
Robotics 1

January 11, 2022

Exercise #1

Consider the planar RPR robot with L-shaped forearm in Fig. 1, shown with the base reference
frame RF0 and the end-effector frame RFe attached to the gripper.

i. Assign a set of Denavit-Hartenberg (D-H) frames to the robot. The origin of the last D-H
frame should be at the point P .

ii. Fill in the associated table of parameters.

iii. Draw the robot in the configuration q = 0.

iv. Give the expression of the position p of point P and of the orientation 0R3 of the D-H frame
RF3 when the robot is in the configuration q = 0.

v. Determine the constant homogeneous matrix 3T e.

vi. Give the symbolic expression of all triples (α1, α2, α3) of XYX Euler angles that realize the
rotation matrix 3Re. Provide the numerical values of these Euler angles when L = M = 1.
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Figure 1: A RPR robot with L-shaped forearm. A force/torque sensor is mounted at the gripper.

Exercise #2

Let a task vector associated to the RPR robot of Fig. 1 be defined as

r =

 px

py

φ

 = t(q) ∈ R3,

with the Cartesian coordinates (px, py) of the point P in the plane and the orientation angle φ of
the D-H axis x3 w.r.t. the base axis x0.

i. Determine the closed-form expression of the inverse kinematics for a given rd =
(
pxd pyd φd

)T
.

ii. Provide the numerical values of all inverse solutions for the following data: K = L = M = 1 [m];
pxd = 2, pyd = 1 [m]; φ = −π/6 [rad].
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Exercise #3

i. Compute the 3×3 task Jacobian J t(q) associated to the task vector function r = t(q) defined
in Exercise #2.

ii. Find all the singularities of the matrix J t(q).

iii. In a singular configuration qs, determine a basis for the null space N{J t(qs)} and a basis for
the range space R{J t(qs)}. Both bases should be globally defined, namely they should have a
constant dimension for all possible q such that J t(q) is singular.

iv. Set now K = L = M = 1 [m]. Find a task velocity ṙf ∈ R{J t(qs)} and an associated joint
velocity q̇f ∈ R3 realizing it, i.e., such that J t(qs) q̇f = ṙf . Is this q̇f unique?

Exercise #4

Make again reference to the RPR robot shown in Fig. 1. The robot has a force/torque sensor
mounted at the gripper which measures in the reference frame RFe the two linear components efy
and efz of the force ef ∈ R3 and the angular component emx of the torque em ∈ R3. The other

force/torque components are zero. Define the gripper wrench as eF =
(
efT emT

)T ∈ R6, when
expressed in frame RFe. Assume again K = L = M = 1 [m] and that the robot is in the configu-
ration q̄ = (π/2,−1, 0) [rad,m,rad], with the gripper in contact with an external environment.

i. If the sensor measures

efy = −1 N, efz = −2 N, emx = 2 Nm,

what is the value of the gripper wrench F =
(
fT mT

)T ∈ R6, as expressed in the absolute
frame RF0?

ii. Compute the vector τ ∈ R3 of forces/torques at the three joints that balances in static condi-
tions the gripper wrench measured by the sensor.

Hint: It is convenient here to work with the complete geometric Jacobian of the robot.

Exercise #5

Consider the elliptic path shown in Fig. 2, with major (horizontal) semi-axis of length a > 0 and
minor (vertical) semi-axis of length b < a.
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Figure 2: An elliptic path to be parametrized by pd(s).

i. Choose a smooth parametrization pd(s) ∈ R2, with s ∈ [0, 1], of the full elliptic path starting
at P0 = (0, b).

ii. Provide a timing law s = s(t) that traces the path counterclockwise with a constant speed
v > 0 on the path. What will be the motion time T for completing the full ellipse?
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iii. The following bounds on the norms of the velocity and of the acceleration should be satisfied
along the resulting trajectory pd(t) ∈ R2, for all t ∈ [0, T ]:

‖ṗd(t)‖ ≤ Vmax, ‖p̈d(t)‖ ≤ Amax, with Vmax > 0 and Amax > 0.

Accordingly, what will be the maximum feasible speed vf for this motion?

iv. Provide the numerical values of the maximum feasible speed vf and of the resulting motion
time Tf for the following data: a = 1, b = 0.3 [m]; Vmax = 3 [m/s]; Amax = 6 [m/s2].

