
Robotics I
July 8, 2022

Exercise 1

Assume that the time-varying orientation of a robot end-effector is expressed by the triplet of
angles φ(t) = (α(t), β(t), γ(t)) defined around the sequence of fixed axes XZY (an RPY-type
representation). Determine the relationship between φ̇ = (α̇, β̇, γ̇) and the angular velocity ω ∈ R3

of the end-effector and find the representation singularities of this mapping. In one such singularity,
determine all vectors ω that cannot be represented by a choice of φ̇ = (α̇, β̇, γ̇) and, conversely,
find all non-trivial values for φ̇ = (α̇, β̇, γ̇) that are associated to ω = 0.

Exercise 2

Figure 1 shows a spatial 3R robot with its Denavit-Hartenberg (D-H) frames and the definition
of joint variables and kinematic parameters. The direct kinematics for the end-effector position
(point O3) of this robot is

p =

 px

py

pz

 =

 L cos q1 +N cos(q1 + q2) cos q3

L sin q1 +N sin(q1 + q2) cos q3

M +N sin q3

 = f(q). (1)

Provide the closed-form expression of all inverse kinematics solutions q = f−1(pd) that realize a
desired end-effector position pd ∈WS1. Apply your formulas with the following numerical data

L = M = N = 0.5 [m], pd =
(

0.3 −0.3 0.7
)T

[m],

and check at the end the correctness of the obtained numerical solutions by using the direct
kinematics (1).
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Figure 1: A spatial 3R robot with its D-H frames.

Exercise 3

Using the same numerical data of Exercise 2, solve the inverse kinematics problem with an iterative
scheme based on Newton method. Start with the initial guess q{0} = (−π/4, π/4, π/4) [rad] and
list the values q{k}, k = 1, 2, . . . , of the first few iterations, until the error e{k} = pd − f(q{k}) is
such that

∥∥e{k}∥∥ ≤ ε = 10−3 [m] (i.e., small enough, meaning that convergence has been achieved).
How would you search for another inverse kinematics solution using this iterative method?

1



Exercise 4

Consider a trajectory planning problem for the 3R robot in Fig. 1. The robot should move from the
start configuration qs = (−π/4, π/4, π/4) [rad] to the goal configuration qg = (0, 0, π/4) [rad] in a
time T = 2 s, with continuity up to the acceleration over the whole interval t ∈ [0, T ]. The initial
joint velocity is chosen so that the end-effector velocity starts with ṗ(0) = (1,−1, 0) [m/s], while
the final velocity should be zero. Provide the values of the coefficients of the doubly normalized
joint trajectories satisfying all the given conditions. Sketch the plots of joint position, velocity and
acceleration.

[240 minutes, open books]
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Solution

July 8, 2022

Exercise 1

When using the sequence of RPY-type angles φ = (α, β, γ) defined around the fixed axes XZY,
the orientation of the robot end-effector is given by the rotation matrix

RXZY (α, β, γ) = RY (γ)RZ(β)RX(α)

=

 cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ


 cosβ − sinβ 0

sinβ cosβ 0

0 0 1


 1 0 0

0 cosα − sinα

0 sinα cosα


=

 cosβ cos γ sinα sin γ − cosα sinβ cos γ cosα sin γ + sinα sinβ cos γ

sinβ cosα cosβ − sinα cosβ

− cosβ sin γ sinα cos γ + cosα sinβ sin γ cosα cos γ − sinα sinβ sin γ

 .

Note that this is the same orientation obtained by using the sequence of Euler angles (γ, β, α)
defined around the moving axes YZ′X′′.

