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Differential kinematics

= relations between motion (velocity) in joint space
and motion (linear/angular velocity) in task space
(e.g., Cartesian space)

= instantaneous velocity mappings can be obtained
through time differentiation of the direct kinematics
or in @ geometric way, directly at the differential level
= different treatments arise for rotational quantities
= establish the relation between angular velocity and
= time derivative of a rotation matrix

= time derivative of the angles in a minimal representation
of orientation .
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Angular velocity of a rigid body

“rigidity” constraint on distances among points:
||7;|| = constant

— Vp1
mm) vp; — vp; Orthogonal to r;;
1 Upy — VUp1 = W1 XT3
2 Upz —VUpy = Wq XT3
Vp3
3 Up3 — Upy = Wy X173
vpl,Pz,Pg 2-1=3 - W1 = Wy = W

aka, “(fundamental)
kinematic equation”

“ 7.”1']'= w X rij I
of rigid bodies
= the angular velocity w is associated to the whole body (not to a point)
= if 3Py, P,: vp; = vp, = 0 = pure rotation (circular motion of all P; ¢ line P, P,)

= w = 0 = pure translation (all points have the same velocity v,)
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vpj = Up; + w X T'l-j= Upi + S((l)) ri]'




Linear and angular velocity
of the robot end-effector

w
Wy = 2192 Wy = Zn—lén v
O—
o/
w; = Zi—léi r= (p' ¢)

alternative definitions R D

of the direct kinematics 1 = PR

of the end-effector 0" 1

= v and w are “vectors”, namely are elements of vector spaces

= they can be obtained as the sum of single contributions (in any order)

= such contributions will be given by the single (linear or angular) joint velocities
= on the other hand, ¢ (and c[>) is not an element of a vector space

= a minimal representation of a sequence of two rotations is not obtained summing
the corresponding minimal representations (accordingly, for their time derivatives)

in general, w # ¢
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Finite and infinitesimal translations

= finite Ax, Ay. Az or infinitesimal dx, dy, dz translations
(linear displacements) always commute

Az
) Z | i

/;
Ay same final
position
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Finite rotations do not commute

example
Z Z A
—_— (o]
initial ¢x = 90
orientation
Y.
X X
mathematical fact: w is
X NOT an exact differential form ¢z =90°
Z (the integral of w over time
depends on the integration path!)
¢z =90° Y
> Z >
” 7=
X
x ¢x =90° different final
, orientations!
/ .
X note: finite rotations still commute
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w is not an exact differential

whiteboard ...
Wy | : ' Ao first final
20 r r [ wWx(t) orientation
T=2s | L, f w(t)dt = j w, (t) |dt
ol o \ww) A
! : 90°
| i — Rr zx
initial — = ( 00> /
orientation = @z | 90° | 20
| ¢(T)
— ¢ fcp(t)dt—j—dt—j do = ¢r — ¢P;
wy| e T $(0) e
* 90° an exact differential form R
: f.XZ
wy‘ T 90°
A R A 90°
Dz | i 90° ...the same value ..final
. but a different... orientation
Robotics 1




Infinitesimal rotations commute!

= infinitesimal rotations d¢y, d¢y, d¢, around x,y, z axes

1 0 0 1 0 0
Ry(¢x) = |0 cospy —singy| E5) Ry(dey) =0 1 —dgy
0 singy cosgy . 0 doy 1
"cospy 0 sinoy] 1 0 doy]
Ry(py)=| 0 1 0 | @ Rydpy)=| 0 1 0
—singy 0 cos ¢y —d¢py 0 1 |
cos¢p, —sing, 0O 1 —d¢, 0]
R;(¢;) =|singp, cos¢p, 0 :> Rz(doz) = |do, 1 0
L0 0 1. L0 0 11
ot
1 —dpz dy second- anc
= R(dp) = R(dox,ddy,dopy) = | do; 1 —d¢y| < third-order
1 ~dpy dpy 1 e
in any order =] + S(d¢o)
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Time derivative of a rotation matrix

