
Robotics 1
January 12, 2021

There are 10 questions. Provide answers with short texts, completed with drawings and derivations needed

for the solutions. Students with confirmed midterm grade should do only the second set of 5 questions.

Question #1 [students without midterm]

The orientation of a rigid body B is defined by the rotation matrix

R =


0 1 0

0.5 0

√
3

2√
3

2
0 −0.5

 .

Determine the angles (α, β, γ) of a YXZ Euler sequence providing the same orientation. Check the
correctness of the obtained result by a direct computation. Find also the singular cases for this
minimal representation and provide an example of a rotation matrix Rs that falls in this class.

Question #2 [students without midterm]

Let matrix R of Question #1 be the current orientation of body B. If Ω =
(

1 −1 0
)T

is the

instantaneous angular velocity of B expressed in the body frame, compute the time derivative Ṙ.

Question #3 [students without midterm]

M =


cos θ sin θ 0 −a

− sin θ cosα cos θ cosα sinα −d sinα
sin θ sinα − cos θ sinα cosα −d cosα

0 0 0 1

 .

What is this matrix? Is it correct? Provide a convincing explanation.

Question #4 [students without midterm]

Two views of a spatial 3R robot are shown in Fig. 1, together with the world reference frame
RFw. Assign the Denavit-Hartenberg frames and provide the associated table of parameters so
that the configuration in Fig. 1(a) is qa = (−π/2, π/2, 0) [rad] and the configuration in Fig. 1(b)
is qb = (0, 0, π/2) [rad]. The frame assignment must also include all four lengths L0, L1, L2, and
L3 defined in the figure. Compute the symbolic expression wp(q) of the end-effector position P .

(a)

zw

L0

yw

xw

L1

L2 L3

P

(b)

P

zw
L0

yw

xw

L1

L2
L3

Figure 1: A spatial 3R robot in two different configurations qa (a) and qb (b).
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Question #5 [students without midterm]

An electrical motor mounts on its axis a multi-turn absolute encoder with 11 bits. The first 3 bits
are used for counting turns, while the following 8 bits measure a single turn. The motor drives
a robot link through an harmonic drive having a flexspline with 120 external teeth. What is
the angular resolution of this equipment at the link side? What is the maximum unidirectional
angular displacement at the motor side that can be measured by the encoder? Which motor angle
θm ∈ [0, 2π) corresponds to the Gray code [000|01100001]? Express all results in radians.

Question #6 [all students]

For the 4-dof planar RRPR robot in Fig. 2, with the joint variables q = (q1, q2, q3, q4) defined
therein, derive the Jacobian J(q) associated to the 3-dimensional task vector r = (px, py, α),
where p = (px, py) ∈ R2 gives the position of the final flange center P and α ∈ R is the orientation
of the last robot link w.r.t. the axis x0. Find all singular configurations qs of this task Jacobian
matrix. For one such qs, let Js = J(qs) and determine a basis for R{Js} and one for N{Js}.

b

a

q1

q2

q3

q4

P

x0

y0

Figure 2: A 4-dof RRPR robot, with joint variables q = (q1, q2, q3, q4).

Question #7 [all students]

Two planar 2R robots, named A and B and having both unitary link lengths, are in the static
equilibrium shown in Fig. 3. The two D-H configurations w.r.t. their base frames are, respectively,
qA = (3π/4,−π/2) [rad] and qB = (π/2,−π/2) [rad]. Robot A pushes against robot B as in the
figure, with a force F ∈ R2 having norm ‖F ‖ = 10 [N]. Compute the joint torques τA ∈ R2 and
τB ∈ R2 (both in [Nm]) that keep the two robots in equilibrium.

xA,0

yA,0

F

xB ,0

yB,0

robot A

robot B

Figure 3: A static equilibrium condition for two planar 2R robots pushing against each other.
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Question #8 [all students]

With reference to Fig. 4, a planar 2R robot with link lengths l1 = 0.5 and l2 = 0.4 [m] should
intercept and follow a target that moves at constant speed v = 0.3 [m/sec] along a line passing
through the point P0 = (−0.8, 1.1) [m] and making an angle β = −20◦ with the axis x0. The robot
starts at rest from the configuration qs = (π, 0) [rad] (in DH terms) as soon as the target enters
the workspace. The rendez-vous occurs after T = 2 s, with the robot end effector and the target
having the same final velocity. Plan a coordinated joint space trajectory for this task.

x0

y0

P0

b

v

Figure 4: A rendez-vous task for a planar 2R robot and a target in uniform linear motion.

