
Robotics 1
February 16, 2024

Exercise 1

With reference to Fig. 1, a PPR planar robot with a third link of length ` has to pick up with its end-effector
gripper an object that is localized by the views of two co-planar cameras C1 and C2. Although living in
3D, this visual localization problem can be essentially restricted to the plane (xb,yb) of the reference frame
placed at the robot base. Each camera (i = 1, 2) is represented by a pinhole model with focal length fi
and a reference frame placed on its image plane, having the zci axis along the optical axis and the xci axis
in the same plane (xb,yb). The pose of these two camera frames is known with respect to the base frame
of the robot, using the geometric parameters L, H, α1, and α2 defined in the figure.
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Figure 1: The planar setup of the visual localization problem, with two cameras and a PPR robot.

A point feature P on the object is seen in the image plane of camera C1 at a signed distance d1 along its
xc1 axis, while the same feature is seen by camera C2 at a signed distance d2 along its xc2 axis.1 Both d1
and d2 are expressed in metric units (i.e., neglecting pixelation).

a) Find the position cip of the point feature P in one of the camera frames — any, i = 1 or 2 (or in both).

b) Determine the position of P as bp, i.e., with respect to the reference frame at the base of the robot.

c) Provide the numerical value of bp when using the following data: ` = 0.5, L = 0.4, and H = 0.8 [m];
α1 = π/3 and α2 = 2π/3 [rad]; f1 = 10 and f2 = 12 [mm]; d1 = 6 and d2 = −2 [mm].

d) Find a closed form solution of the inverse kinematics problem for the PPR robot, when the planar
position and orientation of its end-effector are given. Is the solution unique?

e) Provide a numerical value of the joint variable vector q = (q1, q2, q3) for the position bp and the data
in item c), when the robot end-effector points toward the origin of the camera frame in C2.

1We assume that the correspondence problem between the two images has been solved already.
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Exercise 2

A 3-dof cylindrical robot is shown in Fig. 2.

a) Assign the frames according to the Denavit-Hartenberg (D-H) convention, so that all constant D-H
parameters are non-negative. Provide the table with the corresponding parameters. The first frame
should be placed on the floor at the robot base and the origin of the last frame should be at point P .
Compute position and orientation of the end-effector frame as given by the homogeneous matrix 0T 3(q).

joint 1

joint 2

joint 3

P

Figure 2: A 3-dof cylindrical robot.

b) For a desired position pd ∈ R3 of the end-effector, find all solutions to the inverse kinematics problem.

c) Sketch the primary workspace of this robot, when q1 ∈ [−5π/6, 5π/6], q2 ∈ [0, H], and q3 ∈ [Dmin, Dmax],
with Dmin > 0. How many inverse kinematics solutions may comply with these bounds?

d) Compute the 3×3 Jacobian matrix J(q) relating q̇ to the velocity v of point P and find its singularities.

e) When the Jacobian is evaluated at a generic singular configuration qs, find a basis for the two subspaces
N (Js) and N (JT

s ), where Js = J(qs). Provide a physical interpretation of the vectors belonging to
each of these two subspaces.

Exercise 3

Consider the following trajectory planning problem for a 2R planar robot with links of length L1 = 2 and
L2 = 1 [m]. The robot should perform a rest-to-rest motion in a given time T = 2 s, moving its end-effector
from point A = (0, 1) to point B = (3, 0) [m]. The initial direction of the end-effector motion from point A
is specified by the tangent vector in Cartesian space dp/ds|A = (5, 0), where s is a suitable scalar that
parametrizes the path. Similarly, the final approach direction to point B is specified by dp/ds|B = (0,−1).

a) Design a joint trajectory that solves this problem, providing the analytic expression of the various terms
in the complete solution and some plots that help illustrating it.

b) Suppose now that the joint velocities are limited: |q̇1| ≤ V1 = 2, |q̇2| ≤ V2 = 3 [rad/s]. Verify whether
the trajectory that has been planned in item a) is feasible. If this is not the case, determine a convenient,
possibly minimum, motion time T ∗ that solves the same problem and complies also with these bounds.
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Exercise 4

The kinematics of a 3R spatial robot is specified through the D-H parameters given in Tab. 1. The robot
has its base mounted on the floor, defined by the plane (x0,y0).

i αi ai di θi

1 π/2 0 0.7 q1

2 0 0.5 0 q2

3 0 0.5 0 q3

Table 1: D-H parameters of a 3R spatial robot (lengths are in [m]).