= let R = R(t) be a rotation matrix, given as a function of time

= since I = R(t)RT(t), taking the time derivative of both sides yields
0 = d(R(®RT(t))/dt = (dR(t)/dt)RT(t) + R(¢t)(dRT (t)/dt)

= (dR(t)/dORT () + ((dR(D)/dt) RT(t))
thus (dR(t)/dt) RT(t) = S(t) is a skew-symmetric matrix

= let p(t) = R(t)p’ a vector (with constant norm) rotated over time

= comparing

p(t) = (dR(t)/dt)p’ = S(OR()p" = S()p(t)

p(t) = w(t) x p(t) = S(w(®))p(t)

wegetS =S(w)

R = S(w)R
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Example
Time derivative of an elementary rotation matrix

0
Rx(¢(1)) = [ cos ¢(t) — sin d)(t)]
sing(t) cos(t)

0 _
Ry (P)RE () —gb[ —smgb —cosng Cosgb sm(p

0 cos¢p —sing —sing cos@.
0 0 O.' L
=10 0 — ¢ =S(w) ‘ W= Wy = 0]
0 ¢ 0 L0

more in general, for the axis/angle rotation matrix

R(r,H(t)) = R(r,0)R"(r,0) = S(w) - W

||

|

S

<

|

D>.
[r—
NY Y Y
—]

Robotics 1 10



Time derivative of RPY angles and w '\!f

Rrpy(ax, By, vz) = Rzy’x”(yz» By, ax) = RZ(V)Ry’(,B)Rx”(a)

Z A
the three
contributions
vZ,BY', aX" y A\
to w are ,3
simply summed I -
as vectors
B
Xy
x’ a
xll
similar treatment for the
Robotics 1

Trpy (B, V)

A
r A\

cfcy —SY 0 | [d]

w=\|cpsy ¢ O
| —sp 0 1

X" Y z

T

1st col in  2nd col in

Rz(V)Ry (B) Rz(y)

det Trpy(B,¥) = cosfp =0
for f =+m/2
(singularity of the
RPY representation)
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Robot Jacobian matrices

= analytical Jacobian (obtained by time differentiation)

r=(5)=r@ = (5) =L 0

= geometric or basic Jacobian (no derivatives)
v\ _ (@) . _ .
(o) = Uy Ja =1

= in both cases, the Jacobian matrix depends on the
(current) configuration of the robot
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direct kinematics

f

P, = ly cosqy + [, cos(q; + q2)
r < py=1lsing; + l;sin(q; + q3)

- S LS S S S S e e B e .
DT SN SIS EESN  BES  BEEN  BENE BN BN S S e e ..

. . . . —l151 — 1381, —13817
I_erz ll €141 + lzc1z(CI1 + QZ) ‘ ]T(Q) — l1C1 + 12C12 l2C12

given 7, this is a 3 X 2 matrix

here, all rotations occur around the same
fixed axis z (normal to the plane of motion)
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(>
Analytical Jacobian of polar (RRP) robot (il

direct kinematics (here, r = p)

P
_ )
Px = (q3C2C1
Py = q3C281 ¢ fr(q)
dq Pz = dl + QBSZJ
Py
- >
L y
Dy ) qi ../  taking the time derivative
X

—({3C251 —(352C1 (04
vV=p= < q3C2C1  —q35251 Czsl) q =J-(@)q

\ 0 q3C; SzJ
a1 (q)
dq
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Geometric Jacobian

always a 6 X n matrix

y .
end-effector —ypy (L@, _ (Ju@ - Jm(@y (%
et (07) = (0 )a= (20 1) (%)

vg = J11(@QG @ + Jin (@ dn wg = Ja1 (D@ @+ Jan (@ dn

contribution to the linear contribution to the angular
e-e velocity due to g, e-e velocity due to ¢,
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Contribution of a prismatic joint

note: joints beyond the i-th one are considered to be “frozen”, ,
so that the distal part of the robot is a single rigid body J1i(q)qi = z;_1d;

prismatic
i-th joint
p Ju(@d; | zqd;
) - ' . .
joint { . . 0
RF: J4i(@)q;
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Contribution of a revolute joint

