Robotics 1
January 12, 2026
[students with midterm)]

Exercise 1

For the RPY-type angles ¢ = («, 3,7) defined in the YZX sequence around fixed axes, compute
the map w = T'(¢)¢ between the time derivative ¢ and the angular velocity vector w € R?® and
find the singularities of the matrix T'(¢).

Exercise 2

For the velocity transformation J(q)g = p, where J(q) is the 2 x 2 analytic Jacobian of a 2R planar
robot with link lengths I; = 1, I, = 0.5 [m] and p € R? is its end-effector position, build three case
studies of the pair (g, p) for which: i) the solution ¢ is unique; ) there are infinite solutions ¢ and
you choose the one with minimum norm ||¢g||; éii) there is no solution ¢ and you choose the joint
velocity with minimum norm that minimizes also the error norm ||J(g)g — p||. Sketch graphically
the associated situations in the joint velocity plane (g1, q2) and provide the numerical values of ¢
for the three case studies.

Exercise 3

Compute the 6 x 3 geometric Jacobian J(g) of a 3-dof robot whose DH parameters are given
in Tab. 1. Find all configurations g, at which the Jacobian matrix loses rank. In one of these
configurations, determine a basis for the null space N{Js} of J, = J(q,) and for the range space
R{JTL} of JT. Provide a graphical sketch of the robot in this situation and give a corresponding
physical interpretation in terms of joint velocities ¢ and torques .

) Q; a; dz 01

1 0 L 0 q1

0 0| q

o o)

0 qs 0

Table 1: Table of DH parameters for a 3-dof robot

Exercise 4

Consider a trapezoidal speed profile for a joint that has to move in minimum time from g; to ¢,
under the bounds |¢| < V and |§| < A. Draw the position, velocity, and acceleration profiles and
compute the relevant parameters for the data ¢; = 7, ¢y = 7/4 [rad] and the bounds V' = 3 rad/s
and A = 5 rad/s?. Assume now that the same displacement should occur under the same bounds
in a motion time T that is twice as long as the minimum feasible time T', by using a trapezoidal
speed profile that has the same duration 7). of the acceleration/deceleration phases of the minimum
time motion. Compute the associated velocity V' and acceleration A of the new trajectory and
draw the corresponding position, velocity, and acceleration profiles.

[210 minutes (3,5 hours); open books]



Solution

January 12, 2026
[students with midterm]

Exercise 1

The elementary rotation matrices involved with the given RPY-type sequence ¢ = (v, 8,7) are:

cosa 0 sina cosff —sinf 0 1 0 0
R/(a) = 0 1 0 R.(B)=| sinf cosf 0 | R.(y)=| 0 cosy —siny
—sina 0 cosa 0 0 1 0 siny cosvy

Since RPY-type rotations are defined around fixes axes, the final orientation for the YZ X sequence
is obtained by the product of the elementary rotation matrices in the reverse order of definition:

RYZX(¢) = Rw(V)Rz(B)Ry(O‘)

For the map w = T((j))qb between the time derivative qb and the angular velocity vector w € R3,
the algebraic construction provides the sum of three contributions

1 0
w=wytwstwa=| 0 [4+R()| 0 |B+R.(MRB) | 1 |,
0 1 0

which is reorganized in matrix form as

—sinf 0 1 o
w = cosffcosy —siny O 5 = T(‘b)(ﬁ
cosfBsiny cosy O o

The determinant of the transformation matrix is det T'(¢) = cos 8, so that this matrix is singular
at 8 = +m/2 (exactly when the inverse problem of representing orientation by the sequence YZX
of RPY-type angles has infinite solutions). When in a singularity, angular velocities of the form
w = k (0, cos~,sin+y), with k£ # 0, cannot be generated by any @.

Exercise 2
At a given configuration g and for an assigned p, the linear system of equations Jg = p in the
unknown g, with J = J(q) being a square matrix:

i) has the unique solution ¢ = J 'p if det J # 0;

i) if det J = 0 and p € R(J), has infinite solutions and g = J#p is the solution with minimum
norm, being J# the (unique) pseudoinverse of J;

i11) if det J = 0 and p € R(J), has no solutions and ¢ = J#p is the joint velocity with minimum
norm among all those that minimize the norm of the velocity error € = Jg — p.

For a 2 x 2 matrix J, let

J1 Jin Ji2 . Da . G1
J: p— f— . f— . .
(J2> (le J22> p (py) 0 <Q2)



Then, the two linear equations
J1q = Jugr + Ji2ge = pe Joq = Jo1g1 + Ja2g2 = Py

can be represented in the plane (¢1,d2) as two lines that may or may not intersect. The above
three cases i)-4ii) are shown in Fig. 1. When det J = 0, the two rows are linearly dependent, i.e.,
Jo = kJ for some k # 0; moreover, if p, # kp, the two equations are inconsistent and there is no
exact solution for both. The dashed line of the right picture in Fig. 1 is equidistant from the other
two and represents the set of joint velocities ¢ yielding the minimum norm of the velocity error.
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Figure 1: The three possible situations for Jg = p in the two-dimensional case

One special case which is not represented in Fig. 1 is when one of the two equations has all zero
coefficients —say, Jo = ( 0 0 ); as a consequence, the line associated to the second equation
cannot be drawn. Then, for case %), it is necessarily p, = 0 and this second equation vanishes (it
is simply the identity 0 = 0), so that the linear system has only one equation in two unknowns
and thus infinite solutions; instead, case i) has p, # 0 and all the solutions to the first equation
J1q = p, will have the same error norm |[é]| = |[p,| # 0. In all these situations, use of the
pseudoinverse provides again the joint velocity with minimum norm.

