Consider a 3R anthropomorphic robot mounted on the floor and characterized by the Denavit-Hartenberg parameters in Table 1, where D, L_1, L_2, and L_3 are all strictly positive values.

<table>
<thead>
<tr>
<th>i</th>
<th>α_i</th>
<th>d_i</th>
<th>a_i</th>
<th>θ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\pi/2$</td>
<td>D</td>
<td>L_1</td>
<td>q_1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>L_2</td>
<td>q_2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>L_3</td>
<td>q_3</td>
</tr>
</tbody>
</table>

Table 1: Table of DH parameters

1. Obtain the 3×3 Jacobian matrix $^0J_L(q)$ relating the joint velocity \dot{q} to the linear velocity 0v of the origin O_3 of frame 3 expressed in frame 0.

2. Characterize the singular configurations \mathbf{q} of the Jacobian $^3J_L(q)$ relating \dot{q} to the linear velocity 3v of the origin O_3 of frame 3 expressed in frame 3.

3. Obtain the 3×3 Jacobian matrix $^0J_A(q)$ relating the joint velocity \dot{q} to the angular velocity $^0\omega$ of frame 3 expressed in frame 0. Show that this matrix is always singular and provide an explanation of this result.

4. Assume that the robot is in the configuration

$$\mathbf{q}^* = \begin{pmatrix} 0 & \pi/4 & -\pi/4 \end{pmatrix}^T \text{ [rad]}$$

with a joint velocity

$$\dot{\mathbf{q}}^* = \begin{pmatrix} \dot{q}_1^* & 0 & 0 \end{pmatrix}^T \text{ [rad/s]}, \quad \text{with } \dot{q}_1^* \neq 0.$$

Determine the joint acceleration \ddot{q} that should be imposed so that the resulting linear Cartesian acceleration of the origin O_3 is directed along y_3 and has an intensity $A \neq 0$. Provide some comment on the structure of the obtained solution. In particular, is there a value A such that only one joint needs to accelerate?
For item 1, we are interested in the velocity of point \(O_3 \), whose position \(p = 0^0 p \) is given by the direct kinematics map

\[
p = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = \begin{pmatrix} \cos q_1 (L_1 + L_2 \cos q_2 + L_3 \cos (q_2 + q_3)) \\ \sin q_1 (L_1 + L_2 \cos q_2 + L_3 \cos (q_2 + q_3)) \\ D + L_2 \sin q_2 + L_3 \sin (q_2 + q_3) \end{pmatrix} = f(q). \quad (1)
\]

The Jacobian \(^0J_L(q) \) can be obtained either by analytical differentiation of \(f(q) \) in (1) w.r.t. \(q \) or by using the expression of the first three rows of the geometric Jacobian. Using the usual short notation for trigonometric functions, the result is in both cases

\[
^0J_L(q) = \begin{pmatrix} -s_1(L_1 + L_2c_2 + L_3c_{23}) & -c_1(L_2s_2 + L_3s_{23}) & -L_3c_1s_{23} \\ c_1(L_1 + L_2c_2 + L_3c_{23}) & -s_1(L_2s_2 + L_3s_{23}) & -L_3s_1s_{23} \\ 0 & L_2c_2 + L_3c_{23} & L_3c_{23} \end{pmatrix}. \quad (2)
\]

For item 2, we have that

\[
\det ^3J_L(q) = \det \left(^2R_3^T(q_3)\ ^1R_2^T(q_2)\ ^0R_1^T(q_1)\ ^0J_L(q) \right) = \det ^0J_L(q).
\]

Nonetheless, it is useful to rewrite the Jacobian in the successive frames 1, 2, and 3, because the resulting expressions will be simplified. From Table 1, we have

\[
^0R_1(q_1) = \begin{pmatrix} c_1 & 0 & s_1 \\ s_1 & 0 & -c_1 \\ 0 & 1 & 0 \end{pmatrix}, \quad ^1R_2(q_2) = \begin{pmatrix} c_2 & -s_2 & 0 \\ s_2 & c_2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad ^2R_3(q_3) = \begin{pmatrix} c_3 & -s_3 & 0 \\ s_3 & c_3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

From these we obtain

\[
^1J_L(q) = ^0R_1^T(q_1)\ ^0J_L(q) = \begin{pmatrix} 0 & -(L_2s_2 + L_3s_{23}) & -L_3s_{23} \\ 0 & L_2c_2 + L_3c_{23} & L_3c_{23} \\ -(L_1 + L_2c_2 + L_3c_{23}) & 0 & 0 \end{pmatrix},
\]

\[
^2J_L(q) = ^1R_2^T(q_2)\ ^1J_L(q) = \begin{pmatrix} 0 & -L_3s_3 & -L_3s_3 \\ 0 & L_2c_2 + L_3c_{23} & L_3c_{23} \\ -(L_1 + L_2c_2 + L_3c_{23}) & 0 & 0 \end{pmatrix},
\]

and

\[
^3J_L(q) = ^2R_3^T(q_3)\ ^2J_L(q) = \begin{pmatrix} 0 & L_2s_3 & 0 \\ 0 & L_3 + L_2c_3 & L_3 \\ -(L_1 + L_2c_2 + L_3c_{23}) & 0 & 0 \end{pmatrix}.
\]