Question #9 [all students]

Consider the following trajectories for the two revolute joints of a robot:

q1(t) =
π

4
+
π

4

(
3

(
t

T

)2

− 2

(
t

T

)3
)
, q2(t) = −π

2

(
1− cos

(
πt

T

))
, t ∈ [0, T ].

Compute the boundary values for the position, velocity, and acceleration at t = 0 and t = T , and
the instants and values of maximum absolute velocity and maximum absolute acceleration for both
joints. Assume that the robot motion is bounded by |q̇i| ≤ Vi and |q̈i| ≤ Ai, for i = 1, 2, with

V1 = 4 [rad/s], V2 = 8 [rad/s], A1 = 20 [rad/s2], A2 = 40 [rad/s2].

Determine the minimum feasible motion time T . Sketch the associated time profiles of the position,
velocity and acceleration for the two joints.

Question #10 [all students]

Consider again the task in Question #8. The robot is commanded by the joint velocity q̇ ∈ R2.
Once the rendez-vous has been accomplished, design a feedback control law that will let the robot
follow the moving target and react to position errors et and en that may occur along the tangent
and normal directions to the linear path, respectively with the prescribed decoupled dynamics
ėt = −3 et and ėn = −10 en. Provide the explicit expression of all terms in the control law.

[240 minutes (4 hours) for the full exam; open books]

[150 minutes (2.5 hours) for students with midterm; open books]
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Solution
January 12, 2021

Question #1 [students without midterm]

The orientation of a rigid body B is defined by the rotation matrix

R =


0 1 0

0.5 0

√
3

2√
3

2
0 −0.5

 .

Determine the angles (α, β, γ) of a YXZ Euler sequence providing the same orientation. Check
the correctness of the obtained result by a direct computation. Find also the singular cases for this
minimal representation and provide an example of a rotation matrix Rs that falls in this class.

Reply #1

The rotation matrix obtained with the angles (α, β, γ) of a YXZ Euler sequence is computed from

RY (α)=

 cosα 0 sinα

0 1 0

− sinα 0 cosα

, RX(β)=

 1 0 0

0 cosβ − sinβ

0 sinβ cosβ

, RZ(γ)=

 cos γ − sin γ 0

sin γ cos γ 0

0 0 1


as

RYXZ(α, β, γ) = RY (α)RX(β)RZ(γ)

=

 cosα cos γ + sinα sinβ sin γ sinα sinβ sin γ − cosα sin γ sinα cosβ

cosβ sin γ cosβ cos γ − sinβ

cosα sinβ sin γ − sinα cos γ sinα sin γ + cosα sinβ cos γ cosα cosβ

.
(1)

We solve the inverse problem for this minimal representation,

RYXZ(α, β, γ) = R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 ,

by using first the elements of the last column in this matrix equality. We obtain

β = ATAN2 {sinβ, cosβ} = ATAN2

{
−R23,±

√
R2

13 +R2
33

}
. (2)

Provided that |cosβ| =
√
R2

13 +R2
33 6= 0 (regular case), we solve for the other two angles as

α = ATAN2

{
R13

cosβ
,
R33

cosβ

}
, γ = ATAN2

{
R21

cosβ
,
R22

cosβ

}
,

obtaining a pair of solutions, one for each sign chosen for cosβ in (2). For the given matrix R, we
have √

R2
13 +R2

33 = 0.5 = |cosβ| 6= 0,

and thus a regular case. The two solutions are

(α1, β1, γ1) = (π, −1.0472, π/2), (α2, β2, γ2) = (0, −2.0944, −π/2) [rad].
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To verify the result, use (1) to obtain indeed RYXZ(α1, β1, γ1) = RYXZ(α2, β2, γ2) = R. Finally, a
singular case is encountered, e.g., for the rotation matrix

Rs =

 0 −1 0

0 0 −1

1 0 0

 = {Rs,ij} ⇒ cosβs = 0.

In this case βs = ATAN2 {−Rs,23, 0} = π/2 and only the difference α− γ of the two other angles
is defined as

αs − γs = ATAN2 {Rs.12, Rs,11} = −π/2,

leading to an infinity of solutions (α, β, γ) = (αs, π/2, αs + π/2), ∀αs. �

Question #2 [students without midterm]

Let matrix R of Question #1 be the current orientation of body B. If Ω =
(

1 −1 0
)T

is the

instantaneous angular velocity of B expressed in the body frame, compute the time derivative Ṙ.