Exercise #6

A planar 2R robot has its base placed at the center of the ellipse of Fig. 2, as shown in Fig. 3.
The robot has the first link of length a and the second link of length b < a, the same values of
the semi-axes of the ellipse. The position p = f(q) of its end effector (point P ) should follow the
trajectory pd(t) defined in a parametric way in Exercise #5, with a path speed v = 0.4 [s−1].
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Figure 3: The placement of the 2R robot with respect to the ellipse of Fig. 2.

i. What are the conditions on a > b > 0 in order for the robot to be able to reach all points of
the desired trajectory pd(t) while avoiding any robot singularity? Choose numerical values for
a and for b < a that satisfy these conditions and keep these values for the rest of this exercise.

ii. Choose an initial robot configuration qn(0) so as to match the desired trajectory pd(t) at time
t = 0, i.e., with initial Cartesian error e(0) = pd(0)− f(qn(0)) = 0.

iii. What nominal joint velocity command q̇ = q̇n(t) should be given for t ∈ [0, T ] in order to
execute perfectly the entire trajectory pd(t) with matched initial conditions?

iv. Choose another initial configuration q(0) such that e(0) 6= 0, but with the y-component of
the error ey(0) = 0. Design a joint velocity control law q̇ = q̇c(q, t), with a feedback term
depending on the current configuration q, that will let ex(t) converge to zero with exponential
decaying rate r = 5 and keep ey(t) = 0 for all t ≥ 0.

v. With the available data, compute the numerical values of the initial nominal joint velocity
command q̇n (0) ∈ R2 and of the initial joint velocity control law q̇c(q(0), 0) ∈ R2.

Exercise #7

The joint of the final flange of a 6R robot has a range of 700◦. The driving motor is connected to
the joint through a transmission with reduction ratio nr = 30 and mounts a multi-turn absolute
encoder. If we want to count the motor revolutions needed to cover the entire joint range and obtain
an angular resolution of the final flange of less than 0.02◦, how many bits should the multi-turn
absolute encoder have at least?

[270 minutes (4.5 hours); open books]
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Solution
January 11, 2022

Exercise #1

A possible assignment of Denavit-Hartenberg (D-H) frames is shown in Fig. 4. The associated D-H
parameters are given in Table 1. The signs of the qi’s correspond to the robot configuration shown
in the figure. Note that the L-shaped form of the forearm is equivalent from a kinematic point of
view to a straight link of length D =

√
L2 +M2 connecting the origin O2 of frame RF2 with the

point P , where the origin O3 of the last D-H frame had to be placed. Accordingly, x3 is chosen
along the direction of this equivalent link.
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Figure 4: Assignment of D-H frames for the planar RPR robot.

i αi ai di θi

1 −π/2 K 0 q1 > 0

2 π/2 0 q2 > 0 0

3 0 D =
√
L2 +M2 0 q3 < 0

Table 1: Table of D-H parameters for the planar RPR robot.

Figure 5 shows the robot in the configuration q = 0. In this configuration, the position of the
point P = O3 and the orientation of the D-H frame RF3, as computed from the direct kinematics
using the D-H homogeneous transformation matrices i−1Ai(qi), are

p =

 K +D

0

0

 , 0R3 =

 1 0 0

0 1 0

0 0 1

 .
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Figure 5: The RPR robot in the configuration q = 0.

The constant homogeneous transformation matrix 3T e that aligns the last D-H frame RF3 with
the end-effector (sensor) frame RFe is given by

3T e =

( 3Re 0

0T 1

)
, with 3Re =

 0 L/D M/D

0 M/D −L/D
−1 0 0

 =

 0 − sinψ cosψ

0 cosψ sinψ

−1 0 0

 , (1)

where ψ = − arctan (L/M) < 0.

The XYX Euler angles (α1, α2, α3) define the rotation matrix

RXYX = RX(α1)RY (α2)RX(α3)

=

 cosα2 sinα2 sinα3 sinα2 cosα3

sinα1 sinα2 cosα1 cosα3 − sinα1 cosα2 sinα3 − cosα1 sinα3 − sinα1 cosα2 cosα3

− cosα1 sinα2 sinα1 cosα3 + cosα1 cosα2 sinα3 cosα1 cosα2 cosα3 − sinα1 sinα3

.
We need to solve the inverse orientation problem for this minimal representation of Euler angles:

RXYX (α1, α2, α3) = 3Re(ψ).