The angular velocity ω of the body can be obtained from the formula S(ω) = ṘXZY (φ)RT
XZY (φ),

where S is a skew-symmetric matrix. With the shorthand notation for trigonometric functions,
taking the time derivative of RXZY and post-multiplying by the transpose of the same rotation
matrix yields

ṘXZY (φ) ·RT
XZY (φ)

=


−sβcγ β̇ − cαsβ γ̇

(cαsγ + sαsβcγ)α̇− cαcβcγ β̇

+(sαcγ + cαsβsγ)γ̇

(cαsβcγ − sαsγ)α̇+ sαcβcγ β̇

+(cαcγ − sαsβsγ)γ̇

cβ β̇ −sαcβα̇− cαsβ β̇ −cαcβα̇+ sαsβ β̇

sβsγ β̇ − cβcγ γ̇
(cαcγ − sαsβsγ)α̇+ cαcβsγ β̇

+(cαsβcγ − sαsγ)γ̇

−(sαcγ + cαsβsγ)α̇− sαcβsγ β̇

− (sαsβcγ + cαsγ)γ̇



·

 cβcγ sβ −cβsγ
sαsγ − cαsβcγ cαcβ sαcγ + cαsβsγ

cαsγ + sαsβcγ −sαcβ cαcβ − sαsβsγ



=

 0 cβsγ α̇− cγ β̇ sβ α̇+ γ̇

−cβsγ α̇+ cγ β̇ 0 −cβcγ α̇− sγ β̇
−sβ α̇− γ̇ cβcγ α̇+ sγ β̇ 0

 =

 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 = S(ω).

(2)

The above derivation is greatly simplified by using symbolic computation in MATLAB. The linear
mapping ω = T (φ)φ̇ is then extracted from the elements of matrix S in (2) as

ω =

 ωx

ωy

ωz

 =

 cβcγ α̇+ sγ β̇

sβ α̇+ γ̇

−cβsγ α̇+ cγ β̇

 =

 cosβ cos γ sin γ 0

sinβ 0 1

− cosβ sin γ cos γ 0


 α̇

β̇

γ̇

 = T (φ)φ̇.

The singularities of this mapping occur when detT (φ) = − cosβ = 0, i.e., for β = ±π/2.
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In alternative to the above procedure, and perhaps more quickly, one can build the matrix T (φ)
by noting the individual contributions to the angular velocity ω in the Euler interpretation of the
rotation matrix RXZY : γ̇ is a rotation around the initial (fixed) Y -axis; β̇ is a rotation around the
Z ′-axis, i.e., the Z-axis after the rotation RY (γ); and α̇ is a rotation around the X ′′-axis, i.e., the
X-axis after the first two rotations RY (γ)RZ(β). Thus, we have

ω = ωγ̇,Y + ωβ̇,Z′ + ωα̇,X′′ =

 0

1

0

 γ̇ +RY (γ)

 0

0

1

 β̇ +RY (γ)RZ(β)

 1

0

0

 α̇

=

 cosβ cos γ

sinβ

− cosβ sin γ

 α̇+

 sin γ

0

cos γ

 β̇ +

 0

1

0

 γ̇ = T (φ)φ̇,

where, being each contribution to ω a vector itself, the order in the sum is irrelevant.

Choose now, for instance, β = π/2. Thus

T̄ (γ) = T (φ)|β=π/2 =

 0 sin γ 0

1 0 1

0 cos γ 0

 , rank T̄ (γ) = 2.

In this representation singularity (for any value of α and γ), one has that angular velocities ω of
the form

ω = ρ

 cos γ

0

− sin γ

 6∈ R (T̄ (γ)
)
, ∀ρ 6= 0

are not realizable by any possible choice of φ̇. Moreover, time derivatives of φ of the form

φ̇ = σ

 1

0

−1

 ∈ N (T̄ (γ)
)
, ∀σ ∈ R

generate zero angular velocity.

Exercise 2

The problem has four inverse kinematics solutions, provided the desired end-effector position pd is
inside the primary (or, reachable) workspace WS1 of the robot1. For this to happen, the following
inequalities should necessarily hold for the components pdx, pdy and pdz of the desired position pd
of the end effector:

|L−N | ≤
√
p2dx + p2dy + (pdz −M)2 ≤ L+N, M −N ≤ pdz ≤M +N, (3)

with strict inequalities enforced for the interior of WS1. For the given data, these inequalities are
satisfied being, respectively,

0 < 0.4690 < 1, 0 < 0.7 < 1.

