Inverse kinematics

Prof. Alessandro De Luca
Inverse kinematics
what are we looking for?

Direct kinematics is always unique;
how about inverse kinematics for this 6R robot?
Inverse kinematics problem

- given a desired end-effector pose (position + orientation), find the values of the joint variables q that will realize it

- a synthesis problem, with input data in the form
 - $T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 \\ A_n(q) \end{bmatrix}$
 - $r = f_r(q)$, for a task function

- a typical nonlinear problem
 - existence of a solution (workspace definition)
 - uniqueness/multiplicity of solutions ($r \in \mathbb{R}^m, q \in \mathbb{R}^n$)
 - solution methods
Solvability and robot workspace
for tasks related to a desired end-effector Cartesian pose

- **primary workspace** WS_1: set of all positions p that can be reached with **at least one** orientation (ϕ or R)
 - out of WS_1 there is no solution to the problem
 - if $p \in WS_1$, there is a suitable ϕ (or R) for which a solution exists

- **secondary** (or **dexterous**) **workspace** WS_2: set of positions p that can be reached with **any** orientation (among those feasible for the robot direct kinematics)
 - if $p \in WS_2$, there exists a solution for any feasible ϕ (or R)

- $WS_2 \subseteq WS_1$
Workspace of Fanuc R-2000i/165F

$WS_1 \subset \mathbb{R}^3$

($\approx WS_2$ for spherical wrist without joint limits)

section for a constant angle q_1

rotating the base joint angle q_1
Workspace of a planar 2R arm

if \(l_1 \neq l_2 \)
- \(WS_1 = \{ p \in \mathbb{R}^2 : |l_1 - l_2| \leq \|p\| \leq l_1 + l_2 \} \subset \mathbb{R}^2 \)
- \(WS_2 = \emptyset \)

if \(l_1 = l_2 = l \)
- \(WS_1 = \{ p \in \mathbb{R}^2 : \|p\| \leq 2l \} \subset \mathbb{R}^2 \)
- \(WS_2 = \{ p = 0 \} \) (all feasible orientations at the origin!... an infinite number)
Wrist position and E-E pose inverse solutions for an articulated 6R robot

LEFT DOWN

4 inverse solutions out of singularities (for the position of the wrist center only)

LEFT UP

8 inverse solutions considering the complete E-E pose (spherical wrist: 2 alternative solutions for the last 3 joints)

RIGHT DOWN

Unimation PUMA 560

RIGHT UP
Counting/visualizing the 8 solutions of the inverse kinematics for a Unimation Puma 560

RIGHT UP

RIGHT DOWN

LEFT UP

LEFT DOWN
Inverse kinematic solutions of UR10
6-dof Universal Robot UR10, with non-spherical wrist

Video (slow motion)

Desired pose

\[p = \begin{pmatrix} -0.2373 \\ -0.0832 \\ 1.3224 \end{pmatrix} [\text{m}] \]

\[R = \begin{pmatrix} \sqrt{3}/2 & 0.5 & 0 \\ -0.5 & \sqrt{3}/2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \]

Home configuration at start

\[q = (0 \ -\pi/2 \ 0 \ -\pi/2 \ 0 \ 0)^T [\text{rad}] \]
8 inverse kinematic solutions of UR10

\[q = \begin{pmatrix}
1.0472 \\
-1.2833 \\
-0.7376 \\
-2.6915 \\
-1.5708 \\
3.1416
\end{pmatrix} \]

\[q = \begin{pmatrix}
1.0472 \\
-1.9941 \\
0.7376 \\
2.8273 \\
-1.5708 \\
3.1416
\end{pmatrix} \]

\[q = \begin{pmatrix}
1.0472 \\
-1.5894 \\
-0.5236 \\
0.5422 \\
1.5708 \\
0
\end{pmatrix} \]

\[q = \begin{pmatrix}
1.0472 \\
-2.0944 \\
-0.5236 \\
0 \\
1.5708 \\
0
\end{pmatrix} \]

\[q = \begin{pmatrix}
2.7686 \\
-1.5522 \\
0.5236 \\
2.5994 \\
-1.5708 \\
1.4202
\end{pmatrix} \]

\[q = \begin{pmatrix}
2.7686 \\
-1.1475 \\
-0.7376 \\
0.3143 \\
1.5708 \\
-1.7214
\end{pmatrix} \]

\[q = \begin{pmatrix}
2.7686 \\
-1.8583 \\
0.7376 \\
-0.4501 \\
1.5708 \\
-1.7214
\end{pmatrix} \]
Multiplicity of solutions

few examples

- E-E positioning \((m = 2)\) of a planar 2R robot
 - 2 regular solutions in \(\text{int}(WS_1)\)
 - 1 solution on \(\partial WS_1\)
 - for \(l_1 = l_2\): \(\infty\) solutions in \(WS_2\)

- E-E positioning \((m = 3)\) of an elbow-type spatial 3R robot
 - 4 regular solutions in \(WS_1\) (with singular cases yet to be investigated ...)