Let us turn to some numerical examples. For the considered 2R planar robot, one has

p= ( Da ) _ < licy +laci > — f(q) J(q) = ?)% _ ( —(l1s1 +12812) —las12 >’

Dy l1s1 + 12812 lici + lacia lacia

with I; = 1, I = 0.5 [m]. The determinant is det J(q) = l1la2sings. Consider the end-effector
velocity p = (—1,1) [m/s] and choose first the configuration g = (0,7/2) [rad], for which

~0.5 —0.5
()

is clearly nonsingular. Then, the unique solution is
. 1. 1
g=J p= 1 [rad/s].

Move next the robot to the singular configuration g = (7/4,0) [rad]. The Jacobian becomes

( -15/v2 -1/v2 \ [ =1.0607 —0.3536 \ [ J,
J( 1.5//2 1/\/§>( 1.0607 0.3536)(J2)



which is clearly singular, being Jo = kJ1, with £ = —1. However, since py, =1 = —1- -1 = kp,,
we are in case i) and the pseudoinverse solution will provide no error with respect to the desired
end-effector velocity.

Interlude. In the absence of a numerical tool (e.g., Matlab) for computing the pseudoinverse of
a singular matrix, which would require in general the SVD decomposition of J, one can use direct
formulas that exploit the simple structure of the matrix to be pseudoinverted.! In fact, it is easy
to verify that:

e for a n-dimensional (column or row) vector a # 0, the pseudoinverse is a# = a”/||a|’;

e for a 2 X n matrix A with a row of zeros (or an n x 2 matrix B with a column of zeros), the
pseudoinverse is given by

A:(‘é) = A*=(a* 0) B=(b 0) = B#:<b:>,

and similarly when the zeros are in the first row (or column);

e for a singular (i.e., not full rank) 2 x n matrix J,

the pseudoinverse is computed from the previous results using the factorization

J=BA=(b 0)({)1> b:(}g),

#
J#* = A*B* = ( J¥ 0)<b )

yielding
0

With the above in mind, one can compute
. oaw. [ —0.4243 0.4243 -1\ [ 0.8485
1=J"p= ( —0.1414  0.1414 1) =\ o2ses ) [rad/sl
It is easy to verify that this joint velocity is a correct solution, returning the desired end-effector

velocity (Jgq = p).

Finally, suppose that the robot is in a different singular configuration, e.g., in ¢ = (0,0), namely
with both links stretched in the xg-direction. Then, since

J:(1(.)5 0(.)5> = p:(_ll)gn(J):Span{Cl))}’

we are in case ). The joint velocity computed using the previous pseudoinverse formulas

a=1%= (3 05 ) (3')= (03 ) e

will return only the part of the desired end-effector velocity that lies in the range of J,

=g (1) () -»

1These formulas have been presented also during the lectures in the classroom.




namely the second component only. The end-effector velocity error has ||é]| = 1, which is the
smallest possible norm for any ¢ € R2. The joint velocity computed with the pseudoinverse has
llgll = v0.62 4+ 0.22 = 1/0.4 = 0.6325 rad /s, which is the smallest norm for all joint velocities that
achieve the minimum value for the norm of é.

Exercise 3

The DH parameters in Tab. 1 correspond to an RRP robot. Thus, the geometric Jacobian in

takes the form

sy = (TR B (), O

20 zZ1 A(q
where
0
zo= |0 z1 ="Ri(q1)zo z2 = "Ry (q1)'Ra(q2) 20,
1

(p(l)73) - °A1(f11)<1A2(Q2)(2A3(<13) < (1) >>> <p(i’1) ="Ai(a) ( (1) ) P13 = Pos~Por-

Remember that the 3 x 3 linear part of the geometric Jacobian (1) can be equivalently obtained
by analytic differentiation of the direct kinematics as

- 6170,3
oq ’

J1(q) (2)

which may be easier to compute by hand.