1This workspace is in fact a solid torus, see Fig. 3 in the solution of Exercise #1 of the exam of June 10, 2022.
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Even if this check is not done (or even known!) in advance, these inequalities will appear as
necessary conditions to be satisfied in order to proceed with the computation of analytic inverse
kinematics solutions.

From the third equation in the direct kinematics (1), one has

M +N sin q3 = pdz ⇒ s3 =
pdz −M

N
∈ [−1, 1] —and also c3 = ±

√
1− s23 ∈ [−1, 1],

with the admissible interval for the trigonometric function s3 leading to the second pair of inequal-
ities in (3). The two solutions for q3 are then

q
[+]
3 = atan2

{
s3,+

√
1− s23

}
, q

[−]
3 = atan2

{
s3,−

√
1− s23

}
. (4)

Each of these will branch in two solution pairs for (q1, q2). In fact, the first two equations in (1)
can be interpreted as the direct kinematics of a planar 2R arm with link lengths

l1 = L, l2 = N cos q
[+]
3 or l2 = N cos q

[−]
3 . (5)

For each resulting value of l2, one can use the solution for the 2R arm, which is obtained though
the standard formulas. First, evaluate

c2 =
p2dx + p2dy − (l21 + l22)

2l1l2
∈ [−1, 1], s2 = ±

√
1− c22.

It can be shown that the admissible interval for the trigonometric function c2 leads to the necessity
of the first pair of inequalities in (3). For each value of l2 in (5), the two solutions for q2 are then

q
[+]
2 = atan2

{√
1− c22, c2

}
, q

[−]
2 = atan2

{
−
√

1− c22, c2
}
. (6)

By the property of the atan2 function, it follows that q
[−]
2 = −q[+]

2 . Finally, for each solution pair
(q2, q3), a 2 × 2 linear system of equations Ax = b in the unknowns x = (s1, c1) can be set up,
whose solution is found provided the determinant of the system matrix

detA = l21 + l22 + 2l1l2c2 = L2 +N2 cos2 q3 + 2LN cos q2 cos q3 6= 0.

In this case, we have

s1 =
pdy (l1 + l2c2)− pdxl2s2)

detA
, c1 =

pdx (l1 + l2c2) + pdyl2s2)

detA
,

and the associated (unique) solution for q1 is

q1 = atan2 {s1, c1} . (7)

Note that in this case the determinant cannot be eliminated from the denominator of the two
arguments of this atan2 function; in fact, when the determinant is different from zero, its sign may
change depending on the particular solution for the pair (q2, q3) inserted in the linear system.

Summarizing, we have found the following four inverse kinematics solutions (all distinct in the
regular case): (

q
[+,+,+]
1 q

[+,+]
2 q

[+]
3

)T
,
(
q
[+,−,+]
1 q

[+.−]
2 q

[+]
3

)T
,(

q
[−,+,−]
1 q

[−.+]
2 q

[−]
3

)T
,
(
q
[−,−,−]
1 q

[−.+]
2 q

[−]
3

)T
.
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Figure 2: The four inverse kinematics solutions for the spatial 3R robot (top and side views).
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Plugging the numerical data in eqs. (4)–(7), we obtain (in [rad])

q[I] =
(
−1.8110 2.2281 0.4115

)T
, q[II] =

(
0.2402 −2.2281 0.4115

)T
,

q[III] =
(

0.2402 0.9135 2.7301
)T
, q[IV ] =

(
−1.8110 −0.9135 2.7301

)T
,

or (in degrees)

q[I] =
(
−103.7◦ 127.66◦ 23.58◦

)T
, q[II] =

(
13.77◦ −127.66◦ 23.58◦

)T
,

q[III] =
(

13.77◦ 52.34◦ 156.42◦
)T
, q[IV ] =

(
−103.77◦ −52.34◦ 156.42◦

)T
,

Indeed, evaluation of (1) with these solutions returns always the desired pd (it is worth to do this
check!). For each of these four inverse kinematics solutions, Figure 2 sketches two views of the
resulting configuration of the spatial 3R robot.