Reply #2

The result can be obtained in two equivalent ways, using a skew symmetric matrix S built with
the angular velocity of the body B. Either we express the angular velocity in the base frame as
ω = RΩ and then use Ṙ = S(ω)R (as in the lecture slides). Or we use directly the alternative
form Ṙ = RS(Ω) (as in Exercise #1 in the June 11, 2012 exam). Being

ω = RΩ =


−1

0.5√
3

2

 ,

we obtain in both cases

Ṙ = S(ω)R =


0 −

√
3

2
0.5

√
3

2
0 1

−0.5 −1 0




0 1 0

0.5 0

√
3

2√
3

2
0 −0.5



= RS(Ω) =


0 1 0

0.5 0

√
3

2√
3

2
0 −0.5


 0 0 −1

0 0 −1

1 1 0

 =


0 0 −1√
3

2

√
3

2
−0.5

−0.5 −0.5 −
√

3

2

. �

Question #3 [students without midterm]

M =


cos θ sin θ 0 −a

− sin θ cosα cos θ cosα sinα −d sinα

sin θ sinα − cos θ sinα cosα −d cosα

0 0 0 1

 .

What is this matrix? Is it correct? Provide a convincing explanation.
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Reply #3

Matrix M simply represents the inverse of the generic Denavit-Hartenberg homogeneous transfor-
mation matrix

A =


cos θ − sin θ cosα sin θ sinα a cos θ

sin θ cos θ cosα − cos θ sinα a sin θ

0 sinα cosα d

0 0 0 1

 =

(
R(α, θ) p(a, d, θ)

0T 1

)
.

In fact,

A−1 =

(
RT(α, θ) −RT(α, θ)p(a, d, θ)

0T 1

)
=


cos θ sin θ 0 −a

− sin θ cosα cos θ cosα sinα −d sinα

sin θ sinα − cos θ sinα cosα −d cosα

0 0 0 1


= M . �

Question #4 [students without midterm]

Two views of a spatial 3R robot are shown in Fig. 1, together with the world reference frame
RFw. Assign the Denavit-Hartenberg frames and provide the associated table of parameters so that
the configuration in Fig. 1(a) is qa = (−π/2, π/2, 0) [rad] and the configuration in Fig. 1(b) is
qb = (0, 0, π/2) [rad]. The frame assignment must also include all four lengths L0, L1, L2, and L3

defined in the figure. Compute the symbolic expression wp(q) of the end-effector position P .

Reply #4

An assignment of the Denavit-Hartenberg (DH) frames is illustrated in the two configurations
shown in Fig. 5. This assignment is consistent with the values qa and qb that joint variables
should take in the configurations of Fig. 1(a) and (b). The associated set of DH parameters is
given in Table 1. The origins of the DH frames 0 and 3 have been chosen coincident with the
origin Ow of the world frame and with the end-effector position P , respectively. In this way, all
four kinematic lengths Li, i = 0, 1, 2, 3, appear in the DH table. The fourth and fifth columns in
the table return the values of the joint variables for the two configurations qa and qb.

(a)

zw

L0

z0 = yw

x0 = xw

L1

L2
L3

O3 = P

y0

z1

x1

x2

z2

x3

z3

O0 = Ow

q2

q1

(b)

O3 = P

zw
L0

z0

x0

L1

L2 L3y0

z1

x1

z2 x2

q3

z3

x3

Figure 5: Assignment of the DH frames for the spatial 3R robot, shown here for the two configu-
rations qa and qb of Fig. 1.
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i αi ai di θi (a) θi (b)

1 π/2 L1 L0 qa1 = −π/2 qb1 = 0

2 π/2 L2 0 qa2 = π/2 qb2 = 0

3 0 L3 0 qa3 = 0 qb3 = π/2

Table 1: Table of DH parameters for the spatial 3R robot.

By building the DH homogeneous transformation matrices i−1Ai(qi), for i = 1, 2, 3, from Table 1,
it is straightforward to compute the position of the origin of the end-effector frame O3 = P as

0pH(q) =

( 0p(q)

1

)
= 0A1(q1) 1A1(q2) 2A3(q3)

(
0

1

)

=


cos q1 (L1 + (L2 + L3 cos q3) cos q2) + L3 sin q1 sin q3

sin q1 (L1 + (L2 + L3 cos q3) cos q2)− L3 cos q1 sin q3

L0 + (L2 + L3 cos q3) sin q2

1

.
In order to change the expression of this position vector from the base frame of the robot (the 0th
DH frame) to the world frame, we need the additional rotation matrix

wR0 =

 1 0 0

0 0 1

0 −1 0

.
Since the world frame and 0th DH frame have the same origin, we have

wp = wR0
0p =

 cos q1 (L1 + (L2 + L3 cos q3) cos q2) + L3 sin q1 sin q3

L0 + (L2 + L3 cos q3) sin q2

− sin q1 (L1 + (L2 + L3 cos q3) cos q2) + L3 cos q1 sin q3

. �

Question #5 [students without midterm]