Since the two elements in the first and second row of the first column of 3Re are not simultaneously
zero, two regular solutions for α = (α1, α2, α3) are obtained in symbolic form as:

α+ =


0
π

2
−ψ

 , α− =


π

−π
2

−ψ + π

 .

With the numerical values L = M = 1 [m], we have ψ = −45◦ = −0.7854 [rad] and thus

α+ =

 0

1.5708

−0.7854

 , α− =

 3.1416

−1.5708

2.3562

 [rad].
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Exercise #2

The requested task kinematics for the RPR robot in Fig. 1 is easily obtained as1

r =

 px

py

φ

 =

 K cos q1 − q2 sin q1 +D cos (q1 + q3)

K sin q1 + q2 cos q1 +D sin (q1 + q3)

q1 + q3

 = t(q), (2)

with D =
√
L2 +M2. The closed-form expression of the inverse kinematics

q = t−1(rd) , for a given rd =

 pxd

pyd

φd

 , (3)

is found from (2) and (3) as follows. Substituting the third relation q1 + q3 = φd in the first two
leads to

K cos q1 − q2 sin q1 = pxd −D cosφd

K sin q1 + q2 cos q1 = pyd −D sinφd.
(4)

Squaring each equation in (4) and summing, we obtain after simplifications

q2
2 = p2

xd + p2
yd +D2 − 2D (pxd cosφd + pyd sinφd)−K2 ∆

= A ⇒ q±2 = ±
√
A. (5)

When A > 0, we get two (real) solutions for q2. If A = 0, the two solutions collapse into the single
value q2 = 0 (singular case). When A < 0,, the inverse problem has no solution because the input
data are not compatible with the secondary workspace of the robot. When a solution exists (either
two or only one), substituting in (4) each value of q2 from (5), we obtain a linear system of two
equations in the two unknowns s1 = sin q1 and c1 = cos q1:(

K −q±2
q±2 K

)(
c1

s1

)
=

(
pxd −D cosφd

pyd −D sinφd

)
. (6)

The determinant of the coefficient matrix is det = K2 + |A| > 0 (in the assumed situation).
Solving (6) provides a value for each q±2

q±1 = atan2 {s1, c1}
= atan2

{
−q±2 (pxd

−D cosφd) +K (pyd −D sinφd) ,K (pxd −D cosφd) + q±2 (pyd −D sinφd)
}
,

(7)
and finally

q±3 = φd − q±1 . (8)

For the following data

K = L = M = 1 [m] ⇒ D =
√

2 [m] and rd =

 pxd

pyd

φd

 =

 2

1

−π/6

 [m,m,rad],

we have that A = 2.5152 (regular case) and the two inverse solutions are

q+ =

 7.81◦

1.5859

−37.81◦

 =

 0.1363

1.5859

−0.6599

 [rad,m,rad] q− =

 123.34◦

−1.5859

−153.34◦

 =

 2.1527

−1.5859

−2.6763

 [rad,m,rad].

1Extract the expressions in (2) from 0T 3(q) = 0A1(q1)1A2(q2)2A3(q3) or just use direct inspection of the figure.
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Exercise #3

The (3× 3) Jacobian matrix associated to the task (2) is

J t(q) =
∂t(q)

∂q
=

 −K sin q1 − q2 cos q1 −D sin (q1 + q3) − sin q1 −D sin (q1 + q3)

K cos q1 − q2 sin q1 +D cos (q1 + q3) cos q1 D cos (q1 + q3)

1 0 1

 . (9)

Its determinant is detJ t(q) = −q2. When the robot is in a task singularity qs = (q1, 0, q3), with
q1 and q3 being arbitrary, the Jacobian becomes

Js = J t(qs)=

−K sin q1 −D sin (q1 + q3) − sin q1 −D sin (q1 + q3)

K cos q1 +D cos (q1 + q3) cos q1 D cos (q1 + q3)

1 0 1

=
(
J1 J2 J3

)
. (10)

It is evident that its first column J1 is a linear combination of the other two: J1 = KJ2 + J3.
Moreover, rank{Js} = rank

{(
J2 J3

)}
= 2, constant for all (q1, q3). Therefore, the requested

subspaces N{Js} and R{Js} associated to the singular matrix Js are one-dimensional and, re-
spectively, two-dimensional, with global bases given by

N{Js} = span


−1

K

1


 , R{Js} = span


− sin q1

cos q1

0

 ,

− sin (q1 + q3)

cos (q1 + q3)

1


 .

