB robot in laser cutting

6-DOF robot for a 5-dimensional task = 1 degree of kinematic redundancy

Robot dynamics and control

video of WAM by Barrett Technology

@Ishikawa Lab, Tokyo University, 2012

Robot dynamics and control

video of Atlas by Boston Dynamics, 2017

https://youtu.be/fRj34o4hN4I

Program - 2

- design of feedback control laws
 - free motion tasks
 - set-point regulation
 - PD with gravity cancellation or compensation
 - PID or saturated PID
 - iterative learning for gravity compensation
 - regulation in the Cartesian/task space
 - trajectory tracking
 - feedback linearization and input-output decoupling

e.g., on a 7R robot

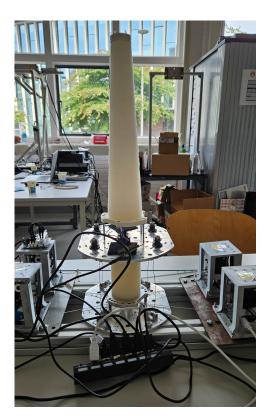
e.g., on a

soft robot

- in the joint space
- in the Cartesian/task space
- passivity-based control
- adaptive (and robust) control
- on-line learning

Q: why/when is kinematic control not sufficient?

torque input commands


Iterative learning under gravity

continuum soft robots

- hard to model: ∞ -dimensional \Rightarrow PCC (= Piecewise Constant Curvature)
- difficult estimation of the dynamic parameters

video

two-segment prototype @TU Delft

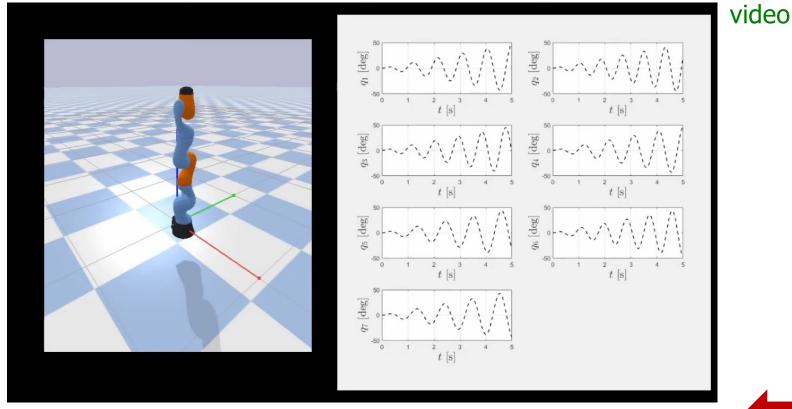
Regulation by Iterative Learning in Continuum Soft Robots

Marco Montagna, Pietro Pustina, Alessandro De Luca

DIAG Robotics Lab Sapienza Università di Roma

October 2022

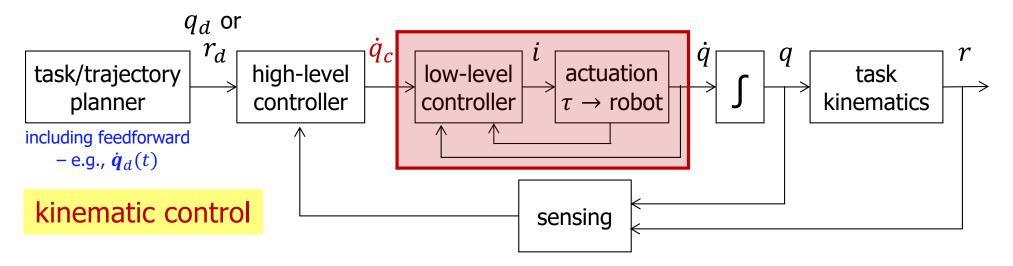
I-RIM 2022 conference



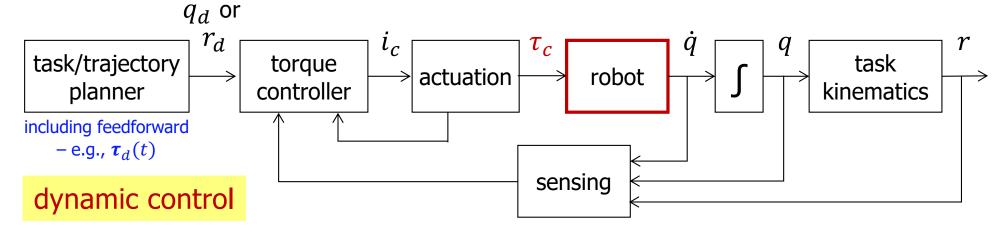
Feedback linearization and inverse dynamics