An electrical motor mounts on its axis a multi-turn absolute encoder with 11 bits. The first 3 bits
are used for counting turns, while the following 8 bits measure a single turn. The motor drives
a robot link through an harmonic drive having a flexspline with 120 external teeth. What is the
angular resolution of this equipment at the link side? What is the maximum unidirectional an-
gular displacement at the motor side that can be measured by the encoder? Which motor angle
θm ∈ [0, 2π) corresponds to the Gray code [000|01101001]? Express all results in radians.

Reply #5

Being Nb = 8 bits devoted to a single turn of the absolute encoder, its angular resolution on the
motor side is ∆m = 2π/2Nb = 2π/256 = 0.0245 [rad]. The reduction ratio of an harmonic drive
with Nf = 120 teeth on the flexspline is Nr = Nf/2 = 60. Thus, the angular resolution on the
link side is ∆l = ∆m/Nr = 4.0906 · 10−4 [rad] (about 2 hundreds of a degree). Being Nt = 3
bits devoted to the counting of full motor turns, when the motor rotates in a single direction (say,
starting from θm,init = 0 and counterclockwise), the maximum angular displacement that will be
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measured is ∆max = 2π · 2Nt − ∆m = 50.2409 [rad] (the ∆m can also be neglected, leading to
∆max = 50.2655 [rad]). Finally, the given Gray code refers to the first motor turn (the Nt = 3
most significant bits are zero). The conversion to binary of the least significant Nb = 8 bits (a
byte), xgray = [01101001], can be done using logical exclusive-or operations (as shown in the lecture
slides). We obtain xbin = [01001110] and then xdec = 27 + 24 + 23 + 22 = 78. The following simple
Matlab code does the conversions:

xgray=[0 1 1 0 1 0 0 1] \% from MSB to LSB

\% Gray to binary

xbin(1)=xgray(1);

for i=1:Nbits-1

xbin(i+1)=xor(xbin(i),xgray(i+1));

end

\% binary to decimal

xdec=xbin(Nbits);

for i=1:Nbits-1

xdec=xdec+xbin(Nbits-i)*2^i;

end

The measured motor angle is thus θm = xdec ·∆m = 1.9144 [rad] (about 109◦). �

Question #6 [all students]

For the 4-dof planar RRPR robot in Fig. 2, with the joint variables q = (q1, q2, q3, q4) defined
therein, derive the Jacobian J(q) associated to the 3-dimensional task vector r = (px, py, α), where
p = (px, py) ∈ R2 gives the position of the final flange center P and α ∈ R is the orientation of the
last robot link w.r.t. the axis x0. Find all singular configurations qs of this task Jacobian matrix.
For one such qs, let Js = J(qs) and determine a basis for R{Js} and one for N{Js}.
Reply #6

The task kinematics of this robot is given by

r =

 px
py
α

 =

 a cos q1 + q3 cos(q1 + q2) + b cos(q1 + q2 + q4)

a sin q1 + q3 sin(q1 + q2) + b sin(q1 + q2 + q4)

q1 + q2 + q4

 = f(q).

The associated 3× 4 task Jacobian is

J(q) =
∂f(q)

∂q
=

 −a s1 − q3s12 − b s124 −q3s12 − b s124 c12 −b s124
a c1 + q3c12 + b c124 q3c12 + b c124 s12 b c124

1 1 0 1

 ,

where we have used the trigonometric shorthand notation (e.g., s124 = sin(q1 + q2 + q4)) for
compactness. As usual, in order to perform a singularity analysis of the Jacobian, it is convenient
to get rid of the angle q1 from its expression1. This is obtained by premultiplying J by the
transpose of the rotation matrix R(q1):

1J(q) = RT(q1)J(q) =

 c1 s1 0

−s1 c1 0

0 0 1

J(q) =

 −q3s2 − b s24 −q3s2 − b s24 c2 −b s24
a+ q3c2 + b c24 q3c2 + b c24 s2 b c24

1 1 0 1

 .