J1i(q)q; J4:(Q)q; = Zi—19i

why not use the revolute
minimum distance . . .
vector DE? L-th joint
A .
joi‘nti J1i(q)q; (Zi—1>< Pi—1,5)9i
RF, . .
° 14i(q)q; Zi_10;
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Expression of geometric Jacobian

]Ln(CI)
]An(Q)

(52)=) G0 = (i) o=
prismatic revolute
i-th joint i-th joint

J1i(q) Zi—q Zi—1X Pi-1,E
Jai(q) 0 Zi_q

- - /’(
Zic1 = "Ri(qy) - "TPRi_1(qi1) " ziq
Pi-1,E = pO,E(Ql' o qp) — Po,i—1(CI1» i)

complete kinematics
for e-e position

partial kinematics
for O;_4 position

Robotics 1

0
0
1

)

d1

;

|

this can be also
computed as

_ 9pok(q)
0q;

all vectors should be
expressed in the same
reference frame

(here, the base frame RFj)
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Geometric Jacobian of planar 2R arm

Denavit-Hartenberg table

jOint a; di a; Hi
1 0 0 [ q1
2 (oo |1 |q

C1 _S]_ O l1C1

04, = S1 ¢ 0 15 ¥ poa
0 0 1 O
0 0 0 1
Ciz —S12 0 ljcg + lyeq,
512 C12 0 l151 + l2512 Po,E
0 0 1 0
0 0 0 1

P1,e = Po,e — Po,1
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Geometric Jacobian of planar 2R arm

X2 _ (%0 XPoEe Z1 XD1E
](q) - ( Zy Z4 )
—l151 — 13517 —le1zé
lic1 + 1ycq5 l,¢12

note: the Jacobian is here a 6 X 2 matrix,

thus its maximum rank is 2
1 compare rows 1, 2, and 6

with the analytical
Jacobian in slide #13!

at most 2 components of the linear/angular
end-effector velocity can be independently assigned
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Transformations of Jacobian matrix

b) we may choose

the one ]ust j,

computed

= (@) g

@ =V, +S50%,) w

}/, <?:>=<B§° 5)(E ) ()

B
=< R, BOO>(I S( OTEn)) O]n(Q)q= B]E(q)q

Vg =Vp + W XTyg

0 Ry/ \O |
a) we may choose ~ ~ _
RFy = RF;(q) never singular!
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= 8R robot manipulator with transmissions by

pulleys and steel cables (joints 3 to 8)

Robotics 1

lightweight: only 15 kg in motion
motors located in second link
incremental encoders (homing)

redundancy degree for e-e pose task: n —m = 2
compliant in the interaction with environment

| a(mm) | d (mm) | a(rad) | range 6 (deg) |

1

0 0 0 —7/2 | [-12.56, 179.89]
1 144 450 —/2 [-83, 84]

2 0 0 /2 [7, 173]

3 100 350 /2 (65, 295]

4 0 0 —/2 [-174, -3]

5 24 250 /2 (57, 265]

6 0 0 —x/2 | [-129.99, -45]
7 100 0 ™ [-55.05, 30]
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= geometric Jacobian °/4(q) is very complex
= "mid-frame” Jacobian *J,(q) is relatively simple!

dysy83+dssgens) —aycse) 20—dyegeycp—dge g

—G383C331+0a303C) +a16102—d) ¢ 87

4G, —dgCgCa8,—a183C1 82 —d 890100 —dg35¢) —dy8;Cq+A3828,
—£3C281—83C)1
—228
L —83C28)+C3C)
a133+dsesan dacs 0O 0
—@g38383 —ageq 00
6 rows, —ayeca—dsegsz—age; dysy —ag 0 O
—C382 83 0 0 —sa4
8 columns N .ot
—e382 —cg 0 1 0