Set now K = L = M = 1 (and thus D =
√

2) in (10). A simple choice of a feasible task velocity is

ṙf = γ

 − sin q1

cos q1

0

 ∈ R{Js}.

There is indeed an infinity of joint velocities q̇f ∈ R3 realizing ṙf . Two possible solutions are

q̇′f =

 0

γ

0

 or q̇′′f =

 γ

0

−γ

 ⇒ Js q̇
′
f = Js q̇

′′
f = ṙf .

The first solution uses only the prismatic joint of the robot, while the second uses only the two
revolute joints. Note that it is useless to ask which solution has a smaller norm, i.e., it involves
a smaller motion in the joint space (apparently,

∥∥q̇′f∥∥ < ∥∥q̇′′f∥∥). In fact, the first solution has [m]
as units while the other uses [rad]. These units are not commensurable2, and the straightforward
norm minimization would not be unit-independent. The problem arises because of the different
nature (prismatic and revolute) of the robot joints. For this reason, the pseudoinverse solution

q̇#
f = J#

s ṙf =
γ

K2 + 2

 K

2

−K

 [rad/s,m/s,rad/s]

makes little sense here.

2This is a typical ‘adding apples and oranges’ issue: which is larger, 1 radiant or 1 meter? 1 radiant or 100
centimeters?
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Exercise #4

A main issue here is the expression of forces/torques from one reference frame to another: in
particular, from the sensor frame RFe at the robot gripper, where measures of the wrench eF (i.e.,
forces f ∈ R3 and torques m ∈ R3) are collected, to the absolute frame RF0. Because of the set
up of the axes of these two reference frames, the problem is naturally embedded in 3D. Moreover,
this change of representation is needed also when using the (transpose of the) geometric Jacobian
J(q) for computing the joint torques τ ∈ Rn associated to a wrench at the end-effector gripper.
In fact, with the (6 × n) geometric Jacobian J(q) we usually express the end-effector linear and
angular velocities v ∈ R3 and ω ∈ R3 directly in frame RF0. The dual map requires then also
wrenches to be expressed in the same frame. In the following, quantities expressed in RFe carry
a preceding superscript e, whereas quantities without a preceding superscript are expressed (by
default) in the absolute frame RF0.

With the above in mind, we have in general(
v

ω

)
= J(q)q̇ =

(
JL(q)

JA(q)

)
q̇

⇒
( ev

eω

)
=

( eR 0(q)v
eR 0(q)ω

)
=

( eR 0(q) 0

0 eR 0(q)

)(
JL(q)

JA(q)

)
q̇ =

( eJL(q)
eJA(q)

)
q̇.

(11)

On the other hand

F =

(
f

m

)
=

( 0R e(q) ef
0R e(q) em

)
=

( 0R e(q) 0

0 0R e(q)

)( ef
em

)
. (12)

Thus, the map from end-effector wrenches to joint torques can be written in equivalent ways as

τ = JT(q)F =
(
JT

L(q) JT
A(q)

)( f

m

)

=
(
JT

L(q) JT
A(q)

)( eR 0(q) 0

0 eR 0(q)

)T ( eR 0(q) 0

0 eR 0(q)

)(
f

m

)

=

(( eR 0(q) 0

0 eR 0(q)

)(
JL(q)

JA(q)

))T ( ef
em

)
=
(

eJT
L(q) eJT

A(q)
)( ef

em

)
= eJT(q) eF .

(13)

In the above computations, one needs 0R 3(q) from the robot direct kinematics and 3R e from (1).
Further, we can use conveniently the task Jacobian J t(q) in (9) to build the geometric Jacobian
J(q). These quantities are evaluated when the robot is in q = q̄ = (π/2,−1, 0) [rad,m,rad], using
the data K = L = M = 1 [m] (thus, D =

√
2 [m] and ψ = −π/4 [rad]). We have

0R e(q̄) = 0R 3(q̄) 3R e =

 cos (q̄1 + q̄3) − sin (q̄1 + q̄3) 0

sin (q̄1 + q̄3) cos (q̄1 + q̄3) 0

0 0 1


 0 − sinψ cosψ

0 cosψ sinψ

−1 0 0


=

 0 −1 0

1 0 0

0 0 1


 0

√
2/2

√
2/2

0
√

2/2 −
√

2/2

−1 0 0

 =

 0 −0.7071 0.7071

0 0.7071 0.7071

−1 0 0


(14)