1An intrinsic property of the manipulator, like the loss of mobility at the task level in certain configurations, will
never depend on the arbitrary choice of the base (zero-th) frame of the robot, and thus on the value of q1.
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To study the rank of matrix J (or, equivalently, of 1J), we have two possible ways. The first, and
more cumbersome, is to compute the determinant of the square 3 × 3 matrix JJT . Performing
computations in Matlab yields

det
(
J(q)JT (q)

)
= det

(
1J(q) 1JT (q)

)
= 2a2c22 + 2q23 + a2q23 + 2aq3c2 − a2q23c22.

Because of the undefined sign of the fourth addend and of the minus sign in the last term, it is not
immediate to conclude on necessary and sufficient conditions for zeroing this determinant. The
second way is to analyze the four minors obtained by deleting each time one column from the
Jacobian. This can be done either on J or on 1J , leading to identical results in both cases (also
when using the symbolic code in Matlab). For compactness, we illustrate the method on the 1J
matrix only. We have

1J−1(q) =

 −q3s2 − b s24 c2 −b s24
q3c2 + b c24 s2 b c24

1 0 1

 ⇒ det 1J−1(q) = −q3

1J−2(q) =

 −q3s2 − b s24 c2 −b s24
a+ q3c2 + b c24 s2 b c24

1 0 1

 ⇒ det 1J−2(q) = −q3 − a c2

1J−3(q) =

 −q3s2 − b s24 −q3s2 − b s24 −b s24
a+ q3c2 + b c24 q3c2 + b c24 b c24

1 1 1

 ⇒ det 1J−3(q) = a q3s2

1J−4(q) =

 −q3s2 − b s24 −q3s2 − b s24 c2

a+ q3c2 + b c24 q3c2 + b c24 s2

1 1 0

 ⇒ det 1J−4(q) = a c2.

In order for the Jacobian to be singular, all four determinants above should simultaneously be
zero. This occurs if and only if

q3 = cos q2 = 0 ⇐⇒ q2 = ±π
2
, q3 = 0.

Thus, the prismatic joint should be fully retracted (so that joint axes 2 and 4 coincide) and
the second link should be orthogonal to the first one. Choosing for instance the configuration
qs = (q1, π/2, 0, q4), with arbitrary q1 and q4, leads to

1Js = 1J(qs) =

 −b c4 −b c4 0 −b c4
a− b s4 −b s4 1 −b s4

1 1 0 1

 ⇒ rank 1Js = 2.

A basis for the null space of the Jacobian Js = J(qs) can be computed using directly 1Js:

N {Js} = N
{

1Js

}
=




0

1

0

−1

 ,


−1

1

a

0


 .

Note in particular that the first vector prescribes an equal and opposite velocity to joints 2 and 4.
The second basis vector involves instead also the third, prismatic joint. To provide a basis for the
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range space of Js, we first pick two independent columns of 1Js

R
{

1Js

}
=


 −b c4−b s4

1

 ,

 0

1

0


 ,

and then obtain, from Js = R(q1) 1Js,

R{Js} =

R(q1)

 −b c4−b s4
1

, R(q1)

 0

1

0


 =


 −b c14−b s14

1

 ,

 −s1c1
0


 . �

Question #7 [all students]

Two planar 2R robots, named A and B and having both unitary link lengths, are in the static
equilibrium shown in Fig. 3. The two D-H configurations w.r.t. their base frames are, respectively,
qA = (3π/4,−π/2) [rad] and qB = (π/2,−π/2) [rad]. Robot A pushes against robot B as in the
figure, with a force F ∈ R2 having norm ‖F ‖ = 10 [N]. Compute the joint torques τA ∈ R2 and
τB ∈ R2 (both in [Nm]) that keep the two robots in equilibrium.

Reply #7

Evaluate the 2 × 2 Jacobians of the two 2R robots, respectively at qA = (3π/4,−π/2) [rad] and
qB = (π/2,−π/2), each expressed in its own DH base frame:

JA(qA) =

(
− sin q1 − sin(q1 + q2) − sin(q1 + q2)

cos q1 + cos(q1 + q2) cos(q1 + q2)

)∣∣∣∣
q=qA

=

(
−
√

2 −
√
2
2

0
√
2
2

)
,

JB(qB) =

(
− sin q1 − sin(q1 + q2) − sin(q1 + q2)

cos q1 + cos(q1 + q2) cos(q1 + q2)

)∣∣∣∣
q=qB

=

(
−1 0

1 1

)
.

The force vector FA applied by robot A to robot B is oriented as the second link of robot A.
When expressed in the base frame of robot A, it is

AFA = ‖F ‖ ·
(

cos(q1 + q2)

sin(q1 + q2)

)∣∣∣∣
q=qA

= 10

( √
2/2√
2/2

)
[N].