The desired trajectory of the robot end-effector is an helical path to be traced, for t ∈ [0, 3], with constant
parametric speed ṡ = v:

px,d(t) = r cos 2πs(t)

py,d(t) = r sin 2πs(t)

pz,d(t) = h0 + hs(t),

(1)

with r = 0.5, h0 = 0.2, and h = 0.4 [m], and v = 1 [s−1]. The robot is commanded by the joint velocity
vector q̇ ∈ R3 and has unlimited joint rotations.

a) Show that the entire desired trajectory pd(t) ∈ R3 belongs to the primary workspace of the robot and
that it can be traced without encountering any singular configuration.

b) With the robot starting at t = 0 from the initial configuration q(0) = (0, π/6,−π/2) [rad], verify
whether the end-effector is on the desired trajectory or not.

c) Design a kinematic control law that achieves tracking of the desired end-effector trajectory, with the
possible position error e ∈ R3 decaying exponentially, so that the error components ei(t), i = t, n, b,
are decoupled in the Frenet frame (t,n, b) associated to the desired position along the path.

d) Wishing to impose the error dynamics ėt = −2et, ėn = −5en, ėb = −5eb, compute at t = 0 the
numerical value of the command q̇(0) when the robot starts from the configuration of item b) and the
control law in item c) is being used.

[5 hours; open books]
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Solution
February 16, 2024

Exercise 1

We first define the relationships between the different frames of interest. The two camera frames are related
to the base frame of the robot, respectively by

bT c1 =


cosα1 0 sinα1 L

sinα1 0 − cosα1 H

0 1 0 0

0 0 0 1

 , bT c2 =


cosα2 0 sinα2 L

sinα2 0 − cosα2 −H
0 1 0 0

0 0 0 1

 , (2)

so that the pose of the second camera is expressed in the first camera frame by

c1T c2 = bT−1
c1

bT c2 =


cos(α1 − α2) 0 − sin(α1 − α2) −2H sinα1

0 1 0 0

sin(α1 − α2) 0 cos(α1 − α2) 2H cosα1

0 0 0 1

 .

Note that the parameter L disappears from this matrix.

Let ciP = (Xi, Zi) be the coordinates (in the plane) of the feature point P as seen in the i-th camera
frame, for i = 1, 2. Using the pinhole model, and taking into account that the camera frames are placed
on their respective image plane, we have the perspective relations

fi
di

= −Zi − fi
Xi

⇒ fiXi + diZi = difi, i = 1, 2. (3)

Embedding the point P in homogeneous coordinates, we have

c1phom =

(
c1p

1

)
=


X1

0
Z1

1

 c2phom =

(
c2p

1

)
=


X2

0
Z2

1

 .

Thus, from
c1phom = c1T c2

c2phom

one has in particular

X1 = X2 cos(α1 − α2)− Z2 sin(α1 − α2)− 2H sinα1

Z1 = X2 sin(α1 − α2) + Z2 cos(α1 − α2) + 2H cosα1.
(4)

Substituting (4) in the first of the two perspective relations (3), we obtain the following 2 × 2 system of
linear equations in the unknowns X2 and Z2:

A

(
X2

Z2

)
= b, (5)

with

A =

(
f1 cos(α1 − α2) + d1 sin(α1 − α2) −f1 sin(α1 − α2) + d1 cos(α1 − α2)

f2 d2

)

b =

(
d1f1 + 2H(f1 sinα1 − d1 cosα1)

d2f2

)
.
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Except for singular cases (here ruled out by the placement of the two cameras), the ‘triangulation’ sys-
tem (5) is solvable and provides the localization of the point feature P in the frame of the second camera.
Substituting the data,2 we have

A =

(
−0.000196 0.011660

0.012 −0.002

)
b =

(
0.009116

−0.000024

)
,

and so
c2P =

(
X2

Z2

)
= A−1b =

(
0.1287

0.7840

)
[m]. (6)

From eq. (4) we get also the localization of the point feature P in the frame of the second camera

c1P =

(
X1

Z1

)
=

(
−0.6423

1.0806

)
[m]. (7)

