
Robotics 1
January 12, 2026

[students with midterm]

Exercise 1

For the RPY-type angles ϕ = (α, β, γ) defined in the YZX sequence around fixed axes, compute
the map ω = T (ϕ)ϕ̇ between the time derivative ϕ̇ and the angular velocity vector ω ∈ R3 and
find the singularities of the matrix T (ϕ).

Exercise 2

For the velocity transformation J(q)q̇ = ṗ, where J(q) is the 2×2 analytic Jacobian of a 2R planar
robot with link lengths l1 = 1, l2 = 0.5 [m] and p ∈ R2 is its end-effector position, build three case
studies of the pair (q, ṗ) for which: i) the solution q̇ is unique; ii) there are infinite solutions q̇ and
you choose the one with minimum norm ∥q̇∥; iii) there is no solution q̇ and you choose the joint
velocity with minimum norm that minimizes also the error norm ∥J(q)q̇ − ṗ∥. Sketch graphically
the associated situations in the joint velocity plane (q̇1, q̇2) and provide the numerical values of q̇
for the three case studies.

Exercise 3

Compute the 6 × 3 geometric Jacobian J(q) of a 3-dof robot whose DH parameters are given
in Tab. 1. Find all configurations qs at which the Jacobian matrix loses rank. In one of these
configurations, determine a basis for the null space N{Js} of Js = J(qs) and for the range space
R{JT

s } of JT
s . Provide a graphical sketch of the robot in this situation and give a corresponding

physical interpretation in terms of joint velocities q̇ and torques τ .

i αi ai di θi

1 0 L 0 q1

2
π

2
0 0 q2

3 0 0 q3 0

Table 1: Table of DH parameters for a 3-dof robot

Exercise 4

Consider a trapezoidal speed profile for a joint that has to move in minimum time from qi to qf ,
under the bounds |q̇| ≤ V and |q̈| ≤ A. Draw the position, velocity, and acceleration profiles and
compute the relevant parameters for the data qi = π, qf = π/4 [rad] and the bounds V = 3 rad/s
and A = 5 rad/s2. Assume now that the same displacement should occur under the same bounds
in a motion time T̄ that is twice as long as the minimum feasible time T , by using a trapezoidal
speed profile that has the same duration Tr of the acceleration/deceleration phases of the minimum
time motion. Compute the associated velocity V̄ and acceleration Ā of the new trajectory and
draw the corresponding position, velocity, and acceleration profiles.

[210 minutes (3,5 hours); open books]
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Solution
January 12, 2026

[students with midterm]

Exercise 1

The elementary rotation matrices involved with the given RPY-type sequence ϕ = (α, β, γ) are:

Ry(α) =

 cosα 0 sinα

0 1 0

− sinα 0 cosα

 Rz(β) =

 cosβ − sinβ 0

sinβ cosβ 0

0 0 1

 Rx(γ) =

 1 0 0

0 cos γ − sin γ

0 sin γ cos γ

.

Since RPY-type rotations are defined around fixes axes, the final orientation for the YZX sequence
is obtained by the product of the elementary rotation matrices in the reverse order of definition:

RYZX(ϕ) = Rx(γ)Rz(β)Ry(α).

For the map ω = T (ϕ)ϕ̇ between the time derivative ϕ̇ and the angular velocity vector ω ∈ R3,
the algebraic construction provides the sum of three contributions

ω = ωγ̇ + ωβ̇ + ωα̇ =

 1

0

0

 γ̇ +Rx(γ)

 0

0

1

 β̇ +Rx(γ)Rz(β)

 0

1

0

 α̇,

which is reorganized in matrix form as

ω =

 − sinβ 0 1

cosβ cos γ − sin γ 0

cosβ sin γ cos γ 0


 α̇

β̇

γ̇

 = T (ϕ)ϕ̇.

The determinant of the transformation matrix is detT (ϕ) = cosβ, so that this matrix is singular
at β = ±π/2 (exactly when the inverse problem of representing orientation by the sequence YZX
of RPY-type angles has infinite solutions). When in a singularity, angular velocities of the form
ω = k (0, cos γ, sin γ), with k ̸= 0, cannot be generated by any ϕ̇.