- spatial 6R robot arms
 - \(\leq 16\) distinct solutions, out of singularities: this “upper bound” of solutions was shown to be attained by a particular instance of “orthogonal” robot, i.e., with twist angles \(\alpha_i = 0\) or \(\pm\pi/2\) (\(\forall i\))
 - analysis based on algebraic transformations of robot kinematics
 - transcendental equations are transformed into a single polynomial equation in one variable (number of roots = degree of the polynomial)
 - seek for a transformed polynomial equation of the least possible degree
start with some trigonometric equation in the joint angle θ to be solved ...

\[a \sin \theta + b \cos \theta = c \quad (*) \]

introduce the algebraic transformation (...) and the related inverse formulas)

\[u = \tan(\theta/2) \]

\[\Rightarrow \sin \theta = \frac{2u}{1 + u^2} \quad \cos \theta = \frac{1 - u^2}{1 + u^2} \quad (\Rightarrow \sin^2 \theta + \cos^2 \theta = 1) \]

\[\tan \theta = \tan 2(\theta/2) = \frac{2 \tan(\theta/2)}{1 - \tan^2(\theta/2)} = \frac{2u}{1 - u^2} \quad \text{(using the duplication formula)} \]

substituting in (*)

\[a \frac{2u}{1 + u^2} + b \frac{1 - u^2}{1 + u^2} = c \quad \Rightarrow \]

\[\Rightarrow u_{1,2} = \frac{a \pm \sqrt{a^2 + b^2 - c^2}}{b + c} \]

\[\Rightarrow \theta_{1,2} = 2 \arctan(u_{1,2}) \]

\text{only if argument is real, else no solution}
A planar 3R arm
workspace and number/type of inverse solutions

1. in \text{int}(WS_1): \infty^1 regular (except for 3.) solutions, at which the E-E can take a continuum of \infty orientations (but not all orientations in the plane!)

2. if \|p\| = 3l: only 1 solution, singular

3. if \|p\| = l: \infty^1 solutions, 3 of which singular

4. if \|p\| < l: \infty^1 regular solutions (that are never singular)

\begin{align*}
l_1 &= l_2 = l_3 = l & n = 3, m = 2 \\
WS_1 &= \{ p \in \mathbb{R}^2 : \|p\| \leq 3l \} \subset \mathbb{R}^2 \\
WS_2 &= \{ p \in \mathbb{R}^2 : \|p\| \leq l \} \subset \mathbb{R}^2 \\
\text{any planar orientation is feasible in } WS_2
\end{align*}
Workspace of a planar 3R arm
with generic link lengths

\[l_{\text{max}} = \max \{l_i, \; i = 1, 2, 3\} \]
\[l_{\text{min}} = \min \{l_i, \; i = 1, 2, 3\} \]
\[R_{\text{out}} = l_{\text{min}} + l_{\text{med}} + l_{\text{max}} = l_1 + l_2 + l_3 \]
\[R_{\text{in}} = \max \{0, l_{\text{max}} - (l_{\text{med}} + l_{\text{min}})\} \]

a) \(l_1 = 1, \; l_2 = 0.4, \; l_3 = 0.3 \) [m] \(\Rightarrow \)
\[l_{\text{max}} = l_1 = 1, \; l_{\text{med}} = l_2 = 0.4, \; l_{\text{min}} = l_3 = 0.3 \]

Exercise #3 in classroom test of 21 Nov 2014

b) \(l_1 = 0.5, \; l_2 = 0.7, \; l_3 = 0.5 \) [m] \(\Rightarrow \)
\[l_{\text{max}} = l_2 = 0.7, \; l_{\text{med}} = l_{\text{min}} = l_1 \text{ or } l_3 = 0.5 \]
\[R_{\text{in}} = 0, \; R_{\text{out}} = 1.7 \]
Multiplicity of solutions
summary of the general cases

- if $m = n$
 - $\not\exists$ solutions
 - a finite number of solutions (regular/generic case)
 - “degenerate” solutions: infinite or finite set, but anyway different in number from the generic case (singularity)

- if $m < n$ (robot is kinematically redundant for the task)
 - $\not\exists$ solutions
 - ∞^{n-m} solutions (regular/generic case)
 - a finite or infinite number of singular solutions