rigid multi-link robots

- use a complete dynamic model, with feedback reaction to tracking errors
- uncertainties handled by off-line identification, on-line adaptation, ...


7R KUKA LWR4+ robot

DEI UniPadova, I-RIM 2020 conference



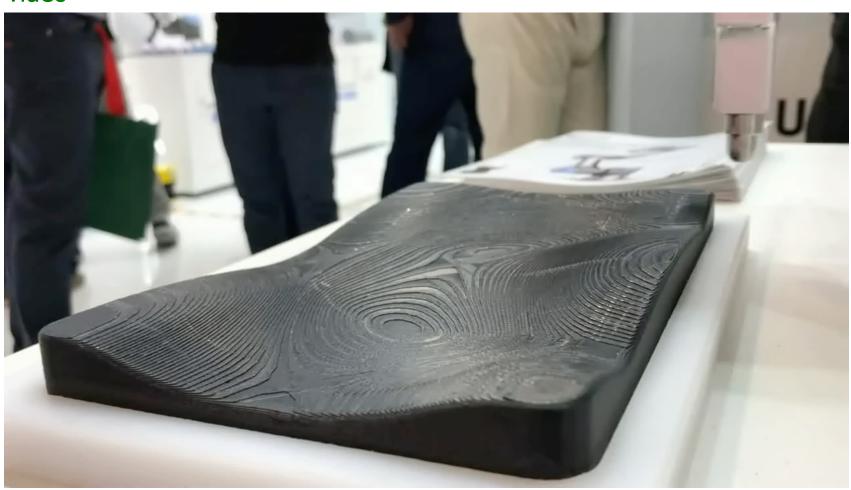
... acceleration \ddot{q} , mass, gravity, inertia, centrifugal forces, friction?

both modes may be present even in the same robotic system

Program - 3

- design of feedback control laws
 - interaction tasks with the environment
 - compliance/admittance control
 - impedance control
 - hybrid force/velocity control
 - image- and position-based visual servoing
 - kinematic control treatment only
- fault diagnosis
 - detection and isolation of robot actuator faults
 - extension to a class of sensor faults
- simulation tools
 - Matlab/Simulink (including Robotics Toolbox)
 - CoppeliaSim (formerly V-REP)

in general, torque input commands


Q: why multiple control laws for handling the <u>interaction</u>?

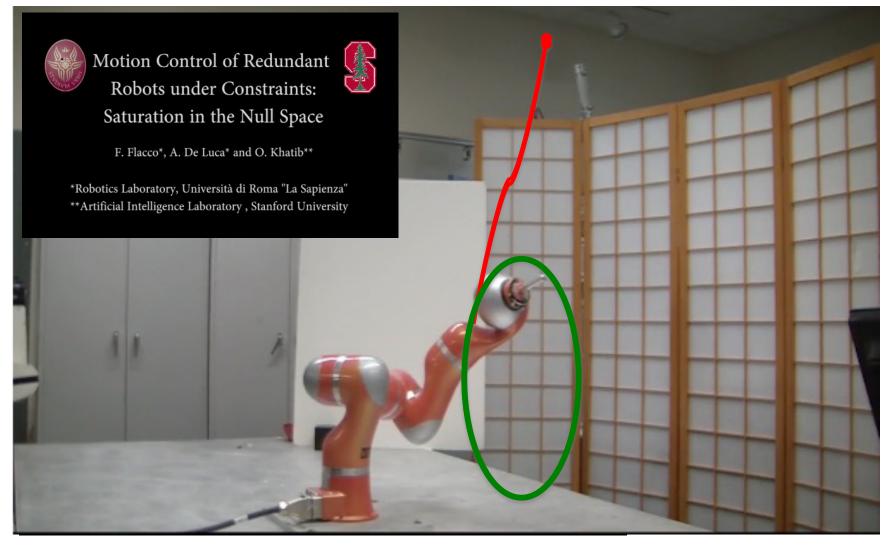
Interacting with a rigid, irregular surface

video

more appropriate control law? what is the goal?