To obtain this Cartesian force at the end effector, robot A should produce a joint torque given by

τA = JT
A(qA) AFA =

(
−10

0

)
[Nm].

On the other hand, robot B should balance the force applied by robot A at its end effector by
reacting with an equal and opposite force FB = −F , namely AFB = −AFA when these forces
are both expressed in the same base frame of robot A. However, when expressing the exchanged
force in the base frame of robot B, we can easily see that2

BFB = BRA
AFB =

(
−1 0

0 −1

)(
−AFA

)
= AFA = 10

( √
2/2√
2/2

)
[N].

2Here, we use planar 2× 2 rotation matrices, i.e., R ∈ SO(2).
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Therefore, to obtain this Cartesian force at the end-effector, robot B should produce a joint torque
given by

τA = JT
B(qB) BFB =

(
0

5
√

2

)
=

(
0

7.0711

)
[Nm].

It is also worth reasoning on the two zeros that appear in τA and τB , in relation with the geometry
of this static interaction task. Such analysis is left to the reader. �

Question #8 [all students]

With reference to Fig. 4, a planar 2R robot with link lengths l1 = 0.5 and l2 = 0.4 [m] should
intercept and follow a target that moves at constant speed v = 0.3 [m/sec] along a line passing
through the point P0 = (−0.8, 1.1) [m] and making an angle β = −20◦ with the axis x0. The robot
starts at rest from the configuration qs = (π, 0) [rad] (in DH terms) as soon as the target enters
the workspace. The rendez-vous occurs after T = 2 s, with the robot end effector and the target
having the same final velocity. Plan a coordinated joint space trajectory for this task.

Reply #8

In this trajectory planning problem, we need first to define the boundary conditions for the rendez-
vous between the moving target and the robot end-effector. The robot workspace has an external
(circular) boundary of radius R = l1 + l2 = 0.9 [m] (while the internal boundary has radius
Rmin = |l1 − l2| = 0.1 [m]). The target moves on a line that intercepts the external boundary in
two points P1 and P2, the first of which is of interest. These points are found by solving the system
of equations{

(x− x0) sinβ − (y − y0) cosβ = 0 [line through P0 = (x0, y0) with angular coefficient β]

x2 + y2 = R2 [circle with center in the origin and radius R]
(3)

The solution is obtained using the two (real) roots x1 and x2 of the following second-order poly-
nomial equation3 derived from (3):

x2 − 2(x0 sinβ − y0 cosβ) sinβ x+ (x0 sinβ − y0 cosβ)2 −R2 cos2 β = 0.

With each of these roots, we compute also the y-coordinate of the intercepting points:

yi = y0 + (xi − x0) tanβ, i = 1, 2.

From the given data, we get

P1 =

(
x1

y1

)
=

(
−0.1930

0.8791

)
, P2 =

(
x2

y2

)
=

(
0.7129

0.5494

)
[m].

Note that ‖P1‖ = ‖P2‖ = R = 0.9. Clearly, the target enters the workspace in P1 (and will exit
in P2). We shall set the initial time t = 0 of the robot motion at the instant of target entrance.
Moreover, at T = 2 s, the target will be in the planned rendez-vous point

Prv = P1 + vT

(
cosβ

sinβ

)
=

(
0.3708

0.6739

)
[m].

Since ‖Prv‖ = 0.7692 < R, the rendez-vouz will occur well inside the robot workspace. This
Cartesian point specifies, via kinematic inversion, the goal configuration that the robot should
reach at time t = T . From the usual inverse kinematics of the 2R robot, coded in Matlab as
follows

3Indeed, this second-order equation may have either two real roots or two complex conjugate roots. In the latter
case, no intercepting points exist. When P0 is inside the circle (‖P0‖ < R), there are always two real roots.
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p_x=P_rv(1);p_y=P_rv(2);

c2=(p_x^2+p_y^2-(l_1^2+l_2^2))/(2*l_1*l_2)

s2=-sqrt(1-c2^2) \% choose the minus sign to have the elbow-up solution as goal,

\% being this ‘closer’ to the start configuration qs

q2_g=atan2(s2,c2)

q1_g=atan2(p_y*(l_1+l_2*c2)-p_x*l_2*s2,p_x*(l_1+l_2*c2)+p_y*l_2*s2)

we obtain

qg = q(T ) =

(
1.5495

−1.0996

)
[rad]

(
=

(
88.78◦

−63.00◦

))
.