- use of the term singularity will become clearer when dealing with differential kinematics
 - instantaneous velocity mapping from joint to task velocity
 - lack of full rank of the associated $m \times n$ Jacobian matrix $J(q)$
Dexter 8R robot arm

- $m = 6$ (position and orientation of E-E)
- $n = 8$ (all revolute joints)
- ∞^2 inverse kinematic solutions (redundancy degree = $n - m = 2$)

exploring inverse kinematic solutions by a robot self-motion
Solution methods

ANALYTICAL solution (in closed form)

- preferred, if it can be found*
- use ad-hoc geometric inspection
- algebraic methods (solution of polynomial equations)
- systematic ways for generating a reduced set of equations to be solved

NUMERICAL solution (in iterative form)

- certainly needed if \(n > m \) (redundant case) or at/close to singularities
- slower, but easier to be set up
- in its basic form, it uses the (analytical) Jacobian matrix of the direct kinematics map

\[J_r(q) = \frac{\partial f_r(q)}{\partial q} \]

- **Newton** method, **Gradient** method, and so on...

* sufficient conditions for 6-dof arms
 - 3 consecutive rotational joint axes are incident (e.g., spherical wrist), or
 - 3 consecutive rotational joint axes are parallel

Inverse kinematics of planar 2R arm

“squaring and summing” the equations of the direct kinematics

\[p_x^2 + p_y^2 - (l_1^2 + l_2^2) = 2l_1l_2(c_1 c_{12} + s_1 s_{12}) = 2l_1l_2c_2 \]

and from this

\[c_2 = \left(p_x^2 + p_y^2 - (l_1^2 + l_2^2) \right) / 2l_1l_2, \quad s_2 = \pm \sqrt{1 - c_2^2} \]

\[q_2 = \text{atan2}\{s_2, c_2\} \]

must be in \([-1,1]\) (else, point \(P\) is outside robot workspace!)

2 solutions

in analytical form

Robotics 1
Inverse kinematics of 2R arm (cont’d)

by geometric inspection

\[q_1 = \alpha - \beta \]

2 solutions (one for each value of \(s_2 \))

\[q_1 = \text{atan2}\{p_y, p_x\} - \text{atan2}\{l_2 s_2, l_1 + l_2 c_2\} \]

note: difference of atan2’s needs to be re-expressed in \((-\pi, \pi]\)!

\(\{q_1, q_2\}_{\text{UP/LEFT}} \)

\(\{q_1, q_2\}_{\text{DOWN/RIGHT}} \)

\(q_2' \) and \(q_2'' \) have same absolute value, but opposite signs
Algebraic solution for q_1

Another solution method...

\[
\begin{align*}
p_x &= l_1 c_1 + l_2 c_{12} = l_1 c_1 + l_2 (c_1 c_2 - s_1 s_2) \\
p_y &= l_1 s_1 + l_2 s_{12} = l_1 s_1 + l_2 (s_1 c_2 + c_1 s_2)
\end{align*}
\]

\[
\begin{bmatrix}
l_1 + l_2 c_2 & -l_2 s_2 \\
l_2 s_2 & l_1 + l_2 c_2
\end{bmatrix}
\begin{bmatrix}
c_1 \\
s_1
\end{bmatrix}
=
\begin{bmatrix}
p_x \\
p_y
\end{bmatrix}
\]

\[
det = l_1^2 + l_2^2 + 2l_1 l_2 c_2 > 0
\]

except if $l_1 = l_2$ and $c_2 = -1$

being then q_1 undefined

(singular case: ∞^1 solutions)

\[
q_1 = \text{atan2}\{s_1, c_1\}
= \text{atan2}\{(p_y (l_1 + l_2 c_2) - p_x l_2 s_2)/det, (p_x (l_1 + l_2 c_2) + p_y l_2 s_2)/det\}
\]

Notes:

a) this method provides directly the result in $(-\pi, \pi]$

b) when evaluating atan2, $det > 0$ can be in fact eliminated from the expressions of s_1 and c_1 (not changing the result)
Inverse kinematics of polar (RRP) arm

\[p_x = q_3 c_2 c_1 \]
\[p_y = q_3 c_2 s_1 \]
\[p_z = d_1 + q_3 s_2 \]

\[p_x^2 + p_y^2 + (p_z - d_1)^2 = q_3^2 \]

\[q_3 = + \sqrt{p_x^2 + p_y^2 + (p_z - d_1)^2} \]

Our choice: take here only the positive value...