8



and

J t(q̄) =

 − sin q̄1 − q̄2 cos q̄1 −
√

2 sin (q̄1 + q̄3) − sin q̄1 −
√

2 sin (q̄1 + q̄3)

cos q̄1 − q̄2 sin q̄1 +
√

2 cos (q̄1 + q̄3) cos q̄1

√
2 cos (q̄1 + q̄3)

1 0 1


=

 −1−
√

2 −1 −
√

2

1 0 0

1 0 1

 =

 −2.4142 −1 −1.4142

1 0 0

1 0 1

 ←
←
←

ṗx

ṗy

φ̇z

Therefore, the mapping

q̇ ∈ R3 −→
(
v

ω

)
=



vx

vy

vz

ωx

ωy

ωz


is given by the (6× 3) geometric Jacobian, expressed in the frames RF0 and RFe respectively as3

J(q̄) =

(
JL(q̄)

JA(q̄)

)
=



−2.4142 −1 −1.4142

1 0 0

0 0 0

0 0 0

0 0 0

1 0 1



←
←
←
←
←
←

vx = ṗx

vy = ṗy

vz = 0

ωx = 0

ωy = 0

ωz = φ̇z

and, using the transpose of (14),

eJ(q̄) =

(
eJL(q̄)
eJA(q̄)

)
=

(
0RT

e(q̄)JL(q̄)
0RT

e(q̄)JA(q̄)

)
=



0 0 0

2.4142 0.7071 1

−1 −0.7071 −1

−1 0 −1

0 0 0

0 0 0



←
←
←
←
←
←

evx = 0
evy
evz
eωx = −φ̇z
eωy = 0
zωy = 0.

The two posed problems i. and ii. have then the following answers. From the measured data

eF =
(

efT emT
)T

=
(

efx
efy

efz
emx

emy
emz

)T
=
(

0 −1 −2 2 0 0
)T
,

we compute the gripper wrench expressed in the base frame using (12) and (14):

F =

(
f

m

)
=

(
0R e(q̄) ef
0R e(q̄) em

)
=

(
0R e(q̄) 0

0 0R e(q̄)

)
eF =



−0.7071

−2.1213

0

0

0

−2



←
←

←

fx [N]

fy [N]

mz [Nm].

3We simply embed here the rows of Jt(q̄) in the correct rows of J(q̄).
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From (13), the joint torques needed to balance in static conditions the gripper wrench (applied by
the environment and measured by the sensor) are given by

τ = − eJT(q̄) eF = −JT(q̄)F =

 2.4142

−0.7071

1

 [Nm,N,Nm].

Note here the minus sign!

Exercise #5

The elliptic path in Fig. 2 can be smoothly parametrized by

pd(s) =

(
pdx(s)

pdy(s)

)
=

(
−a sin 2πs

b cos 2πs

)
, s ∈ [0, 1].

In this way we have pd(0) = (0, b), the coordinates of the point P0, and the path is traced
counterclockwise for increasing values of the parameter s. The first and second path derivatives
are

p′d(s) =
dpd(s)

ds
= −2π

(
a cos 2πs

b sin 2πs

)
, p′′d(s) =

d2pd(s)

ds2
= 4π2

(
a sin 2πs

−b cos 2πs

)
, s ∈ [0, 1].

Figure 6 shows the plots of the x and y components of pd(s), p′d(s), and p′′d(s), when choosing
a = 1 and b = 0.3 [m] as lengths for the semi-axes of the ellipse.
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Figure 6: Components of pd(s), p′d(s), and p′′d(s) (x in blue, y in red).

The desired timing on the path is simply

s = s(t) = vt, ṡ(t) = v > 0, s̈(t) = 0, t ∈ [0, T ],

where T = 1/v is the motion time needed to trace a full ellipse with constant speed v. Accordingly,
the velocity and the acceleration along the trajectory pd(t) are

ṗd(t) = p′d ṡ = −2πv

(
a cos 2πvt

b sin 2πvt

)
p̈d(t) = p′d s̈+ p′′d ṡ

2 = 4π2v2

(
a sin 2πvt

−b cos 2πvt

)
,

with associated norms

‖ṗd(t)‖ = 2πv
√
a2 cos2 2πvt+ b2 sin2 2πvt, ‖p̈d(t)‖ = 4π2v2

√
a2 sin2 2πvt+ b2 cos2 2πvt.
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It is easy to see that, being a > b, the maximum values of these norms are

max
t∈[0,T ]

‖ṗd(t)‖ = 2πva, attained at t = {0, T/2, T}

and, respectively,

max
t∈[0,T ]

‖p̈d(t)‖ = 4π2v2a, attained at t = {T/4, 3T/4}.