In addition, the Cartesian velocity of the target at the goal instant t = T of rendez-vous (actually,
also at any other instant) is

vg = ṗ(T ) = v

(
cosβ

sinβ

)
= 0.3

(
0.9397

−0.3420

)
=

(
0.2819

−0.1026

)
[m/s].

Therefore, by inverting the robot Jacobian at the rendez-vous configuration, the joint velocity at
the goal is computed as

q̇g = q̇(T ) = J−1(qg)vg =

(
−l1 sin q1 − l2 sin(q1 + q2) −l2 sin(q1 + q2)

l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

)−1∣∣∣∣∣
q=qg

vg

=

(
−0.6739 −0.1740

0.3708 0.3602

)−1
vg =

(
−2.0212 −0.9762

2.0809 3.7814

)(
0.2819

−0.1026

)
=

(
−0.4696

0.1986

)
[rad/s].

At this stage, there are 4 boundary conditions to be interpolated between t = 0 and t = T = 2 s
for each joint. For the first joint, we have

qs,1 = q1(0) = π, q̇s,1 = q̇1(0) = 0, qg,1 = q1(T ) = 1.5495, q̇g,1 = q̇1(T ) = −0.4696,

while for the second joint

qs,2 = q2(0) = 0, q̇s,2 = q̇2(0) = 0, qg,2 = q2(T ) = −1.0996, q̇g,2 = q̇2(T ) = 0.1986.

Since there are no further conditions specified, we choose a cubic polynomial for each joint as
interpolating function —the simplest solution with enough parameters to satisfy all boundary
conditions. The motion of the robot joints should be coordinated. Thus, we will use a common
parametrized time τ to define the joint trajectories qd(τ). Let the joint displacement vector be

∆ =

(
∆1

∆2

)
= qg − qs =

(
−1.5921

−1.0996

)
.

For τ = t/T ∈ [0, 1], we compute the desired trajectories as

qd,i(τ) = qs,i + ∆i

((
q̇g,iT

∆i
− 2

)
τ3 +

(
3− q̇g,iT

∆i

)
τ2
)
, i = 1, 2, (4)

with velocity profiles

q̇d,i(τ) =
∆i

T

(
3

(
q̇g,iT

∆i
− 2

)
τ2 + 2

(
3− q̇g,iT

∆i

)
τ

)
, i = 1, 2.
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Plugging the data in (4), we obtain

qd,1(τ) = 2.2449 τ3 − 3.8370 τ2 + π, τ = t/T ∈ [0, 1],

and
qd,2(τ) = 2.5964 τ3 − 3.6960 τ2, τ = t/T ∈ [0, 1].

The resulting position and velocity profiles are shown in Fig. 8. In Fig. 7, we illustrate with a
stroboscopic view the approaching phase of the robot to the moving target during a time interval
of T = 2 s. �
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Figure 6: Joint position and velocity profiles of the planned interpolating trajectories for the
rendez-vous between the robot end effector and the moving target.
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Figure 7: Stroboscopic view of robot and target motion in the rendez-vous task.
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Question #9 [all students]

Consider the following trajectories for the two revolute joints of a robot:

q1(t) =
π

4
+
π

4

(
3

(
t

T

)2

− 2

(
t

T

)3
)
, q2(t) = −π

2

(
1− cos

(
πt

T

))
, t ∈ [0, T ].

Compute the boundary values for the position, velocity, and acceleration at t = 0 and t = T , and
the instants and values of maximum absolute velocity and maximum absolute acceleration for both
joints. Assume that the robot motion is bounded by |q̇i| ≤ Vi and |q̈i| ≤ Ai, for i = 1, 2, with

V1 = 4 [rad/s], V2 = 8 [rad/s], A1 = 20 [rad/s2], A2 = 40 [rad/s2].

Determine the minimum feasible motion time T . Sketch the associated time profiles of the position,
velocity and acceleration for the two joints.

Reply #9

Differentiating w.r.t. time the trajectories of the two joints yields

q̇1(t) =
3π

2T

((
t

T

)
−
(
t

T

)2
)
, q̇2(t) = − π

2

2T
sin

(
πt

T

)
, t ∈ [0, T ]

and further

q̈1(t) =
3π

2T 2

(
1− 2

(
t

T

))
, q̈2(t) = − π3

2T 2
cos

(
πt

T

)
, t ∈ [0, T ].