If \(q_3 = 0 \), then \(q_1 \) and \(q_2 \) remain both undefined (stop); else

\[q_2 = \text{atan2} \left(\frac{p_z - d_1}{q_3}, \pm \sqrt{\frac{p_x^2 + p_y^2}{q_3}} \right) \]

If \(p_x^2 + p_y^2 = 0 \), then \(q_1 \) remains undefined (stop); else

\[q_1 = \text{atan2} \left(\frac{p_y}{c_2}, \frac{p_x}{c_2} \right) \]

\(p_z = \) distance from the origin to the base of the arm.

\(p_x, p_y, p_z \) are the Cartesian coordinates of the end-effector of the arm.

\(q_1, q_2, q_3 \) are the joint angles of the arm.

\(c \) and \(s \) are the cosine and sine functions, respectively.

\(d_1 \) is the length of the first link of the arm.

Note: here \(q_2 \) is NOT a DH variable!
Inverse kinematics of 3R elbow-type arm

\[\begin{align*}
WS_1 &= \{ \text{spherical shell centered at } (0,0,d_1), \text{ with outer radius } R_{out} = L_2 + L_3, \\
&\text{ and inner radius } R_{in} = |L_2 - L_3| \}\end{align*} \]

symmetric structure without offsets
e.g., first 3 joints of Mitsubishi PA10 robot

4 regular inverse kinematics solutions in \(WS_1 \)

more details (e.g., full handling of singular cases)
can be found in the solution of Exercise #1
in written exam of 11 Apr 2017
Inverse kinematics of 3R elbow-type arm

step 1

Direct kinematics

\[p_x = c_1(L_2c_2 + L_3c_{23}) \]
\[p_y = s_1(L_2c_2 + L_3c_{23}) \]
\[p_z = d_1 + L_2s_2 + L_3s_{23} \]

\[p_x^2 + p_y^2 + (p_z - d_1)^2 = c_1^2(L_2c_2 + L_3c_{23})^2 + c_1^2(L_2c_2 + L_3c_{23})^2 + (L_2s_2 + L_3s_{23})^2 \]
\[= \cdots = L_2^2 + L_3^2 + 2L_2L_3(c_2c_{23} + s_2s_{23}) = L_2^2 + L_3^2 + 2L_2L_3c_3 \]

\[c_3 = \left(p_x^2 + p_y^2 + (p_z - d_1)^2 - L_2^2 - L_3^2 \right)/2L_2L_3 \in [-1, +1] \text{ (else, } p \text{ is out of workspace!) } \]

\[\pm s_3 = \pm \sqrt{1 - c_3^2} \]

\[q_3^{(+)} = \text{atan2}\{s_3, c_3\} \]
\[q_3^{(-)} = \text{atan2}\{-s_3, c_3\} = -q_3^{(+)} \]
Inverse kinematics of 3R elbow-type arm

Step 2

\[p_x = c_1 (L_2 c_2 + L_3 c_{23}) \]
\[p_y = s_1 (L_2 c_2 + L_3 c_{23}) \]
\[p_z = d_1 + L_2 s_2 + L_3 s_{23} \]

... being \(p_x^2 + p_y^2 = (L_2 c_2 + L_3 c_{23})^2 > 0 \)

\[
\begin{cases}
 c_1 = p_x / \pm \sqrt{p_x^2 + p_y^2} \\
 s_1 = p_y / \pm \sqrt{p_x^2 + p_y^2}
\end{cases}
\]

\[q_1^{(+)} = \text{atan2}\{p_y, p_x\} \]
\[q_1^{(-)} = \text{atan2}\{-p_y, -p_x\} \]

only when \(p_x^2 + p_y^2 > 0 \) ...

(else \(q_1 \) is undefined —infinite solutions!)

again, two solutions

Robotics 1
Inverse kinematics of 3R elbow-type arm

step 3

combine first the two equations of direct kinematics and rearrange the last one

\[
\begin{align*}
\begin{cases}
 c_1 p_x + s_1 p_y &= L_2 c_2 + L_3 c_{23} \\
 p_z - d_1 &= L_2 s_2 + L_3 s_{23}
\end{cases}
\Rightarrow \begin{cases}
 c_1 p_x + s_1 p_y &= (L_2 + L_3 c_3) c_2 - L_3 s_3 s_2 \\
 p_z - d_1 &= L_3 s_3 c_2 + (L_2 + L_3 c_3) s_2
\end{cases}
\]

define and solve a linear system \(Ax = b \) in the algebraic unknowns \(x = (c_2, s_2) \)

4 regular solutions for \(q_2 \), depending on the combinations of \(+, -\) from \(q_1 \) and \(q_3 \)

\[
q_2 \in \{ (f, b), (u, d) \}
\]

provided \(\det A = p_x^2 + p_y^2 + (p_z - d_1)^2 \neq 0 \)