With the DH parameters, we build the DH homogeneous transformation matrices

cosqu —singg 0 Lcosqp
OR . .
0 _ 1 Pop ) | singt cosqu 0 Lsing
Al(ql)‘(oT 1 )‘ 0 0 1 0
0 0 0 1
cosqga 0 sings O
1 .
Ry ps singg 0 —cosqgy O
1 _ ; _
Aalee) = ( o 1 )| 0o 1 0 0
0 0 0 1
1 0 0 O
‘R
2 _ 1 Pp3y | 0 1 0 O
AQ(qS)‘(oT 1 )‘ 00 1 ¢5|°
0 0 0 1
and thus
0 sin(q1 + q2)
z1=10 zy = | —cos(q1 +g2)
1 0



and

L cos q1 + g3 sin(q1 + ¢2) Lcosq g3 sin(q + ¢2)
Pos = | Lsingi —qscos(q1 + q2) Py = | Lsing Pis3= | —azcos(q1 + q2)
0 0 0

Using (2) for the linear part, we obtain the expression of the 6 x 3 geometric Jacobian in (1) as

q3cos(qr +q2) — Lsing:  gzcos(q1 +¢q2)  sin(q1 + g2)
gssin(qi + ¢q2) + Lcosqr  gzsin(gi + q2) —cos(q1 + ¢2)
0 0 0

0 0 0
0 0 0
1 1 0

The three rows that are identically zero in J(q) reveal that this robot is planar, i.e., it moves in
the plane (zo,yo), being v, = w; = w, = 0 for any possible joint motion.

To analyze the rank of J(q), we can simply eliminate the zero rows from (3) and obtain the 3 x 3
reduced matrix

q3cos(q1 + q2) — Lsing;  gzcos(q1 +¢q2)  sin(qy + g2)
J.(q) = | a3sin(qi +q2) + Lcosqr g3sin(qi +q2) —cos(q1 +q2) |,
1 1 0

whose determinant is det J,.(q) = Lsings. Therefore, all singular configurations q, of J(q) are
characterized by having singy = 0, i.e., go = {0, 7}. Taking for instance g = 0, we get

qscosqr — Lsing; gscosqp  sing

Js(q1,93) = Jr(@)|go=0 = | g¢3singi +Lcosqr gzsingi —cosqp
1 1 0

Being the rank of J, always equal to 2, its null space is spanned by one basis vector as
1
N{Js} = span { -1 }
L

In a dual fashion, the range space of J Z is covered by two basis vectors as

cosqy — Lsing sing; + Lcosqq
R{JL} = span oS q1 , sin g1
sin q1 —Cos q1

These two vectors have been obtained by simply setting g3 = 0 in the first two columns of J ST
It is easy to see that both basis vectors of R{J.} are orthogonal to N'{J,} and that the three
vectors chosen as bases for the two subspaces are linearly independent. In fact,

1 cosqy — Lsing; sing; + Lcosqq
det | —1 CoS q1 sin qq =—(2+L% #0,
L sin g1 —cosqq



confirming that the two subspaces are in direct sum

N{T e R{JT} =R

Figure 2 provides a graphical sketch of this RRP planar robot in a generic configuration, with the

joint variables q defined according to Tab. 1, as well as in a singular configuration with g2 = 0.

The pictures show also:

a) the instantaneous joint velocity ¢ € R3 that produces no linear/angular motion of the end-
effector, i.e., such that ¢ € N{J};

b) a force f € R? and a moment m, € R applied to the end-effector that need no torque 7 € R?
for keeping static balance; they produce zero joint torques in R{J z} or, equivalently, the vector
F = (fs, f,,m.) € R? belongs to N{J*}.

Figure 2: The considered RRP planar robot in a regular (top) and in two singular configurations
with g2 = 0 (bottom), where some physical interpretations are also provided

Exercise 4

The minimum time trajectory has a complete trapezoidal velocity profile (equivalently, a bang-
coast-bang acceleration). In fact, a cruising phase at maximum speed is reached since

3T 9 V2
p— — Z = —— 2. 2 1. = -_— —_—
|Aq| = lgf — qil 1 3562>18=¢ = —



The two relevant parameters of this profile (beside the required displacement Ag and the maximum
bounds V and A) are the rise time T}, i.e., the duration of the (maximum) acceleration/deceleration
phases, and the total (minimum) time, respectively
\% ] _ A|Ag| + V2
T,._A_().6s T = V%
Thus, the cruising phase at maximum speed V lasts for T'— 27, = 0.1854 s. The position, velocity,
and acceleration profiles are sketched in Fig. 3.

= 1.3854 s.
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Figure 3: Time profiles of the minimum time rest-to-rest joint trajectory
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Figure 4: Time profiles of the rescaled rest-to-rest joint trajectory

The new requested trajectory has to accomplish the same joint displacement with the same type
of trapezoidal velocity profile, but should last T = 27 = 2.7708 s and have the same original
duration T,. = T. = 0.6 s for the acceleration/deceleration phases. Therefore, we can solve for the
new cruise velocity V and acceleration A as follows. Since the area below the new velocity profile
should be equal to the original displacement, one obtains

. _ A
VT-T)=|ng = V=220 10854 raays.
T-T,
Thus, the acceleration needed to reach V in a time 7, is
Vv

A= = =1.8090 rad/s%.
T rad/s
Both values V and A are reduced with respect to the original V' and A. The new position, velocity,
and acceleration profiles are sketched in Fig. 4.

Note finally that the operation performed is not a uniform time scaling of the original trajectory
by the factor k = 2 = T/T. The latter would have brought to the following new parameters:

A
72 =1.25 rad/SQ.

\%4
T’r,s:kTr:LQS Vs:*=1.5 rad/s Asz A
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