Finally, we localize the point feature P in the base frame of the robot, i.e., compute bP = (Xb, Yb), using
any of the two camera transformations in (2), together with (6) or (7);

bphom = bT c1
c1phom = bT c2

c2phom ⇒ bP =

(
Xb

Yb

)
=

(
1.0146

−0.2966

)
[m]. (8)

The last step requires solving the inverse kinematics of the PPR planar robot for a desired rd = (pxd, pyd, αd).
From the direct kinematics, one easily finds the unique solution:

px = q1 + ` cos q3

py = q2 + ` sin q3

α = q3

⇒
q1 = pxd − ` cosαd

q2 = pyd − ` sinαd

q3 = αd.

.

Setting (pxd, pyd) = (Xb, Yb) from (8), the desired orientation for pointing toward the origin of the camera
frame 2 is computed as

αd = (α2 −
π

2
) + ATAN2{X2, Z2} − π = −2.4553 [rad] = −140.68◦,

and thus q = (q1, q2, q3) = (1.4014, 0.0902,−2.4553) [m, m, rad]. The solution is illustrated in Fig. 3.

q1 = 1.4014
q2 = 0.0902

xb
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bP = (1.0146, −0.2966)

c2P   = (0.1287, 0.7840)

c1P   = (−0.6423, 1.0806)

Figure 3: A graphical illustration of the solution to the visual localization and pick-up problem.

2The long format of MATLAB has been used to display 15 digits after the decimal point for A and b. Only the
first 6 are shown here.
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Exercise 2

Figure 4 shows an assignment of D-H frames for the cylindrical robot that satisfies all requirements. The
corresponding D-H parameters are reported in Tab. 2.

O3 = P

O0 = O1

O2

x2

x3

z3

y3

y2

z2

x1

z1

z0

x0

y0

q2

q1

q3

Figure 4: D-H frame assignment for the 3-dof cylindrical robot.

i αi ai di θi

1 0 0 0 q1

2 π/2 0 q2 π/2

3 0 0 q3 0

Table 2: D-H parameters associated to the frames in Fig. 4.

The direct kinematics is computed using the elements of the D-H table as

0T 3(q) = 0A1(q1) 1A2(q2) 2A3(q3) =


−s1 0 c1 q3 c1

c1 0 s1 q3 s1

0 1 0 q2

0 0 0 1

 =

(
0R3(q1) 0p3(q)

0T 1

)
.

The inverse kinematics for 0p3(q) = pd = (pxd, pyd, pzd) is easily solved. From the third equation, one has
directly

q2 = pzd.

Squaring and summing the first two components yields the two opposite values

q3 = ±
√
p2xd + p2yd.

For each of this, provided that q3 6= 0, we obtain the other joint variable as

q1 = ATAN2

{
pyd
q3
,
pxd
q3

}
,

with two results that differ by π. Instead, when q3 = 0 one has a singular situation with q1 remaining
undefined (infinite solutions).
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In the presence of the given joint limits, Fig. 5 shows the primary workspace WS1 of the cylindrical robot.
Indeed, since the third joint q3 can never take negative values, for each p ∈ WS1 there is always one and
only one inverse solution (no singular configurations in WS1).

x0

z0

q2 q3

q1

H

DmaxDmin

Figure 5: The primary workspace of the 3-dof cylindrical robot under the given joint limits.

The requested Jacobian is obtained by analytical differentiation of p = 0p3(q):

J(q) =
∂p

∂q
=

 −q3 s1 0 c1

q3 c1 0 s1

0 1 0

. (9)

As expected, being detJ(q) = q3, the Jacobian is singular if and only if q3 = 0. In a generic singular
configuration qs = (q1, q2, 0), the Jacobian in (9) becomes

Js = J(qs) =

 0 0 c1

0 0 s1

0 1 0


and suitable bases for the two relevant subspaces are given by

N (Js) = span


 1

0

0

 , N (JT
s ) = span


 −s1c1

0

 . (10)

In the first case, the physical interpretation is that any velocity of the first joint will not move the end-
effector. Moreover, this property holds not only instantaneously but also over time, since a q̇ having only
q̇1 6= 0 will not let the robot escape from the singularity q3 = 0. As for the null space of the Jacobian
transpose in (10), when applying in the given direction a Cartesian force to the end-effector, no robot
motion will result and this does not need any active counteracting joint torque by the motors; such a
Cartesian force is statically balanced by the internal reaction forces of the rigid structure.