Exercise 2

At a given configuration q and for an assigned ṗ, the linear system of equations Jq̇ = ṗ in the
unknown q̇, with J = J(q) being a square matrix:

i) has the unique solution q̇ = J−1ṗ if detJ ̸= 0;

ii) if detJ = 0 and ṗ ∈ R(J), has infinite solutions and q̇ = J#ṗ is the solution with minimum
norm, being J# the (unique) pseudoinverse of J ;

iii) if detJ = 0 and ṗ ̸∈ R(J), has no solutions and q̇ = J#ṗ is the joint velocity with minimum
norm among all those that minimize the norm of the velocity error ė = Jq̇ − ṗ.

For a 2× 2 matrix J , let

J =

(
J1

J2

)
=

(
J11 J12
J21 J22

)
ṗ =

(
ṗx
ṗy

)
q̇ =

(
q̇1
q̇2

)
.
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Then, the two linear equations

J1q̇ = J11q̇1 + J12q̇2 = ṗx J2q̇ = J21q̇1 + J22q̇2 = ṗy

can be represented in the plane (q̇1, q̇2) as two lines that may or may not intersect. The above
three cases i)–iii) are shown in Fig. 1. When detJ = 0, the two rows are linearly dependent, i.e.,
J2 = kJ1 for some k ̸= 0; moreover, if ṗy ̸= kṗx the two equations are inconsistent and there is no
exact solution for both. The dashed line of the right picture in Fig. 1 is equidistant from the other
two and represents the set of joint velocities q̇ yielding the minimum norm of the velocity error.

𝑞̇!

𝑞̇"

𝑞̇!

𝑞̇"

𝑞̇!

𝑞̇"𝑱!𝒒̇ = 𝑝̇"

𝑱#𝒒̇ = 𝑝̇$
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𝑱!𝒒̇ = 𝑝̇"

Figure 1: The three possible situations for Jq̇ = ṗ in the two-dimensional case

One special case which is not represented in Fig. 1 is when one of the two equations has all zero
coefficients —say, J2 =

(
0 0

)
; as a consequence, the line associated to the second equation

cannot be drawn. Then, for case ii), it is necessarily ṗy = 0 and this second equation vanishes (it
is simply the identity 0 = 0), so that the linear system has only one equation in two unknowns
and thus infinite solutions; instead, case iii) has ṗy ̸= 0 and all the solutions to the first equation
J1q̇ = ṗx will have the same error norm ∥ė∥ = |ṗy| ̸= 0. In all these situations, use of the
pseudoinverse provides again the joint velocity with minimum norm.

Let us turn to some numerical examples. For the considered 2R planar robot, one has

p =

(
px
py

)
=

(
l1c1 + l2c12
l1s1 + l2s12

)
= f(q) J(q) =

∂f

∂q
=

(
−(l1s1 + l2s12) −l2s12
l1c1 + l2c12 l2c12

)
,

with l1 = 1, l2 = 0.5 [m]. The determinant is detJ(q) = l1l2 sin q2. Consider the end-effector
velocity ṗ = (−1, 1) [m/s] and choose first the configuration q = (0, π/2) [rad], for which

J =

(
−0.5 −0.5
1 0

)
is clearly nonsingular. Then, the unique solution is

q̇ = J−1ṗ =

(
1
1

)
[rad/s].

Move next the robot to the singular configuration q = (π/4, 0) [rad]. The Jacobian becomes

J =

(
−1.5/

√
2 −1/

√
2

1.5/
√
2 1/

√
2

)
=

(
−1.0607 −0.3536

1.0607 0.3536

)
=

(
J1

J2

)
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which is clearly singular, being J2 = kJ1, with k = −1. However, since ṗy = 1 = −1 · −1 = k ṗx,
we are in case ii) and the pseudoinverse solution will provide no error with respect to the desired
end-effector velocity.

Interlude. In the absence of a numerical tool (e.g., Matlab) for computing the pseudoinverse of
a singular matrix, which would require in general the SVD decomposition of J , one can use direct
formulas that exploit the simple structure of the matrix to be pseudoinverted.1 In fact, it is easy
to verify that:

• for a n-dimensional (column or row) vector a ̸= 0, the pseudoinverse is a# = aT/∥a∥2;
• for a 2 × n matrix A with a row of zeros (or an n × 2 matrix B with a column of zeros), the
pseudoinverse is given by

A =

(
a
0

)
⇒ A# =

(
a# 0

)
B =

(
b 0

)
⇒ B# =

(
b#

0

)
,

and similarly when the zeros are in the first row (or column);

• for a singular (i.e., not full rank) 2× n matrix J ,

J =

(
J1

J2

)
=

(
J1

kJ1

)
k ̸= 0,

the pseudoinverse is computed from the previous results using the factorization

J = BA =
(
b 0

)( J1

0

)
b =

(
1
k

)
,

yielding

J# = A#B# =
(
J#

1 0
)( b#

0

)
.