(else \(q_2 \) is undefined — infinite solutions!)

\[
q_2 = \text{atan2} \left\{ s_2 \{ (f, b), (u, d) \}, c_2 \{ (f, b), (u, d) \} \right\}
\]
Inverse kinematics for robots with spherical wrist

1. \(W = p - d_6 a \) \(\Rightarrow \) \(q_1, q_2, q_3 \) (inverse "position" kinematics for main axes)

2. \(R = 0R_3(q_1,q_2,q_3) ^3R_6(q_4,q_5,q_6) \) \(\Rightarrow ^3R_6(q_4,q_5,q_6) = 0R_3^T R \) \(\Rightarrow q_4, q_5, q_6 \)

(last 3 joints RRR, with axes intersecting in \(W \))

- \(p \) (origin \(O_6 \))
- \(R = [n \ s \ a] \) (orientation of \(RF_6 \))

Euler \(ZYZ \) or \(ZZX \) rotation matrix with \(q_4,q_5,q_6 (\theta_4,\theta_5,\theta_6) \) (inverse "orientation" kinematics for the wrist)
6R robot Unimation PUMA 600

8 different (regular) inverse solutions that can be found in closed form

TABLE I

<table>
<thead>
<tr>
<th>Joint</th>
<th>a°</th>
<th>θ°</th>
<th>d</th>
<th>a</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-90°</td>
<td>θ_1</td>
<td>0</td>
<td>0</td>
<td>$\theta_1: +/ -160^\circ$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>θ_2</td>
<td>a_2</td>
<td>0</td>
<td>$\theta_2: +45 - -225^\circ$</td>
</tr>
<tr>
<td>3</td>
<td>90°</td>
<td>θ_3</td>
<td>d_3</td>
<td>a_3</td>
<td>$\theta_3: +/ -170^\circ$</td>
</tr>
<tr>
<td>4</td>
<td>-90°</td>
<td>θ_4</td>
<td>0</td>
<td>0</td>
<td>$\theta_4: +/ -135^\circ$</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>θ_5</td>
<td>0</td>
<td>0</td>
<td>$\theta_5: +/ -100^\circ$</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>θ_6</td>
<td>0</td>
<td>0</td>
<td>$\theta_6: +/ -100^\circ$</td>
</tr>
</tbody>
</table>

$a_2 = 17.000$ $a_3 = 0.75$

$d_2 = 17.000$

$d_3 = 4.937$ $d_4 = 17.000$

$n_x = C_1[C_{23}(C_4C_5C_6 - S_4S_6) - S_{23}S_3C_6]$
$- S_1S_4C_5C_6 + C_4S_6$

$n_y = S_1[C_{23}(C_4C_5C_6 - S_4S_6) - S_{23}S_3C_6]$
$+ C_1S_4C_5C_6 + C_4S_6$

$n_z = -S_{23}(C_4C_5C_6 - S_4S_6) - C_{23}S_3C_6$

$s_x = C_1[-C_{23}(C_4C_5S_6 + S_4C_6) + S_{23}S_3S_6]$
$- S_1[-S_4C_5S_6 + C_4C_6]$

$s_y = S_1[-C_{23}(C_4C_5S_6 + S_4C_6) + S_{23}S_3S_6]$
$+ C_1[-S_4C_5S_6 + C_4C_6]$

$s_z = S_{23}(C_4C_5S_6 + S_4C_6) + C_{23}S_3S_6$

$a_x = C_1(C_{23}C_4S_6 + S_4C_6) + C_{23}S_3S_6$
$- S_1S_4C_5C_6 + C_4C_6$

$a_y = S_1(C_{23}C_4S_6 + S_4C_6) + C_{23}S_3S_6$
$+ C_1S_4C_5C_6 + C_4C_6$

$a_z = -S_{23}C_4S_6 + C_{23}C_3$

$p_x = C_1(d_4S_{23} + a_3C_{23} + a_2C_2) - S_1d_3$
$p_y = S_1(d_4S_{23} + a_3C_{23} + a_2C_2) + C_1d_3$
$p_z = -(d_4C_{23} + a_3S_{23} + a_2S_2)$.

Here $d_6 = 0$, so that $O_6 = W$ directly
Finding nice kinematic relations
whiteboard ...