Exercise 3

Figure 6 shows the setup of the considered trajectory planning problem. The Cartesian points A and B are
on the boundary (respectively, the inner and the outer) of the robot workspace. Thus, the corresponding
initial and final robot configurations are singular and unique:3 qA = (π/2, π) and qB = (0, 0). Nonetheless,
the initial departure direction from A and the final approaching direction to B are feasible — these

3Joint angles are conventionally defined in the interval (−π, π], open on the left and closed on the right. Therefore,
we discarded the otherwise equivalent configuration qA having qA,2 = −π.
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directions belong to the range space of the robot Jacobian, respectively in qA and qB . Because of these
singularities, it is convenient to plan the trajectory in the joint space.

In addition, the problem requires a specific tangent direction to the joint motion in A and B, but also
zero velocity at start and end (a rest-to-rest motion). Therefore, it is convenient (here, even necessary!)
to split the trajectory planning problem in space (a joint-level path q(s), satisfying geometric boundary
conditions) and time (a suitable rest-to-rest timing law s(t)).

2

1 2 x0

y0

A   = (0, 1)

B   = (3, 0)

3

Figure 6: The considered trajectory planning problem for a 2R planar robot.

In fact, when attempting a direct solution in the time domain, we would simply use a rest-to-rest cubic
trajectory for both joints, which is defined for t ∈ [0, T ] (with T = 2 s) in the doubly normalized form

q(τ) = qA + (qB − qA)
(
3τ2 − 2τ3

)
, τ =

t

T
∈ [0, 1]. (11)

The resulting trajectory and velocity of the two joints are shown in Fig. 7. Joint velocities are always
negative because the two links rotate clockwise. It can be seen that both joint velocities satisfy also their
feasibility bounds |q̇1(t)| ≤ V1 = 2 and |q̇2(t)| ≤ V2 = 3 [rad/s].
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Figure 7: Rest-to-rest joint trajectory directly planned in time for T = 2 s, without caring about initial
and final tangents to the path: joint 1 (blue), joint 2 (red).

However, when mapping the obtained joint trajectory (11) in the Cartesian space by means of the direct
kinematics

p = f(q) =

(
l1 cos q1 + l2 cos (q1 + q2)

l1 sin q1 + l2 sin (q1 + q2)

)
, (12)

the corresponding motion of the end-effector follows the path shown in Fig. 8. As it can be seen, the
tangent to the Cartesian path at the initial point A is horizontal, but goes in the opposite direction4 to
the one desired, i.e., dp/ds|A = (−α, 0), for some α > 0.

4When the 2R planar robot is in a singular configuration, there is only one admissible direction of instantaneous
end-effector motion in the Cartesian space, characterized by a (scalable) vector in the null space of the Jacobian;
nonetheless, one may exit (or enter) the singularity moving along the positive or negative direction of this vector.
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Figure 8: The Cartesian trajectory corresponding to the joint trajectory in Fig. 7.

With the above in mind, we have to the required tangent vector to the joint-space path at qA and qB from
the given dp/ds|A and dp/ds|B . For this, the Jacobian of the 2R planar robot

J(q) =
∂f

∂q
=

(
−l1 sin q1 − l2 sin (q1 + q2) −l2 sin (q1 + q2)

l1 cos q1 + l2 cos (q1 + q2) l2 cos (q1 + q2)

)
(13)

is evaluated at qA and qB , yielding

J(qA) =

(
l2 − l1 l2

0 0

)
, J(qB) =

(
0 0

l1 + l2 l2

)
.

As anticipated, the two system of equations

J(qA)
dq

ds

∣∣∣∣
A

=
dp

ds

∣∣∣∣
A

=

(
5

0

)
, J(qB)

dq

ds

∣∣∣∣
B

=
dp

ds

∣∣∣∣
B

=

(
0

−1

)
(14)

are solvable, but have an infinity of possible solutions. It is convenient to choose solutions with minimum
norm, because in general the larger are the initial and final values along the tangent direction to the path,
the longer will be the resulting path. To obtain these minimum norm solutions, we use the pseudoinverse
of the Jacobian matrices, taking into account that one has a closed-form solution for this. In fact, the
following general result holds (modulo an exchange of rows):

J =

(
a b

0 0

)
⇒ J# =

1

a2 + b2

(
a 0

b 0

)
.