From the required bounds on these norms

2πva ≤ Vmax, 4π2v2a ≤ Amax,

we obtain the maximum feasible speed vf for this motion as

vf = min

{
Vmax

2πa
,

√
Amax

4π2a

}
=

1

2π
min

{
Vmax

a
,

√
Amax

a

}
.

Using the given numerical data a = 1, b = 0.3 [m], Vmax = 3 [m/s] and Amax = 6 [m/s2], we
obtain for the speed and the motion time

vf = 0.3898 [s−1] ⇒ Tf = 2.5651 [s].

The norm of the acceleration saturates the value Amax = 6 [m/s2] while the maximum norm of
the velocity equals 2.4495 [m/s], remaining below the limit Vmax. Figure 7 shows the resulting
evolution of the norms of ṗd(t) and p̈d(t) along the trajectory.
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Figure 7: Evolution of ‖ṗd(t)‖ and ‖p̈d(t)‖ for vf = 0.3898 [s−1].

Exercise #6

For the planar 2R robot shown in Fig. 3 to be able to execute the task, the elliptic path defined in
Exercise #5 should entirely belong to its primary workspace. Since the robot has strictly different
link lengths l1 = a and l2 = b < a, the workspace is a circular annulus with internal radius
ρmin = a − b > 0 and external radius ρmin = a + b > 0. Therefore, the lengths a and b of the
semi-axes of the ellipse should satisfy the inequalities

ρmin = a− b ≤ a ≤ a+ b = ρmax, ρmin = a− b ≤ b ≤ a+ b = ρmax ⇒ b < a ≤ 2b.

However, the limit value a = 2b would certainly lead to a singularity when the robot end effector
is placed at P0 = (0, b), i.e., at the trajectory start (on the inner boundary of the workspace). In
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this case, the only inverse kinematics solution is qs = (π/2, π), a singular configuration with the
second link folded on the first one. The Jacobian of the 2R robot is then

J(q) =

(
−a sin q1 − b sin(q1 + q2) −b sin(q1 + q2)

a cos q1 + b cos(q1 + q2) b cos(q1 + q2)

)
⇒ J(qs) =

(
−a+ b b

0 0

)
so that detJ(qs) = 0. The same happens also at the opposite point of the ellipse, P−0 = (−b, 0).
Therefore, a has to belong to the open interval a ∈ (b, 2b) in order to avoid singularities4. For
illustration, we choose the numerical values a = 1 and b = 0.6. The following results will be
qualitatively similar for other admissible choices of these two geometric parameters. The position
and the velocity of the desired Cartesian trajectory for v = 0.4 [s−1] are shown in Fig. 8. The
motion time is T = 1/v = 2.5 [s].
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Figure 8: Components of pd(t) and ṗd(t) (x in blue, y in red).

To proceed, we solve first the inverse kinematics for P0 = (p0x, p0y) = (0, b) = (0, 0.6), yielding two
initial (regular) configurations. From the known formulas for the 2R robot, we have

c2 =
p2

0x + p2
0y −

(
a2 + b2

)
2ab

= −0.8333, s2 =
√

1− c22 = 0.5528,

to be used in

q+
0 =

(
atan2 {p0y (a+ bc2)− p0xb s2, p0x (a+ bc2) + p0yb s2}

atan2 {s2, c2}

)

=

(
56.44◦

146.44◦

)
=

(
0.9851

2.5559

)
[rad] (right arm solution)

and

q−0 =

(
atan2 {p0y (a+ bc2) + p0xb s2, p0x (a+ bc2)− p0yb s2}

atan2 {−s2, c2}

)

=

(
123.56◦

−146.44◦

)
=

(
2.1565

−2.5559

)
[rad] (left arm solution).

