Exercise 1

Consider a helix path whose parametrization is given by

\[\mathbf{p}(s) = \begin{pmatrix} x(s) \\ y(s) \\ z(s) \end{pmatrix} = \begin{pmatrix} r (\cos s - 1) + x_0 \\ r \sin s + y_0 \\ ks + z_0 \end{pmatrix}, \quad s \in \mathbb{R}, \quad (1) \]

and let two Cartesian points \(\mathbf{P}_A = (p_{Ax}, p_{Ay}, p_{Az})^T \) and \(\mathbf{P}_B = (p_{Bx}, p_{By}, p_{Bz})^T \) be assigned. Define an interval \(s \in [0, s_{\text{max}}] \) and scalar values \(r, k, x_0, y_0, \) and \(z_0 \) in (1) such that \(\mathbf{p}(0) = \mathbf{P}_A \) and \(\mathbf{p}(s_{\text{max}}) = \mathbf{P}_B. \) Moreover, associate to this path a rest-to-rest timing law given by a cubic polynomial \(s = s(t), \) \(t \in [0, T] \), where \(T \) is the total motion time.

- Does the trajectory interpolation problem always have a solution? Is the solution unique?

- Determine a path (1) that solves the above problem for the numerical data \(\mathbf{P}_A = (0, 2, -10)^T \) and \(\mathbf{P}_B = (-2, 0, 10)^T. \) Compute the expression of the curvature \(\kappa(s) \) of this path.

- For the chosen timing law, provide the expressions of \(\dot{\mathbf{p}}(t) \) and \(\ddot{\mathbf{p}}(t) \), and determine the minimum time \(T \) that realizes the interpolation under the constraint \(\| \dot{\mathbf{p}}(t) \| \leq V_{\text{max}}. \)

Exercise 2

Consider a 3R elbow-type robot having its base mounted on the plane \(z = 0. \) The shoulder joint is at a height \(\ell_1 = 5. \) The links 2 and 3 have equal lengths \(\ell_2 = \ell_3 = 10. \)

- Place the robot base at a point \((x_b, y_b) \) on the plane \(z = 0 \) so that the end-effector is capable of executing the solution path of Exercise 1.

- Find a robot configuration \(\mathbf{q} = \mathbf{q}^* \) at which the end-effector is placed in the (single) point of path (1) where the norm of the Cartesian velocity \(\dot{\mathbf{p}} \) in the minimum time trajectory of Exercise 1 has its maximum value.

- Compute at \(\mathbf{q}^* \) the joint velocity \(\dot{\mathbf{q}} \in \mathbb{R}^3 \) of the robot that realizes the desired velocity \(\dot{\mathbf{p}} \) of the above minimum time trajectory.

[150 minutes; open books]