- the most complex inverse kinematics that could be solved in principle in closed form (i.e., analytically) is that of a 6R serial manipulator, with arbitrary DH table
- ways to systematically generate equations from the direct kinematics that could be easier to solve ⇒ some scalar equations may contain perhaps a single unknown variable!

\[^0T_6 = ^0A_1(\theta_1) \cdots ^5A_6(\theta_6) = U_0 \]

- generating from the direct kinematics a reduced set of equations to be solved (setting w.l.o.g. \(d_1 = d_6 = 0\)) ⇒ 4 compact scalar equations in the 4 unknowns \(\theta_2, ..., \theta_5\)

\[^0T_6 = \begin{bmatrix} n & s & a & p \\ 0 & 0 & 0 & 1 \end{bmatrix} = ^0A_6(\theta) \quad a_z = a^T(\theta) z \quad ||p||^2 = p^T(\theta) p(\theta) \]
\[p_z = p^T(\theta) z \quad p^T a = p^T(\theta) a(\theta) \]

\(z = [0 \ 0 \ 1]^T\) solved analytically or numerically ...

... then solve easily for the remaining \(\theta_1\) and \(\theta_6\)

Numerical solution of inverse kinematics problems

- use when a closed-form solution \(q \) to \(r_a = f_r(q) \) does not exist or is “too hard” to be found
- all methods are **iterative** and need the matrix \(J_r(q) = \frac{\partial f_r(q)}{\partial q} \) (analytical Jacobian)
- **Newton method** (here only for \(m = n \), at the \(k \)th iteration)
 - \(r_a = f_r(q) = f_r(q^k) + J_r(q^k)(q - q^k) + o(\|q - q^k\|) \) ← neglected
 - \(q^{k+1} = q^k + J_r^{-1}(q^k) \left[r_a - f_r(q^k) \right] \)
- convergence for \(q^0 \) (initial guess) close enough to some \(q^* : f_r(q^*) = r_a \)
- problems near **singularities** of the Jacobian matrix \(J_r(q) \)
- in case of robot redundancy (\(m < n \)), use the pseudo-inverse \(J_r^\#(q) \)
- has **quadratic** convergence rate when near to a solution (fast!)
Operation of Newton method

- in the **scalar** case, also known as “method of the tangent”
- for a differentiable function $f(x)$, find a root x^* of $f(x^*) = 0$ by iterating as

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

an approximating sequence

$$\{x_1, x_2, x_3, x_4, x_5, \ldots \} \rightarrow x^*$$

animation from
Gradient method (max descent)

- minimize the error function

\[H(q) = \frac{1}{2} \| r_d - f_r(q) \|^2 = \frac{1}{2} (r_d - f_r(q))^T (r_d - f_r(q)) \]

\[q^{k+1} = q^k - \alpha \nabla_q H(q^k) \]

from

\[\nabla_q H(q) = (\partial H(q)/\partial q)^T = -\left((r_d - f_r(q))^T (\partial f_r(q)/\partial q)\right)^T = -J_r^T(q)(r_d - f_r(q)) \]

we get

\[q^{k+1} = q^k + \alpha J_r^T(q^k)(r_d - f_r(q^k)) \]

- the scalar step size \(\alpha > 0 \) should be chosen so as to guarantee a decrease of the error function at each iteration: too large values for \(\alpha \) may lead the method to “miss” the minimum
- when the step size is too small, convergence is extremely slow
Revisited as a feedback scheme

\[e = r_d - f_r(q) \rightarrow 0 \quad \Leftrightarrow \quad \text{closed-loop equilibrium } e = 0 \]

is asymptotically stable

\[V = \frac{1}{2} e^T e \geq 0 \]

is a Lyapunov candidate function

\[\dot{V} = e^T \dot{e} = e^T \frac{d}{dt} (r_d - f_r(q)) = -e^T J_r(q) \dot{q} = -e^T J_r(q) J_r^T(q) e \leq 0 \]

\[\dot{V} = 0 \quad \Leftrightarrow \quad e \in \mathcal{N}(J_r^T(q)) \]

in particular, \(e = 0 \)

null space

asymptotic stability

Robotics 1
Properties of Gradient method

- **computationally simpler**: use the Jacobian transpose, rather than its (pseudo)-inverse
- same use also for robots that are redundant \((n > m)\) for the task
- may not converge to a solution, but it **never diverges**
- the **discrete-time** evolution of the continuous scheme

\[
q^{k+1} = q^k + \Delta T J_r^T(q^k)\left(r_d - f_r(q^k)\right), \quad \alpha = \Delta T
\]

is equivalent to an iteration of the Gradient method
- the scheme can be accelerated by using a gain matrix \(K > 0\)

\[
\dot{q} = J_r^T(q) Ke = J_r^T(q) K\left(r_d - f_r(q)\right)
\]

note: \(K \rightarrow K + K_s\), with \(K_s\) skew-symmetric, can be used also to “escape” from being stuck in a **stationary point** of \(V = \frac{1}{2} e^T Ke\), by **rotating** the error \(Ke\) out of the null space of \(J_r^T\) (when a **singularity** is encountered)
A case study
analytic expressions of Newton and gradient iterations