Plugging the numerical values in (14) leads to

q′A =
dq

ds

∣∣∣∣
A

= J#(qA)
dp

ds

∣∣∣∣
A

=

(
−2.5

2.5

)
, q′A =

dq

ds

∣∣∣∣
A

= J#(qA)
dp

ds

∣∣∣∣
A

=

(
−0.3

−0.1

)
,

where a prime (′) denotes differentiation with respect to the parameter s. Having a total of four boundary
conditions for each joint, we can choose again cubic polynomials in space to solve the interpolation problem.
In vector format, the joint path is defined as

q(s) = a0 + a1s+ a2s
2 + a3s

3, s ∈ [0, 1], (15)

with the ai ∈ R2, i = 0, . . . , 3, used to satisfy the boundary conditions

q(0) = qA, q(1) = qB , q′(0) = q′A, q′(1) = q′B . (16)

Imposing (16), the solution is found in closed form as

q(s) = qA + q′As+
(
3(qB − qA)− (2q′A + q′B)

)
s2 +

(
−2(qB − qA) + (q′A + q′B)

)
s3, (17)
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with first spatial derivative

q′(s) = q′A +
(
6(qB − qA)− 2(2q′A + q′B)

)
s+

(
−6(qB − qA) + 3(q′A + q′B)

)
s2. (18)

When evaluated with the given data, the general formulas (17) and (18) provide

q(s) =

(
1.5708

3.1416

)
+

(
−2.5

2.5

)
s+

(
0.5876

−14.3248

)
s2 +

(
0.3416

8.6832

)
s3 (19)

and

q′(s) =

(
−2.5

2.5

)
+

(
1.1752

−28.6496

)
s+

(
1.0248

26.0496

)
s2. (20)
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Figure 9: Components of the joint path q(s) and of its tangent vector q′(s): joint 1 (blue), joint 2 (red).
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Figure 10: Path of the robot end-effector and components of its tangent vector: p′x(s) (· · · ·), p′y(s) (−·−·).

Figure 9 shows the resulting path components in the joint space, as well as the components of its tangent
vector. On the other hand, Fig. 10 shows the Cartesian path traced from A to B by the robot end-effector
and the components of its tangent vector, as computed from the direct kinematics

p(s) =

(
px(s)

py(s)

)
=

(
l1 cos q1(s) + l2 cos (q1(s) + q2(s))

l1 sin q1(s) + l2 sin (q1(s) + q2(s))

)
= f(q(s))

and from

p′(s) =

(
p′x(s)

p′y(s)

)
= J(q(s))q′(s)

using the Jacobian in (13). As planned, the Cartesian path starts from A and arrives in B with the desired
directions of the tangent vectors. The path has a cusp at s = 0.2, where p′(s) = 0. Note that this occurs
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even if q′(0.2) 6= 0, because there the robot is again in a folded configuration (q2 = 0 at s = 0.2, see Fig. 9)
where the Jacobian is singular. Apparently, the vector q′(0.2) belongs to the null space of J(q(0.2)).

In order to obtain a rest-to-rest trajectory from A to B that traces the path q(s) from s = 0 to s = 1 in a
given time T , we need to define a suitable timing law s(t). Also in this case, the choice of a (scalar) cubic
polynomial, here in doubly normalized form,

s(τ) = 3τ2 − 2τ3, τ =
t

T
∈ [0, 1], (21)

satisfies the four boundary conditions s(0) = 0, s(1) = 1, and ṡ(0) = ṡ(1) = 0. Figure 11 shows the profiles
of the timing law s(t) and of its speed ṡ(t) = s′(τ)/T = 6τ(1− τ)/T for the motion time T = 2 s.
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Figure 11: Rest-to-rest timing law s(t) and its time derivative ṡ(t) for a motion time T = 2 s.

By combining the path geometry and the timing law, we obtain the desired joint trajectory qd(t) = q(s(t))
and its velocity q̇d(t) = q′(s(t))ṡ(t), as shown in Fig. 12.
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Figure 12: Joint trajectory qd(t) and velocity q̇d(t) for motion time T = 2 s: joint 1 (blue), joint 2 (red).