With the above in mind, one can compute

q̇ = J#ṗ =

(
−0.4243 0.4243
−0.1414 0.1414

)(
−1
1

)
=

(
0.8485
0.2828

)
[rad/s].

It is easy to verify that this joint velocity is a correct solution, returning the desired end-effector
velocity (Jq̇ = ṗ).

Finally, suppose that the robot is in a different singular configuration, e.g., in q = (0, 0), namely
with both links stretched in the x0-direction. Then, since

J =

(
0 0
1.5 0.5

)
⇒ ṗ =

(
−1
1

)
̸∈ R(J) = span

{( 0
1

)}
,

we are in case iii). The joint velocity computed using the previous pseudoinverse formulas

q̇ = J#ṗ =

(
0 0.6
0 0.2

)(
−1
1

)
=

(
0.6
0.2

)
[rad/s],

will return only the part of the desired end-effector velocity that lies in the range of J ,

ṗ⊥ = Jq̇ =

(
0
1

)
̸=
(

−1
1

)
= ṗ,

1These formulas have been presented also during the lectures in the classroom.
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namely the second component only. The end-effector velocity error has ∥ė∥ = 1, which is the
smallest possible norm for any q̇ ∈ R2. The joint velocity computed with the pseudoinverse has
∥q̇∥ =

√
0.62 + 0.22 =

√
0.4 = 0.6325 rad/s, which is the smallest norm for all joint velocities that

achieve the minimum value for the norm of ė.

Exercise 3

The DH parameters in Tab. 1 correspond to an RRP robot. Thus, the geometric Jacobian in(
v
ω

)
= J(q)q̇

takes the form

J(q) =

(
z0 × p0,3 z1 × p1,3 z2

z0 z1 0

)
=

(
JL(q)

JA(q)

)
, (1)

where

z0 =

 0
0
1

 z1 = 0R1(q1)z0 z2 = 0R1(q1)
1R2(q2)z0,

(
p0,3

1

)
= 0A1(q1)

(
1A2(q2)

(
2A3(q3)

(
0

1

))) (
p0,1

1

)
= 0A1(q1)

(
0

1

)
p1,3 = p0,3−p0,1.

Remember that the 3 × 3 linear part of the geometric Jacobian (1) can be equivalently obtained
by analytic differentiation of the direct kinematics as

JL(q) =
∂p0,3

∂q
, (2)

which may be easier to compute by hand.

With the DH parameters, we build the DH homogeneous transformation matrices

0A1(q1) =

( 0R1 p0,1

0T 1

)
=


cos q1 − sin q1 0 L cos q1
sin q1 cos q1 0 L sin q1
0 0 1 0

0 0 0 1



1A2(q2) =

( 1R2 p1,2

0T 1

)
=


cos q2 0 sin q2 0

sin q2 0 − cos q2 0

0 1 0 0

0 0 0 1



2A2(q3) =

( 0R1 p2,3

0T 1

)
=


1 0 0 0

0 1 0 0

0 0 1 q3
0 0 0 1

 ,

and thus

z1 =

 0
0
1

 z2 =

 sin(q1 + q2)
− cos(q1 + q2)

0


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and

p0,3 =

 L cos q1 + q3 sin(q1 + q2)
L sin q1 − q3 cos(q1 + q2)

0

 p0,1 =

 L cos q1
L sin q1

0

 p1,3 =

 q3 sin(q1 + q2)
−q3 cos(q1 + q2)

0


Using (2) for the linear part, we obtain the expression of the 6× 3 geometric Jacobian in (1) as

J(q) =



q3 cos(q1 + q2)− L sin q1 q3 cos(q1 + q2) sin(q1 + q2)

q3 sin(q1 + q2) + L cos q1 q3 sin(q1 + q2) − cos(q1 + q2)

0 0 0

0 0 0

0 0 0

1 1 0


. (3)

The three rows that are identically zero in J(q) reveal that this robot is planar, i.e., it moves in
the plane (x0, y0), being vz = ωx = ωy = 0 for any possible joint motion.