—az24—dscscy —az2scace+dsss2ccy

—dgegsgtagey dpsgegsy—azszsec

dzsg —agCgCz+dz s 3
—C485 —C4C585+84C¢
—8485 —84C586—C4Cs

—C5 25865

Robotics 1 23



p2w w=wy twy +wy =ady+ay(d)d, +az(dy, d2)¢3

1 1 )

(moving) axes of definition for the
sequence of rotations ¢;, i = 1,2,3

=T(¢) ¢

if the task vector r is

= (5) = 1@ = (o 1))@ @ J@=( 70p) 0@

T(¢) has always < singularity of the specific minimal
a singularity representation of orientation
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Acceleration relations (and beyond...) %\3‘#

Higher-order differential kinematics

= differential relations between motion in the joint space and motion in
the task space can be established at the second order, third order, ...

= the analytical Jacobian always “weights” the highest-order derivative

!

velocity r=J-(q)|q matrix function N, (g, q)
acceleration  # ={J-(q)|§ + J-(q)g matrix function N5(q, g, §)
jerk ¥ = (@G + 2/ (@4 + -(@)q
snap r =) (@)g+

= the same holds true also for the geometric Jacobian J(q)
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Primer on linear algebra

given a matrix J: m X n (m rows, n columns)

rank p(J) = max # of rows or columns that are linearly independent
= p(J) < min(m,n) < if equality holds, ] has full rank

« if m = n and J has full rank, J is nonsingular and the inverse J~1 exists

= p(J) = dimension of the largest nonsingular square submatrix of |

range space R(J) = subspace of all linear combinations of the columns of |

R(J)={veR™:3¢ € R",v = J§} «— also called image of ]
= dim(R())) = p(J)
null space V' (J) = subspace of all vectors that are zeroed by matrix J
N(J)={&eR™ JE =0€R"} <— also called kernel of J
« dim(V () =n—p()

RND+NJH =R™and RJY) + M) = R™ (sum of vector subspaces)

= anyelementveV =V, +V, canbewrittenasv =v; +v,, v €V;,v, €V,

Robotics 1
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Robot Jacobian

decomposition in linear subspaces and duality

] task (Cartesian)

joint velocities

m / /> velocities

RUD+N() =R" R(D+N(J") =R"

T space of
w task (Cartesian)
forces

(in a given configuration q)
Robotics 1 27

dual spaces
saoeds |enp

space of
joint torques



Mobility analysis in the task space

= p() =pJ@), RU) =RUQ)), NJ") =N(JT(q)), etc. are locally

defined, i.e., they depend on the current configuration g

= R(J(q)) is the subspace of all “generalized” velocities (with linear
and/or angular components) that can be instantaneously realized by the
robot end-effector when varying the joint velocities g at the current g

= if p(J(q)) = m at ¢ (J(q) has max rank, with m < n), the end-effector
can be moved in any direction of the task space R™

= if p(J(q)) < m, there are directions in R™ in which the end-effector
cannot move (at least, not instantaneously!)

= these directions € N (JT (q)), the complement of R(J(q)) to task space R™,
which is of dimension m — p(J(q))

= if MV (J(q)) # {0}, there are non-zero joint velocities ¢ that produce
zero end-effector velocity (“self motions”)

= this happens always for m < n, i.e., when the robot is redundant for the task
Robotics 1 28



Mobility analysis for a planar 3R robot &J’Z

whiteboard ... R
p};"g_______________________/_/__"??_ p L=L=Il3=1 n=3 m=2
, WS, = {p € R%: |p|| < 3} € R?
,,,,, ' WS, = {p € R*:|Ip]l <1} c R?
X _ (€1 T C12 * C123
in R? C’% e > P = (51 + 5., + 5123) in R3
\‘ : —S1 7 S12 7 S123  TS12 7 S123  TS123

V=P = ( C1 + €12 T C123 C12 T C123 C123 )q =J(a)q

case 1) case 2)

q=(0,m/2,1m/2) q=(m/2,0,m)
(-1 -1 0 _(-1 0 1
]_(0 —1 —1) ]_(0 0 0)

7 7

= run the Matlab code subspaces_3Rplanar.m available in the course material
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Mobility analysis for a planar 3R robot &

whiteboard ...