Turning to item b), consider now the presence of the joint velocities bounds |q̇1| ≤ V1 = 2 and |q̇2| ≤ V2 = 3.
From the velocity profiles in the right plots of Fig. 12, it is easy to see that both bounds are violated.
However, we need an analytic verification in order to proceed (in case one has no plots).

Consider first the geometric part of the trajectory (see again Fig. 9) and compute the first and second
spatial derivatives of the cubic path (15):

q′(s) = a1 + 2a2s+ 3a3s
2, q′′(s) = 2a2 + 3a3s. (22)

To find the maximum of q′(s) for each joint i, we impose

q′′i (s) = 0 ⇒ s∗i = −2a2i
3a3i

⇒ q′i(s
∗
i ) = a1i + 2a2is

∗
i + 3a3i(s

∗
i )2 = a1i −

a22i
3a3i

,
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or

q′i(s
∗
i ) = q′Ai −

(3(qBi − qAi)− (2q′Ai + q′Bi))
2

−2(qBi − qAi) + (q′Ai + q′Bi)
.

Being q′(s) quadratic in s, the maximum absolute value of its components in the closed interval [0, 1] is
either in s = s∗i , provided that s∗i ∈ [0, 1], or at one of the two boundaries s = 0 and s = 1. Using the
numerical data, the following simple lines of MATLAB code provide the answers:

s ast=-a2./(3*a3); % here, a2 and a3 are vectors
max dq=abs(a1-(a2.ˆ2)./(3*a3));
for i=1,2;

if s ast(i) <= 0 | s ast(i) >= 1
max dq(i)=max(abs(dq A(i)), abs(dq B(i)));

if abs(dq A(i)) >= abs(dq B(i));
s ast(i)=0;

else
s ast(i)=1;

end
end

end
s ast
max dq

We obtain
max
s∈[0,1]

∣∣q′1(s)
∣∣ = |q′1(0)| = 2.5, max

s∈[0,1]

∣∣q′2(s)
∣∣ = |q′2(0.5499)| = 5.3773,

in agreement with the left plots in Fig. 9.

Next, to verify the bounds on the joint velocity q̇(t) = q′(s(t))ṡ(t), the effect of the rest-to-rest quadratic
speed ṡ(t) of the timing law has to be included. The value ṡ(0) = 0 discards the relevance of the maximum
value q′1(0) for the first joint; for this joint, one should look for the worst combination of |q′1(s)| ≤ 2.5 in
the space interval s ∈ [0, 1] with ṡ(t) ≤ ṡmax = 1.5/T (= 0.75) in the time interval t ∈ [0, T ], and then
compare it with the bound V1. On the other hand, unfeasibility for the second joint can be confirmed in
a more direct way. In fact, the parameter value s∗2 = 0.5499 at which the maximum of |q′2(s)| occurs is
obtained5 at the normalized time τ∗ = 0.5333 in (21), thus for t∗ = τ∗T = 1.0666 s; the following value
violates the bound:

|q̇2(t∗)| = |q′2(s∗2)| · ṡ(t∗) = |q′2(0.5499)| · ṡ(1.0666) = 5.3773 · 0.7467 = 4.0150 > V2 = 3.

Therefore, the motion time T = 2 is certainly unfeasible and the trajectory has to be slowed down.

After this (rather tedious!) verification, a convenient feasible motion time T ∗ > T is found more directly
by uniform time scaling. The only approximation introduced with respect to the minimum possible value
of a feasible motion time is to attribute the maximum speed of the timing law

ṡmax = max
t∈[0,T ]

ṡ(t) = ṡ (T/2) =
s′(0.5)

T
=

1.5

T

to the maximum absolute values of q′1(s) and q′2(s). Having already all the necessary data, we obtain

T ∗ = 1.5 ·max

{
maxs∈[0,1] |q′1(s)|

V (1)
,

maxs∈[0,1] |q′2(s)|
V (2)

}
= 1.5 ·max

{
|q′1(0)|
V1

,
|q′2(s∗2)

V (2)

}
= 1.5 ·max

{
2.5

2
,

5.3773

3

}
= 2.6886 [s],

(23)

with ṡmax = 1.5/T ∗ = 0.5579. The final timing law and the joint trajectory are shown respectively in
Fig. 13 and Fig. 14, together with their time derivatives. While the velocity of joint 1 is well within its