By direct evaluation, we obtain the boundary values for the first joint

q1(0) =
π

4

q̇1(0) = 0

q̈1(0) =
3π

2T 2

q1(T ) =
π

2

q̇1(T ) = 0

q̈1(T ) = − 3π

2T 2
,

and for the second joint

q2(0) = 0

q̇2(0) = 0

q̈2(0) = − π3

2T 2

q2(T ) = −π

q̇2(T ) = 0

q̈2(T ) =
π3

2T 2
.

Moreover, it is easy to see that the following maximum absolute values are attained for the velocities

max
t∈[0,T ]

|q̇1(t)| = |q̇1(T/2)| = 3π

8T
, max

t∈[0,T ]
|q̇2(t)| = |q̇2(T/2)| = π2

2T
,

and for the accelerations

max
t∈[0,T ]

|q̈1(t)| = |q̈1(0)| = |q̈1(T )| = 3π

2T 2
, max

t∈[0,T ]
|q̈2(t)| = |q̇2(0)| = |q̈2(T )| = π3

2T 2
.

In order to satisfy all the given bounds, the minimum value of the motion time T is determined as

T = max

 3π

8V1
,

√
3π

2A1
,
π2

2V2
,

√
π3

2A2

 = max
{

0.2945, 0.4854, 0.6169, 0.6226
}

= 0.6226 [s],
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which is enforced by the acceleration limit A2 = 40 [rad/s2] on the second joint. With T = 0.6226 s,
the maximum values reached by the absolute velocities and accelerations are

max
t∈[0,T ]

|q̇1(t)| = 1.8923, max
t∈[0,T ]

|q̇2(t)| = 7.9267, max
t∈[0,T ]

|q̈1(t)| = 12.1585, max
t∈[0,T ]

|q̈2(t)| = 40 = A2.

The plots of the minimum time trajectories are reported in Fig. 8. �
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Figure 8: Minimum time solution for the considered class of trajectories under velocity/acceleration
bounds: position, velocity, and acceleration profiles (continuous) and their limits (dashed).

15



Question #10 [all students]

Consider again the task in Question #8. The robot is commanded by the joint velocity q̇ ∈ R2.
Once the rendez-vous has been accomplished, design a feedback control law that will let the robot
follow the moving target and react to position errors et and en that may occur along the tangent and
normal directions to the linear path, respectively with the prescribed decoupled dynamics ėt = −3 et
and ėn = −10 en. Provide the explicit expression of all terms in the control law.

Reply #10

The control law contains a velocity feedforward term, in order to follow the moving target in
nominal conditions, and a feedback action on the Cartesian error, which is rotated in the (Frenet)
frame associated to the path. The target moves at constant speed v = 0.3 [m/sec] along a linear
path making an angle β = −20◦ with the axis x0. Thus, we have

ṗd = v

(
cosβ

sinβ

)
= 0.3

(
0.9397

−0.3420

)
=

(
0.2819

−0.1026

)
[m/s].

The Cartesian error ep ∈ R2 is rotated into the tangential and normal components to the path
(i.e., in the task frame) as

ep =

(
ex

ey

)
= pd − f(q) ⇒ etask =

(
et

en

)
=

(
cosβ sinβ

− sinβ cosβ

)(
ex

ey

)
= RT(β) ep, (5)

where

f(q) =

(
l1 cos q1 + l2 cos(q1 + q2)

l1 sin q1 + l2 sin(q1 + q2)

)
is the direct kinematics of the 2R robot. The complete control law is then

q̇ = J−1(q) (ṗd +R(β)Ktask etask) ,= J−1(q)
(
ṗd +R(β)KtaskR

T(β) ep

)
, (6)

where the robot Jacobian J(q) and the (diagonal) task gain matrix Ktask > 0 are given by

J(q) =

(
−l1 sin q1 − l2 sin(q1 + q2) −l2 sin(q1 + q2)

l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2)

)
, Ktask =

(
3 0

0 10

)
.

By replacing eq. (6) in the differential kinematics, we obtain

ṗ = J(q)q̇ = J(q)J−1(q)
(
ṗd +R(β)KtaskR

T(β) ep

)
⇒ ėp = ṗd − ṗ = −R(β)KtaskR

T(β) ep = −Kp ep,

having defined the (full and symmetric) Cartesian gain matrixKp = R(β)KtaskR
T(β) > 0. Being

R(β) a constant matrix, we immediately see that

ėtask = RT(β) ėp = −RT(β)Kp ep = −RT(β)KpR(β) etask = −Ktask etask,

or in scalar terms (
ėt

ėn

)
=

(
−3 et

−10 en

)
,

which is exactly the desired decoupled and linear error dynamics. �

∗ ∗ ∗ ∗ ∗
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