To analyze the rank of J(q), we can simply eliminate the zero rows from (3) and obtain the 3× 3
reduced matrix

Jr(q) =

 q3 cos(q1 + q2)− L sin q1 q3 cos(q1 + q2) sin(q1 + q2)

q3 sin(q1 + q2) + L cos q1 q3 sin(q1 + q2) − cos(q1 + q2)

1 1 0

 ,

whose determinant is detJr(q) = L sin q2. Therefore, all singular configurations qs of J(q) are
characterized by having sin q2 = 0, i.e., q2 = {0, π}. Taking for instance q2 = 0, we get

Js(q1, q3) = Jr(q)|q2=0 =

 q3 cos q1 − L sin q1 q3 cos q1 sin q1

q3 sin q1 + L cos q1 q3 sin q1 − cos q1

1 1 0

 .

Being the rank of Js always equal to 2, its null space is spanned by one basis vector as

N{Js} = span
{ 1

−1
L

}.
In a dual fashion, the range space of JT

s is covered by two basis vectors as

R{JT
s } = span

{ cos q1 − L sin q1
cos q1
sin q1

 ,

 sin q1 + L cos q1
sin q1

− cos q1

}.
These two vectors have been obtained by simply setting q3 = 0 in the first two columns of JT

s .
It is easy to see that both basis vectors of R{JT

s } are orthogonal to N{Js} and that the three
vectors chosen as bases for the two subspaces are linearly independent. In fact,

det

 1 cos q1 − L sin q1 sin q1 + L cos q1
−1 cos q1 sin q1
L sin q1 − cos q1

 = −(2 + L2) ̸= 0,
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confirming that the two subspaces are in direct sum

N{Js} ⊕R{JT
s } = R3.

Figure 2 provides a graphical sketch of this RRP planar robot in a generic configuration, with the
joint variables q defined according to Tab. 1, as well as in a singular configuration with q2 = 0.
The pictures show also:

a) the instantaneous joint velocity q̇ ∈ R3 that produces no linear/angular motion of the end-
effector, i.e., such that q̇ ∈ N{Js};

b) a force f ∈ R2 and a moment mz ∈ R applied to the end-effector that need no torque τ ∈ R3

for keeping static balance; they produce zero joint torques in R{JT
s } or, equivalently, the vector

F = (fx, fy,mz) ∈ R3 belongs to N{JT
s }.
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Figure 2: The considered RRP planar robot in a regular (top) and in two singular configurations
with q2 = 0 (bottom), where some physical interpretations are also provided

Exercise 4

The minimum time trajectory has a complete trapezoidal velocity profile (equivalently, a bang-
coast-bang acceleration). In fact, a cruising phase at maximum speed is reached since

|∆q| = |qf − qi| =
3π

4
= 2.3562 > 1.8 =

9

5
=

V 2

A
.
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The two relevant parameters of this profile (beside the required displacement ∆q and the maximum
bounds V and A) are the rise time Tr, i.e., the duration of the (maximum) acceleration/deceleration
phases, and the total (minimum) time, respectively

Tr =
V

A
= 0.6 s T =

A |∆q|+ V 2

AV
= 1.3854 s.

Thus, the cruising phase at maximum speed V lasts for T −2Tr = 0.1854 s. The position, velocity,
and acceleration profiles are sketched in Fig. 3.
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Figure 3: Time profiles of the minimum time rest-to-rest joint trajectory
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Figure 4: Time profiles of the rescaled rest-to-rest joint trajectory

The new requested trajectory has to accomplish the same joint displacement with the same type
of trapezoidal velocity profile, but should last T̄ = 2T = 2.7708 s and have the same original
duration T̄r = Tr = 0.6 s for the acceleration/deceleration phases. Therefore, we can solve for the
new cruise velocity V̄ and acceleration Ā as follows. Since the area below the new velocity profile
should be equal to the original displacement, one obtains

V̄ (T̄ − T̄r) = |∆q| ⇒ V̄ =
|∆q|

T̄ − T̄r
= 1.0854 rad/s.

Thus, the acceleration needed to reach V̄ in a time T̄r is

Ā =
V̄

T̄r
= 1.8090 rad/s2.

Both values V̄ and Ā are reduced with respect to the original V and A. The new position, velocity,
and acceleration profiles are sketched in Fig. 4.

Note finally that the operation performed is not a uniform time scaling of the original trajectory
by the factor k = 2 = T̄ /T . The latter would have brought to the following new parameters:

Tr,s = kTr = 1.2 s Vs =
V

k
= 1.5 rad/s As =

A

k2
= 1.25 rad/s2.

∗ ∗ ∗ ∗ ∗
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