5The cubic equation −2τ3 + 3τ2 − 0.5499 = 0 has just a single root τ∗ = 0.5333 in the interval [0, 1].
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bound, the maximum absolute velocity of joint 2 (which is the limiting factor) is q̇2,max = 2.9903 < 3 = V2

— less than 1% away from the theoretical optimum. Note finally that the Cartesian path of the end-effector
is still the one in Fig. 10, since time scaling does not change the geometry of the path.
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Figure 13: Rest-to-rest timing law s(t) and its time derivative ṡ(t) for a motion time T ∗ = 2.6886 s.
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Figure 14: Joint trajectory qd(t) and velocity q̇d(t) for motion time T ∗ = 2.688 s: joint 1 (blue), joint 2 (red).

Exercise 4

From Tab. 1, one can compute the D-H homogeneous transformation matrices of the 3R spatial robot, and
from these the direct kinematics for the position of the end-effector. One has

p =

 c1(a2c2 + a3c23)

s1(a2c2 + a3c23)

d1 + a2s2 + a3s23

 = f(q), (24)

with the corresponding Jacobian

J(q) =
∂f

∂q
=

 −s1(a2c2 + a3c23) −c1(a2s2 + a3s23) −a3c1s23
c1(a2c2 + a3c23) −s1(a2s2 + a3s23) −a3s1s23

0 a2c2 + a3c23 a3c23

 . (25)

The determinant of J(q) is
detJ(q) = −a2a3s3(a2c2 + a3c23).

Setting d1 = 0.7 and a2 = a3 = 0.5 [m], the primary workspace of this robot is a full sphere of radius
R = a2 + a3 = 1 [m], centered at C = (0, 0, d1) = (0, 0, 0.7) [m]. Singularities occur on the boundary of
the sphere (where s3 = 0) and along the axis of joint 1 (where a2c2 + a3c23 = 0, or px = py = 0).
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The parametric description of the desired helical path (traced for three full turns) is

pd(s) =

 r cos 2πs

r sin 2πs

h0 + hs

, s ∈ [0, 3], (26)

with r = 0.5, h0 = 0.2, and h = 0.4 [m]. The lowest point on the path is pd(0) = (r, 0, h0) = (0.5, 0, 0.2) [m],
at a distance ‖pd(0)− C‖ = 0.7071 m from the sphere center C: thus, this point is inside the workspace.
Similarly, the highest point pd(3) = (r, 0, h0 + 3h) = (0.5, 0, 1.4) is at a distance ‖pd(3)− C‖ = 0.8602 m
from the center C of the sphere, and thus also this point belong to the reachable workspace. Moreover,
being r = 0.5 < 1 = R, also the rest of the helical path is inside the robot workspace and no singularities
are encountered.

At the initial time t = 0, the robot configuration and the actual end-effector position computed from (24)
are, respectively,

q(0) =

 0
π/6
−π/2

 [rad] ⇒ p(0) = f(q(0)) =

 0.6830
0

0.5170

 [m],

while the desired initial position on the path (26) is

p(0) =

 0.5
0

0.2

 [m].

We have thus an initial error

e(0) = pd(0)− p(0) =

 −0.1830
0

−0.3170

 [m]

that should be counteracted by the feedback action in the control law.

On the other hand, for a perfect tracking of the desired trajectory, the required nominal velocity command
q̇d(t) (known as feedforward) is obtained by differentiating (26) with respect to the parameter s to get

p′d(s) =

 −2πr sin 2πs

2πr cos 2πs

h

, (27)

setting s = sd(t) = vt, and using then ṗd(t) = p′d(s(t)) ṡ(t) = p′d(vt) v in

q̇d(t) = J−1(qd(t)) ṗd(t), with qd(t) = qd(0) +

∫ t

0

q̇d(τ)dτ,

provided that the robot starts from an inverse kinematics solution qd(0) = f−1(pd(0)).