- 2R robot with $l_1 = l_2 = 1$, desired end-effector position $r_d = p_d = (1,1)$
- direct kinematic function and error
 \[f_r(q) = \begin{pmatrix} c_1 + c_{12} \\ s_1 + s_{12} \end{pmatrix} \quad e = p_d - f_r(q) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - f_r(q) \]
- Jacobian matrix
 \[J_r(q) = \frac{\partial f_r(q)}{\partial q} = \begin{pmatrix} -(s_1 + s_{12}) & -s_{12} \\ c_1 + c_{12} & c_{12} \end{pmatrix} \]
- Newton versus Gradient iteration
 \[
 q^{k+1} = q^k + \left\{ \begin{array}{c}
 \frac{1}{s_2}
 \begin{pmatrix}
 c_{12} & s_{12} \\
 -(c_1 + c_{12}) & -(s_1 + s_{12})
 \end{pmatrix}
 |_{q=q^k}
 \\
 \alpha
 \begin{pmatrix}
 -(s_1 + s_{12}) & c_1 + c_{12} \\
 -s_{12} & c_{12}
 \end{pmatrix}
 |_{q=q^k}
 \end{array} \right\} \times \begin{pmatrix} 1 - (c_1 + c_{12}) \\ 1 - (s_1 + s_{12}) \end{pmatrix}
 |_{q=q^k}
 \]
 \[J_r^{-1}(q^k) \]
 \[e_k \]
 \[J_r^T(q^k) \]
Error function

- 2R robot with $l_1 = l_2 = 1$ and desired end-effector position $p_d = (1,1)$

\[e = p_d - f_r(q) \]

plot of $\|e\|^2$ as a function of $q = (q_1, q_2)$

two local minima (inverse kinematic solutions)
can we represent the correct “distance” between two configurations q' and q'' of this robot on a (square) region in \mathbb{R}^2?

- configuration space is a torus $SO(1) \times SO(1)$, i.e., the surface of a “donut”

the right metric is a geodesic on the torus ...
Error reduction by Gradient method

- flow of iterations along the negative (or anti-) gradient
- two possible cases: convergence or stuck (at zero gradient)

\[(q_1, q_2)' = (0, \pi/2) \quad (q_1, q_2)'' = (\pi/2, -\pi/2)\]

\[(q_1, q_2)_{max} = (-3\pi/4, 0) \quad (q_1, q_2)_{saddle} = (\pi/4, 0)\]

\[e \in \mathcal{N}(J_q^T(q))\]
Convergence analysis
when does the gradient method get stuck?

- lack of convergence occurs when
 - the Jacobian matrix $J_r(q)$ is not full rank (the robot is in a “singular configuration”)
 - **AND** the error e is in the null space of $J_T^r(q)$

\[e \in \mathcal{N}(J_T^r(q)) \]

\[p_d = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \]

\[(q_1, q_2)_{saddle} = \left(\frac{\pi}{4}, 0 \right) \]

\[e = p_d - p = \begin{pmatrix} 1 - \sqrt{2} \\ 1 - \sqrt{2} \end{pmatrix} \]

\[J_T^r(q) = \begin{pmatrix} -(s_1 + s_{12}) & c_1 + c_{12} \\ -s_{12} & c_1 \\ -s_{12} & c_{12} \end{pmatrix} \]

\[= \begin{pmatrix} -\sqrt{2} & \sqrt{2} \\ -\sqrt{2} & \sqrt{2} \end{pmatrix} \]

\[(q_1, q_2)_{max} = \left(-\frac{3\pi}{4}, 0 \right) \]

\[(q_1, q_2) = \left(\frac{\pi}{9}, 0 \right) \]

Robotics 1
Issues in implementation

- initial guess q^0
 - only one inverse solution is generated for each guess
 - multiple initializations for obtaining other solutions
- optimal step size $\alpha > 0$ in Gradient method
 - a constant step may work good initially, but not close to the solution (or vice versa)
 - an adaptive one-dimensional line search (e.g., Armijo’s rule) could be used to choose the best α at each iteration
- stopping criteria
 - Cartesian error (possibly, separate for position and orientation)
 \[\|r_d - f_r(q^k)\| \leq \varepsilon \]
 - algorithm increment
 \[\|q^{k+1} - q^k\| \leq \varepsilon_q \]
- understanding closeness to singularities
 \[\sigma_{min}\{J_r(q^k)\} \geq \sigma_0 \]
 - good numerical conditioning of Jacobian matrix (SVD)
 - (or a simpler test on its determinant, for $m = n$)
Numerical tests on RRP robot