4It should be noted that the velocity vector ṗd is actually feasible even in the two singular situations and can be
obtained by the use of the pseudoinverse of J . However, too large joint velocities would be generated in that case
while approaching a singularity.
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With both choices, the position of the robot end effector will be matched with the desired trajectory
pd(t) at time t = 0 (pd(0) = P0). With such an initialization, the nominal joint velocity command
q̇n(t) that will execute perfectly the entire trajectory pd(t), for t ∈ [0, T ], is given by

q̇n = J−1(qn)ṗd, qn(0) = q±0 . (15)

Note that the robot Jacobian J(qn(t)) will never become singular because the end-effector path
remains always strictly inside the robot workspace. Therefore, the right or left arm configuration
chosen at the start will be kept throughout the entire trajectory. Choosing, e.g., the right arm
solution at start, qn(0) = q+

0 , yields the joint velocity command q̇n(t) and the associated joint
evolution qn(t) shown in Fig. 9. It is apparent that the velocity commands and the motion of the
joints are cyclic (modulo 2π for qn1(t)). The initial value of the joint velocity command (15) is

q̇n(0) =
(

4.1888 0
)T

[rad/s].
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Figure 9: Nominal velocity command q̇n(t) and resulting evolution qn(t) (joint 1 in blue, 2 in red).

Next, let the robot start from another initial configuration q(0) such that the end-effector position
error is e(0) = pd(0)−f (q(0)) 6= 0, with p = f(q) being the direct kinematics of the 2R robot, but
ey(0) = 0. For instance, we choose q(0) = (0, π/2) (still a ‘right arm’ configuration), corresponding
to an error ex(0) = −a = −1 [m] only along the x-direction. In order to obtain asymptotic tracking
of the desired trajectory pd(t) together with the requested performance during the initial transient,
the joint velocity control law q̇ = q̇c(q, t) is designed using feedback from the Cartesian error. The
control law is then

q̇c = J−1(q)
(
ṗd +KP (pd − f(q))

)
, KP = r · I2×2 > 0, (16)

with the rate r = 5 introduced in the diagonal, positive definite gain matrix KP . This choice
guarantees that, in the absence of further disturbances, we have

ex(t) = ex(0) exp (−5t) , ey(t) ≡ 0, ∀t ≥ 0.

Figure 10 shows the desired and the actually executed Cartesian trajectory, together with the Carte-
sian position error, the feedback control commands, and the resulting motion of the robot joints.

Finally, the initial value of the joint velocity control law (16) is q̇c(0) =
(

0 12.5221
)T

[rad/s].

Exercise #7

The following self-explanatory Matlab code computes the minimum number of bits of the multi-
turn absolute encoder which satisfies the given specifications. This number is bits = 16, namely:

13



0 0.5 1 1.5 2 2.5

time [s]

-1

-0.5

0

0.5

1

1.5

p
d
, p

 [m
]

desired and actual Cartesian position (for a=1, b=0.6; speed v=0.4)

0 0.5 1 1.5 2 2.5

time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

e 
[m

]

Cartesian position error (for a=1, b=0.6; speed v=0.4)

0 0.5 1 1.5 2 2.5

time [s]

-4

-2

0

2

4

6

8

10

12

14

dq
 [r

ad
/s

]

joint velocity command (for a=1, b=0.6; speed v=0.4)

0 0.5 1 1.5 2 2.5

time [s]

0

1

2

3

4

5

6

7

8

q 
[r

ad
]

joint evolution (for a=1, b=0.6; speed v=0.4)

Figure 10: [Top] Components of the desired pd(t) (dashed) and actually obtained p(t) (continuous)
and those of the associated error e(t) = pd(t)−p(t) (x in blue, y in red). [Bottom] Velocity control
law q̇c(t) and resulting evolution qc(t) (joint 1 in blue, 2 in red).

6 bits count separately the number of motor turns that covers the entire joint range of the flange,
while 10 bits (equal to the number of tracks of the main encoder wheel) allow to achieve the desired
angular resolution on the flange side of the transmission.

% data

joint_range=700 %[deg] % range of the flange rotation

nr=30 % reduction ratio

res_joint=0.02 %[deg] % desired resolution at the flange side

% computation

disp(‘all angles are in degrees’)

turns_joint=joint_range/360

turns_motor=nr*turns_joint

bits_turn=ceil(log2(turns_motor))

sectors_joint=360/res_joint

tracks_motor=sectors_joint/nr

res_motor=sectors_motor/360

bits_res=ceil(log2(sectors_motor))

bits=bits_turn+bits_res

% end

∗ ∗ ∗ ∗ ∗
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