Exercise 3

One should set up a simple code that implements the following Newton iteration

q{k} = q{k−1} + J−1(q{k−1})
(
pd − f(q{k−1})

)
, k = 1, 2, . . . , (8)

starting from an initial guess q{0}, until convergence is achieved or some other stopping criterion
is reached. To obtain a reliable code, it is important to include a limit on the maximum number
of iterations, signifying that no convergence is being achieved, and a warning (with exit) when a
singularity of the Jacobian is being met.
For the implementation of (8), we need the direct kinematics function f(q) in (1) and the associated
(analytic) Jacobian

J(q) =
∂f(q)

∂q
=

 −Ls1 −Ns12c3 −Ns12c3 −Nc12s3
Lc1 +Nc12c3 Nc12c3 −Ns12s3

0 0 Nc3

 , (9)

with detJ(q) = LN2s2c
2
3. As long as this determinant is non-zero (or is far enough from it),

iteration (8) is well defined. Nonetheless, convergence can be guaranteed only when starting
sufficiently close to a solution (although the convergence rate is then the fastest possible, namely
quadratic).
In the present case, for L = M = N = 0.5 [m] and pd = (0.3,−0.3, 0.7) [m], when starting from
q{0} = (−π/4, π/4, π/4) [rad], the method converges within the error tolerance ε = 10−3 [m] in
k∗ = 5 iteration, generating

q{0} =

 −0.7854

0.7854

0.7854

 → q{1} =

 −2.3712

4.1084

0.3511

 → q{2} =

 −1.1056

2.2074

0.4108

 →

→ q{3} =

 −1.8344

2.4611

0.4115

 → q{4} =

 −1.8426

2.2346

0.4115

 → q{5} =

 −1.8110

2.2286

0.4115

 ,

with a final error norm
∥∥e{5}∥∥ = 1.97 · 10−4 < ε = 10−3. The evolution of this norm is shown in

Fig. 3. Note that the method initially increases the norm, but then starts converging fast when
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Figure 3: Evolution of the error norm
∥∥e{k}∥∥ during the iterations of Newton method.

closer to a solution. In particular, in the last two iterations, the error norm decreases by one order,
and eventually by two orders of magnitude: from 0.104391 at k = 3, to 0.012584 at k = 4, stopping
with 0.000197 < ε = 10−3 at k∗ = 5.
The obtained solution corresponds to the analytic solution q[I] found in Exercise #2. To obtain
a more accurate numeric value, one should set a tighter error tolerance: with ε = 10−4, Newton
method runs for two more iterations and stops at k∗ = 7, returning q[I] with the same four-digit
accuracy on all joint variables.

Finally, in order to obtain another inverse kinematics solution, the method has to be restarted
from another initial guess, hopefully closer to a different solution. For instance, when starting with
q{0} = (π/10, π/3, 3π/4) [rad], the method will converge to q[III] in k∗ = 3 iterations (with the
original tolerance ε = 10−3) or in k∗ = 6 iterations (with the tighter tolerance ε = 10−4).