- **RRP/polar robot**: desired E-E position $r_d = p_d = (1, 1, 1)$ —see slide 21, with $d_1 = 0.5$
- The two (known) **analytical** solutions, with $q_3 \geq 0$, are
 \[q^* = (0.7854, 0.3398, 1.5) \]
 \[q^{**} = (q_1^* - \pi, \pi - q_2^*, q_3^*) = (-2.3562, 2.8018, 1.5) \]
- Norms $\varepsilon = 10^{-5}$ (max Cartesian error), $\varepsilon_q = 10^{-6}$ (min joint increment)
- $k_{max} = 15$ (max # iterations), $|\det J_r(q)| \leq 10^{-4}$ (singularity closeness)
- **Numerical** performance of Gradient (with different steps α) vs. Newton
 - **Test 1**: $q^0 = (0, 0, 1)$ as initial guess
 - **Test 2**: $q^0 = (-\pi/4, \pi/2, 1)$ — “singular” start, since $c_2 = 0$ (see slide 21)
 - **Test 3**: $q^0 = (0, \pi/2, 0)$ — “doubly singular” start, since also $q_3 = 0$
- Solution and plots with Matlab code
Numerical test - 1

- **test 1**: $q^0 = (0, 0, 1)$ as initial guess; evolution of error norm

Gradient methods

- **Gradient: $\alpha = 0.5$**
 - slow, 15 (max) iterations

- **Gradient: $\alpha = 1$**
 - too large, oscillates around solution

- **Gradient: $\alpha = 0.7$**
 - good, converges in 11 iterations

Newton method

- very fast, converges in 5 iterations

Cartesian errors component-wise

- $e_x \approx 0.15 \cdot 10^{-8}$
- $e_y \approx 0.57 \cdot 10^{-5}$
Numerical test - 1

- **test 1**: $q^0 = (0, 0, 1)$ as initial guess; evolution of joint variables

- Gradient: $\alpha = 1$
 - not converging to a solution

- Gradient: $\alpha = 0.7$
 - converges in 11 iterations

- Newton
 - converges in 5 iterations

Both to the same solution $q^* = (0.7854, 0.3398, 1.5)$
Numerical test - 2

- **test 2**: \(q^0 = (-\pi/4, \pi/2, 1) \): singular start

\[q^0 = (-\pi/4, \pi/2, 1) \]

With check of singularity:
- Gradient
 - \(\alpha = 0.7 \)
 - Starts toward solution, but slowly stops (in singularity):
 - when Cartesian error vector \(e \in \mathcal{N}(J^T_{\tau}(q)) \)

Without check:
- Newton
 - It diverges!

\[x_10^{10} \]
Numerical test - 3

test 3: \(q^0 = (-\pi/4, \pi/2, 1) \): doubly singular start

- **Gradient** (with \(\alpha = 0.7 \))
 1. starts toward solution
 2. exits the double singularity
 3. slowly converges in 19 iterations to the solution

\[
q^* = (0.7854, 0.3398, 1.5)
\]

- **Newton** is either blocked at start or (w/o check) explodes!

 \(\Rightarrow \) “NaN” in Matlab

Cartesian errors

- \(e_x \)
- \(e_y \)
- \(e_z \)

Joint variables

- \(q_1 \)
- \(q_2 \)
- \(q_3 \)
Final remarks

- an **efficient** iterative scheme can be devised by combining
 - initial iterations using Gradient (“sure but slow”, linear convergence rate)
 - switch then to Newton method (quadratic terminal convergence rate)
- **joint range limits** are considered only at the end
 - check if the solution found is **feasible**, as for analytical methods
- in alternative, an **optimization** criterion can be included in the search
 - drives iterations toward an inverse kinematic solution with nicer properties
- if the problem has to be solved **on-line**
 - execute iterations and associate an actual robot motion: repeat steps at times $t_0, t_1 = t_0 + T, \ldots, t_k = t_{k-1} + T$ (e.g., every $T = 40$ ms)
 - a “good” choice for the initial guess q^0 at t_k is the solution of the previous problem at t_{k-1} (provides continuity, requires only 1-2 Newton iterations)
 - crossing of singularities and handling of joint range limits need special care
- Jacobian-based inversion schemes are used also for **kinematic control**, moving along a continuous task trajectory $r_d(t)$