In particular from the last expression, it is immediate to see that for any \(i \in \{1, 2, 3\} \)

\[
\det ^iJ_L(q) = -(L_2L_3(L_1 + L_2c_2 + L_3c_{23})s_3). \quad (3)
\]
Therefore, the singular configurations of $J_L(q)$ are:

$$s_3 = 0 \iff q_3 = \{0, \pm \pi\} \quad \text{(third link is stretched or folded)}$$

$$L_1 + L_2c_2 + L_3c_{23} = 0 \iff p_x = p_y = 0 \quad (O_3 \text{ is on the axis } z_0 \text{ of joint 1})$$

For item 3, we compute the expression of the lower three rows of the geometric Jacobian. It is

$$0J_A(q) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & z_1 \\ 0 & z_2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -c_1 & -c_1 \end{pmatrix} R_1(q_1) R_2(q_2) R_3(q_3).$$

(4)

Matrix $0J_A(q)$ is always singular, having constant rank equal to 2. This can be easily explained as follows. The three degrees of freedom of the considered manipulator allow placing the end-effector in any point of the robot primary workspace, and imposing a linear velocity in any direction when the arm is out of singularities. However, the orientation of the end-effector frame can never be changed around the unitary axis $n(q_1) = (c_1 \quad s_1 \quad 0)^T$. In fact, $\omega = \alpha n(q_1) \notin R\{0J_A(q)\}$, for every q and for any scalar α.

Finally, for item 4 we use the second-order differential map

$$\ddot{p} = 0J_L(q)^{-1} \ddot{q} + 0J_L(q) \dot{q},$$

(5)

evaluated at $q = q^*$, $\dot{q} = \dot{q}^*$. The Cartesian acceleration is specified as

$$\ddot{p} = 0R_3(q)^{\ddot{p}} = 0R_1(q_1)^{1} R_2(q_2)^{2} R_3(q_3) \begin{pmatrix} 0 \\ A \\ 0 \end{pmatrix} = \begin{pmatrix} -Ac_1s_{23} \\ -As_1c_{23} \\ A_{c_{23}} \end{pmatrix},$$

which, when evaluated at $q = q^*$, yields the desired value

$$\ddot{p}_d = \ddot{p}|_{q=q^*} = \begin{pmatrix} 0 \\ 0 \\ A \end{pmatrix},$$

(6)

i.e., the acceleration of the end-effector should be directed along z_0, the vertical direction. Since the determinant (3) of the associated Jacobian is nonzero at the given configuration, the solution for the joint acceleration is obtained from (5) as

$$\ddot{q} = 0J_L^{-1}(q^*) \begin{pmatrix} \ddot{p}_d - 0J_L(q^*) \dot{q}^* \end{pmatrix},$$

where

$$0J_L^{-1}(q^*) = \begin{pmatrix} 0 & -L_2 \frac{\sqrt{2}}{2} & 0 \\ L_1 + L_2 \frac{\sqrt{2}}{2} + L_3 & 0 & 0 \\ 0 & L_2 \frac{\sqrt{2}}{2} + L_3 & L_3 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -\frac{\sqrt{2}}{L_2} & 0 \\ -L_1 + L_2 \frac{\sqrt{2}}{2} + L_3 & 0 & 0 \\ -L_1 + L_2 \frac{\sqrt{2}}{L_2} & 0 & \frac{1}{L_3} \end{pmatrix}.$$
Let \(^0J_1 \) be the first column of the Jacobian \(^0J_L \). Thanks to the simple structure of \(\dot{q}^* \), for the term involving the time derivative of the Jacobian we need only to compute

\[
\left(^0J_L(q) \dot{q} \right)_{q=q^*, \dot{q}=\dot{q}^*} = \left(^0J_1(q) \right)_{q=q^*, \dot{q}=\dot{q}^*} \left(\frac{\partial ^0J_1(q)}{\partial q_1} \right)_{q=q^*} \dot{q}^*_1
\]

\[
= \begin{pmatrix} -c_1(L_1 + L_2 c_2 + L_3 c_{23}) \\ -s_1(L_1 + L_2 c_2 + L_3 c_{23}) \\ 0 \end{pmatrix}_{q=q^*} \dot{q}^*_1^2 = \begin{pmatrix} -(L_1 + L_2 \frac{\sqrt{2}}{2} + L_3) \\ 0 \\ 0 \end{pmatrix} \dot{q}^*_1^2.
\]

As a result, from (6-8) the final solution is

\[
\ddot{q} = A \begin{pmatrix} 0 \\ 0 \\ \frac{1}{L_3} \end{pmatrix} + (L_1 + L_2 \frac{\sqrt{2}}{2} + L_3) (\dot{q}^*_1)^2 \begin{pmatrix} 0 \\ -\frac{\sqrt{2}}{L_3} \\ \frac{1}{L_3 + \frac{\sqrt{2}}{L_3}} \end{pmatrix}.
\]

We note that no acceleration should be applied to the first joint (\(\ddot{q}_1 = 0 \)), as could be argued already from (6). In fact, any angular acceleration imposed to joint 1 (along the vertical joint axis \(z_0 \)) would produce a centrifugal acceleration on the end-effector, which is in contrast with the requested zero acceleration along the \(x_0 \) and \(y_0 \) axes in (6). Moreover, if

\[
A = - \left(1 + \frac{L_3}{L_2} \frac{\sqrt{2}}{2} \right) (L_1 + L_2 \frac{\sqrt{2}}{2} + L_3) (\dot{q}^*_1)^2
\]

then \(\ddot{q}_1 = \ddot{q}_3 = 0 \) in the solution.

* * * * *