Sneak preview of videos follows ...

kinematic redundancy and related control methods

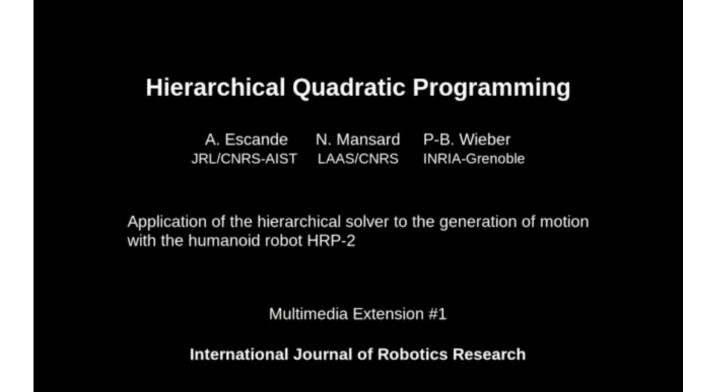

robot dynamic modeling and identification

motion control in the presence of joint flexibility

interaction with the environment: force and motion control

Kinematic/dynamic control and redundancy SNS algorithm handles hard bounds on robot motion

KUKA LWR4+ robot

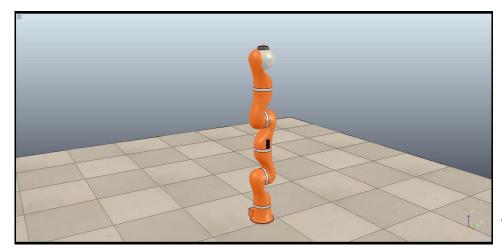

video DIAG Sapienza/Stanford, IEEE ICRA 2012

(standing) HRP-2 humanoid robot

video @LAAS/CNRS Toulouse

HQP approach for multiple equality and inequality tasks with priorities

Dynamic modeling and identification



data acquisition for identification

KUKA LWR4+ robot with joint torque sensing

2 videos ICRA 2014 @DIAG Robotics Lab

model validation by torque prediction

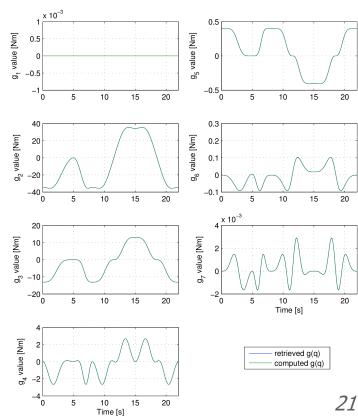
dynamic simulation with CoppeliaSim (was V-REP)

video

e.g., linear parametrization of gravity term in robot dynamic model

$$n = 7 \left\{ \left[\boldsymbol{g}(\boldsymbol{q}) = \boldsymbol{Y}_g(\boldsymbol{q}) \boldsymbol{\pi}_g \right] \right\} p_g = 12$$

symbolic expressions of gravityrelated dynamic coefficients



$$\hat{\boldsymbol{\pi}}_{g} = \begin{pmatrix} 9.5457 \times 10^{-4} \\ -2.9826 \times 10^{-4} \\ 8.3524 \times 10^{-4} \\ 0.0286 \\ -0.0407 \\ -6.5637 \times 10^{-4} \\ 1.334 \\ -0.0035 \\ -4.7258 \times 10^{-4} \\ 0.0014 \\ 9.4532 \times 10^{-4} \\ 3.4568 \end{pmatrix}$$