-1 0
a=©m2m2) J=(3 3 ) 1T=<—1 —1>
case 1) 0 -1
> p(J)=2=m p(J") =p() =2

2
ll } dim () = 1

17 0 _
- ([) (- vo={lal] w05,
X $
R+ N = R?
( L RUDAN() =R
7 7 f
1 0
| Y
0 1
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Mobility analysis for a planar 3R robot &

whiteboard ...
~1 0
_ -1 0 1
1= (m/2,0.m) fz(o 0 o) T:<(1)
case 2) p(D=1<m  p(N =p() =1
1 07 [1 . ~
RO = { |o)} () =H1 H} )
7z dimR(J) =1=p(J) 01 11
¥
Ty — 2
forbidden! 1 ) RO+ N =R
RUDH+N7() =R?
7 7 f
—1
™~ dimR(J") =1 Ty — [ [0 dimnN (") =1
o ={lo]] gt vo=(BD) g
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Kinematic singularities

= configurations where the Jacobian loses rank
< loss of instantaneous mobility of the robot end-effector

= for m = n, they correspond to Cartesian poses at which the number of
solutions of the inverse kinematics problem differs from the generic case

= 'in” a singular configuration, we cannot find any joint velocity that realizes
a desired end-effector velocity in some directions of the task space

= close” to a singularity, large joint velocities may be needed to realize even
a small velocity of the end-effector in some directions of the task space

= finding and analyzing in advance the mobility of a robot helps in singularity
avoidance during trajectory planning and motion control

= when m = n: find the configurations g such that det /(qg) = 0

= when m < n: find the configurations g such that all m X m minors of J(q) are
singular (or, equivalently, such that det(J(q)/" (g)) = 0)

= finding all singular configurations of a robot with a large number of joints,

or the actual “distance” from a singularity, is a complex computational task
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e S P direct kinematics

Dy = licq + 15045

Py = 1151 + 13517

-
-
-
-
-
-

X

o 1:9 > analytical Jacobian
_ x SN l1s1 = 13812 — 12512) . :
det ](C[) = l1l252 P = ( l1C1 + l2C12 l2C12 q _](q)q

= singularities: robot arm is stretched (g, = 0) or folded (g, = m)

= Singular configurations correspond here to Cartesian points that are on the
boundary of the primary workspace

= here, and in many cases, singularities separate configuration space regions
with distinct inverse kinematic solutions (e.g., elbow “up” or “down")
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Singularities of polar (RRP) robot

A‘“s = = =
Dz direct kinematics

Px = (q3C2(Cq

Py = 43251
d Pz = di + 35>
1 . .
analytical Jacobian
y> —(q351C2 —(3C153 (€163
Px [~ q _1\:_‘_‘_‘:_\_‘_‘:::::}',/ p — q3C1C2 —({351S2  S$1Cp q
X 2 .O k1% S2
det J(q) = q35¢; =J(q)q

= singularities
= E-E is along the z axis (q, = +m/2): simple singularity = rank p(J) = 2
= third link is fully retracted (q; = 0): double singularity = rank p(J) drops to 1

= all singular configurations correspond here to Cartesian points internal to

the workspace (supposing for the prismatic joint)
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)
Singularities of robots with spherical wrist Qi

n = 6, last three joints are revolute and their axes intersect at a point

without loss of generality, we set O, = W = center of spherical wrist
(i.e., choose d, = 0 in DH table) and obtain for the geometric Jacobian

=0 )

since det J(qq, -, qs) = det ], - det/,,, there is a decoupling property
s det J;;(q4,92,93) = 0 provides the arm singularities
s det J,,(q4,q5) = 0 provides the wrist singularities

being in the geometric Jacobian J,, = (z3 z4 zs), wrist singularities
correspond to when z3, z, and zs become linearly dependent vectors

— when either g5 = 0 or g5 = +m/2 (see Euler angles singularities!)

inversion of J(q) is simpler (block triangular structure)

= the determinant of J(q) will never depend on g;: why?
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