Exercise 4

The stated trajectory planning problem is solved by using a single quintic polynomial for each
joint, with suitable boundary conditions. For the generic joint i, with i = 1, 2, 3, we consider the
desired smooth trajectory written as

qi(t) = qs,i + ∆qi · qn,i(τ), τ =
t

T
, (10)

with ∆qi = qg,i − qs,i and the doubly normalized quintic polynomial

qn,i(τ) = a0 + a1τ + a2τ
2 + a3τ

3 + a4τ
4 + a5τ

5, τ ∈ [0, 1],

ranging in values between 0 and 1. The first and second time derivatives of (10) are

q̇i(t) =
∆qi
T
· q′n,i(τ) =

∆qi
T
·
(
a1 + 2a2τ + 3a3τ

2 + 4a4τ
3 + 5a5τ

4
)

(11)

and

q̈i(t) =
∆qi
T 2
· q′′n,i(τ) =

∆qi
T 2
·
(
2a2 + 6a3τ + 12a4τ

2 + 20a5τ
3
)
, (12)

where ′ is used to denote a derivative with respect to τ . The boundary conditions to be imposed
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are

qi(0) = qs,i ⇒ qn,i(0) = 0 ⇒ a0 = 0;

qi(T ) = qg,i ⇒ qn,i(1) = 1 ⇒ a0 + a1 + a2 + a3 + a4 + a5 = 1;

q̇i(0) = q̇s,i 6= 0 ⇒ q′n,i(0) = q̇s,i
T

∆qi
⇒ a1 = q̇s,i

T

∆qi
;

q̇i(T ) = 0 ⇒ q′n,i(0) = 0 ⇒ a1 + 2a2 + 3a3 + 4a4 + 5a5 = 0;

q̈i(0) = 0 ⇒ q′′n,i(0) = 0 ⇒ a2 = 0;

q̈i(T ) = 0 ⇒ q′′n,i(1) = 0 ⇒ 2a2 + 6a3 + 12a4 + 20a5 = 0,

(13)

where the scalar component q̇s,i of the initial velocity q̇s at the start configuration is determined
by inversion of the differential kinematics

q̇s = q̇(0) = J−1(qs)ṗ(0).

Being

a0 = a2 = 0, a1 = q̇s,i
T

∆qi
,

we need to solve the remaining three linear equations in (13) as 1 1 1

3 4 5

6 12 20


 a3

a4

a5

 =

 1− q̇s,i T/∆qi
− q̇s,i T/∆qi

0


or  a3

a4

a5

 =

 10 −4 0.5

−15 7 −1

6 −3 0.5


 1− q̇s,i T/∆qi
− q̇s,i T/∆qi

0

 =

 10− 6q̇s,i T/∆qi

−15 + 8q̇s,i T/∆qi

6− 3q̇s,i T/∆qi

 .

Next, we compute the required data for the problem at hand. For the initial joint velocity at
qs = (−π/4, π/4, π/4), we obtain

q̇s = J−1(qs) ṗ(0) =

 0.3536 0 −0.3536

0.7071 0.3536 0

0 0 0.3536


−1 1

−1

0

 =

 2.8284

−8.4853

0

 =

 q̇s,1

q̇s,2

q̇s,3

 .

Moreover,

T = 2, qs =

 −0.7854

0.7854

0.7854

 =

 qs,1

qs,2

qs,3

 , ∆q = qg − qs =

 0.7854

−0.7854

0

 =

 ∆q1

∆q2

∆q3

 .

Evaluating then the coefficients ai’s in the solution, we obtain the following quintic joint trajecto-
ries, written using the doubly normalized polynomials qn,1(τ) and qn,2(τ) ((qn3(τ) is also present,
but actually irrelevant):

q1(t) = −0.7854 + 0.7854
(
7.2025 τ − 33.2152 τ3 + 42.6202 τ4 − 15.6076 τ5

)
q2(t) = 0.7854− 0.7854

(
21.6076 τ − 119.6455 τ3 + 157.8607 τ4 − 58.8228 τ5

)
q3(t) = 0.7854 + 0

(
10 τ3 − 15 τ4 + 6 τ5

)
= 0.7854 (no motion needed for this joint!)

(14)

The plots of the joint trajectories, with their velocity and acceleration as given by (11) and (12),
are reported in Fig. 4.
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Figure 4: Solution of the trajectory planning problem: joint position (top), velocity (center) and
acceleration (bottom).
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