numerical values identified through experiments

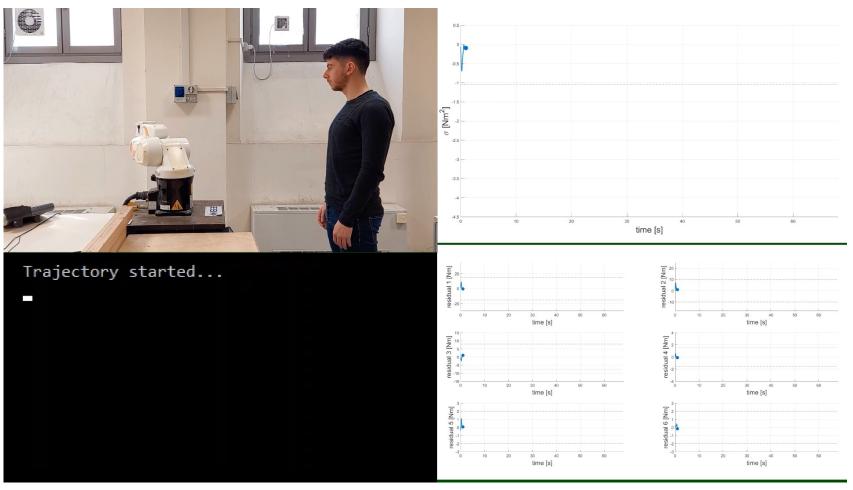
gravity joint torques prediction/evaluation on new validation trajectory

complete dynamic model estimation vs. joint torque sensor measurement

$$M(q)\ddot{q} + c(q,\dot{q}) + g(q) = \tau - \tau_{friction}$$

$$\frac{1}{2} \int_{-20}^{2} \int_{-30}^{2} \int_{-30}$$

without the use of a joint friction model


including an identified joint friction model

Sensorless collision detection and isolation using momentum observer (model-based)

KUKA KR5 Sixx R650 robot

I-RIM 2021 conference

2 videos @DLR München

low-damped oscillations due to flexibility of robot transmissions at the joints (use of Harmonic Drives)

end-effector response to forces
with impedance control
(selective behavior in different directions)

2 video clips extracted from Springer Handbook of Robotics - Multimedia

surface contour following

peg-in-hole insertion strategy

De Schutter et al @KU Leuven, Belgium (mid '90s)

Physical human-robot interaction control

video ICRA 2015 @DIAG Robotics Lab

Control of Generalized Contact Motion and Force in Physical Human-Robot Interaction

Emanuele Magrini, Fabrizio Flacco, Alessandro De Luca

Robotics Lab, DIAG Sapienza Università di Roma

September 2014

Contacts

- student hours Tuesdays 12:00-13:30 (until early June 2025)
 - in presence A-210, left wing, floor 2, DIAG
 - via Zoom or G-Meet (see www.diag.uniroma1.it/deluca/Teaching.php)
 - send an email for other dates (check also <u>My travel dates</u>)
- communication mode
 - use the G-group for questions and doubts: everyone would benefit!
 - by mail (personal issues) <u>deluca@diag.uniroma1.it</u>
- URL www.diag.uniroma1.it/deluca
- course material
 - www.diag.uniroma1.it/deluca/rob2_en.php
 - pdf of slides, link to video lectures, videos shown in class (zipped), syllabus, written exams (most with solutions), ...

Exams and Master Theses

- type of exam
 - midterm test qualifies for a final project (OR as part of the final exam)
 - final written exam OR final project + report + oral presentation
- exam schedule for academic year 2024-25
 - 2 sessions at the end of this semester
 - between June 3 and July 25
 - 1 session after the summer break
 - between September 1 and 23

to be published by April on infostud & course web page

- 2 sessions at the end of the first semester of next year
 - January and February 2026
- sign in on infostud (code 1021883) up to one week before, only one session is open at a time (OPIS questionnaire needed – filled in class!)
- 2 extra sessions only for students of previous years, part-time, etc.
 - periods: March 17 to April 18 and October 8 to November 6, 2025
- theses samples at DIAG Robotics Lab <u>www.diag.uniroma1.it/labrob</u>