Since the feedback part of the control law has to react on the tracking errors expressed in the Frenet
frame (t,n, b) associated to the desired position along the path, we need to define such frame. From (27),
dropping explicit dependence of terms on s, we obtain the tangent axis t of the Frenet frame as

t =
p′d
‖p′d‖

=
1√

(2πr)2 + h2

 −2πr sin 2πs

2πr cos 2πs

h

 . (28)

Differentiating t with respect to the parameter s gives

t′ =
p′′d
‖p′d‖

= − 1√
(2πr)2 + h2

 4π2r cos 2πs

4π2r sin 2πs

0

 , with
∥∥t′∥∥ =

‖p′′d‖
‖p′d‖

=
4π2r√

(2πr)2 + h2
,
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so that the normal axis n of the Frenet frame is

n =
t′

‖t′‖ =
p′′d
‖p′′d‖

= −

 cos 2πs

sin 2πs

0

 . (29)

Finally, the third axis b of the Frenet frame is

b = t× n =
p′d × p′′d
‖p′d‖ · ‖p′′d‖

=
1√

(2πr)2 + h2

 h sin 2πs

−h cos 2πs

2πr

 . (30)

Note that the Jacobian matrix and all Cartesian vectors introduced so far were implicitly defined in the
base frame, but without the use of a leading superscript 0. For better clarity, from now we will use where
appropriate such superscripts for the reference frame of definition.

From (28)–(30), the rotation matrix that characterizes the orientation of the Frenet frame along the desired
path with respect to the base frame of the robot (the 0-th frame) is

0RF (s) =

(
t(s) n(s) b(s)

)
, s ∈ [0, 3].

Let the position error with respect to the desired trajectory be expressed in the base frame and in the
Frenet frame as

0e =

 ex
ey
ez

 = 0pd −
0p = 0pd −

0f(q), Fe =

 et
en
eb

 = 0RT
F

0e.

The dynamics of the position error in the Frenet frame is derived as

F ė = 0RT
F

0ė + 0Ṙ
T
F

0e = 0RT
F

0ė +
(
S(0ω)0RF

)T 0e = 0RT
F

(
0ė + ST (0ω) 0e

)
= 0RT

F

(
0ṗd − 0ṗ− S(0ω) 0e

)
= 0RT

F

(
0ṗd − 0J(q)q̇ − S(0ω) 0RT

F
Fe
)
,

(31)

where S(·) is the usual skew-symmetric matrix built with the components of its argument vector and 0ω
is the angular velocity of the Frenet frame moving along the path, which is extracted from

S(0ω) = 0ṘF
0RF =

 0 −2π v 0
2π v 0 0

0 0 0

 ⇒ 0ω =

 0
0

2π v

 .

Observing eq. (31) suggests the design of the following kinematic control law

q̇ = 0J−1(q)
(
0ṗd + S(0ω) 0e− 0RFKF

Fe
)

= 0J−1(q)
(
· · · − 0RFKF

0RT
F

0e
)
, (32)

with a suitable diagonal matrix KF > 0. The law (32) cancels all nonlinearities and couplings in the
dynamics of the scalar components et, en and eb of the error vector Fe in the Frenet frame, yielding

F ė = −KF
Fe, with KF = diag {2, 5, 5} > 0,

so that we obtain as requested the decoupled dynamics

ėt = −2et, ėn = −5en, ėb = −5eb,

namely with exponentially converging transients.6

6The differential equation ė = −ke with k > 0 has the solution e(t) = e(0) exp(−kt) converging to zero.
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Finally, we evaluate numerically the control law (32) at t = 0 with the data of the problem and starting
from q(0) = (0, π/6,−π/2) [rad]. The individual terms (all expressed implicitly in the base frame) are:

J(q(0)) =

 0 0.1830 0.4330

0.6830 0 0

0 0.6830 0.2500

 = J0 ⇒ J−1
0 =

 0 1.4641 0

−1.0000 0 1.7321

2.7321 0 −0.7321

,

ṗd(0) = p′d(0) ṡ(0) =

 0
2πr
h

 v =

 0
3.1416

0.4

, e(0) =

 −0.1830
0

−0.3170

 , ω(0) =

 0
0

6.2832

,
S(0ω(0)) 0e(0) =

 0
−1.1499

0

 , 0RF (0) =

 0 −1 0

0.9920 0 −0.1263

0.1263 0 0.99200

,
and the control gain matrix

0RFKF
0RT

F =

 5 0 0

0 2.0479 −0.3759

0 −0.3759 4.9521

 .

Thus, the initial value of the control command (32) is

q̇(0) =

 2.7416
2.4967
1.0580

 [rad/s].

∗ ∗ ∗ ∗ ∗
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