Robotics 1

Robot components:
Actuators

Prof. Alessandro De Luca
Robot as a system

- **Robot**
 - Program of tasks
 - Commands
 - Robot
 - Actions
 - Working environment

- **Units**
 - Mechanical units
 - Sensor units
 - Actuation units
 - Supervision units
Functional units of a robot

- **mechanical units** (robot arms)
 - serial manipulators: rigid links connected via **rotational** or **prismatic** joints (each giving 1 degree of freedom = DOF)
 - **supporting structure** (mobility), **wrist** (dexterity), **end-effector** (for task execution, e.g., manipulation)

- **actuation units**
 - motors (**electrical**, **hydraulic**, **pneumatic**) and transmissions
 - motion control algorithms

- **sensor units**
 - **proprioceptive** (internal robot state: position and velocity of the joints)
 - **exteroceptive** (external world: force and proximity, vision, ...)

- **supervision units**
 - task **planning** and **control**
 - artificial intelligence and reasoning
Arrangement of mechanical links

4, 5, or 6 joints (DOFs)

different kinematic types of robot arms
Examples of industrial robots
with brands

ABB

DAIHEN

EPSON

FANUC

KUKA

NAICHI
Bi-manual industrial robots
with brands

ABB

UNIVERSAL ROBOTS

COMAU

YASHKAWA
Actuation systems

![Diagram of actuation system]

- **Power supply**
- **Power amplifier**
- **Servomotor**
- **Transmission** (mechanical gears)

Power
- Electrical, hydraulic, or pneumatic

Power losses due to dissipative effects (e.g., friction)

Types of powers in play

Power = voltage \cdot current = pressure \cdot flow rate = force \cdot speed = torque \cdot angular speed [W, Nm/s]

Efficiency = power out/power in [%]

Energy ~ **Work** = power \cdot time [kWh, Nm, J]
Desired characteristics for robot servomotors

- low inertia
- high power-to-weight ratio
- high acceleration capabilities
 - variable motion regime, with several stops and inversions
- large range of operational velocities
 - 1 to 2000 rpm (round per min)
- high accuracy in positioning
 - at least 1/1000 of a turn
- low torque ripple
 - continuous rotation at low speed
- power: 10 W to 10 kW
Servomotors

- **pneumatic**: pneumatic energy (compressor) → pistons or chambers → mechanical energy
 - difficult to control accurately (change of fluid compressibility) → no trajectory control
 - used for opening/closing grippers
 - ... or as artificial muscles (McKibben actuators)

- **hydraulic**: hydraulic energy (accumulation tank) → pumps/valves → mechanical energy
 - **advantages**: no static overheating, self-lubricated, inherently safe (no sparks), excellent power-to-weight ratio, large torques at low velocity (w/o reduction)
 - **disadvantages**: needs hydraulic supply, large size, linear motion only, low power conversion efficiency, high cost, increased maintenance (oil leaking)
Electrical servomotors

advantages

- power supply available everywhere
- low cost
- large variety of products
- high power conversion efficiency
- easy maintenance
- no pollution in working environment

disadvantages

- overheating in static conditions (in the presence of gravity)
 - use of emergency brakes
- need special protection in flammable environments
- some advanced models require more complex control laws
Electrical servomotors for robots

Direct current (DC) motor

With electronic switches (brushless)
Advantages of brushless motors

- reduced losses, both electrical (due to tension drops at the collector-brushes contacts) and mechanical (friction)
- reduced maintenance (no substitution of brushes)
- easier heat dissipation
- more compact rotor (less inertia and smaller dimensions)

... but indeed a higher cost!
Principle of operation of a DC motor

- Permanent magnets N-S
- Single coil (armature)
- Commutator ring (to switch direction of armature current every half round)
- DC supply v_a

Mathematical expressions:

\[\vec{F} = L(\vec{i} \times \vec{B}) \]
\[\tau = d|\vec{F}| \]

Graphs showing:
- 1 pole pair ...
- \(\tau \) vs. \(t \)
- \(\tau \) vs. \(t \)
- Multiple pole pairs
- Less torque ripple!
DC electrical motor
mathematical model (in the time domain)

Electrical balance
(on the equivalent armature circuit)

\[v_a(t) = R_a i_a(t) + L_a \frac{di_a(t)}{dt} + v_{emf}(t) \]

\[v_{emf}(t) = k_v \omega(t) \]

(back emf)

Mechanical balance
(Newton law on torques)

\[\tau_m(t) = I_m(t) \frac{d\omega(t)}{dt} + F_m \omega(t) + \tau_{load}(t) \]

\[\tau_m(t) = k_t i_a(t) \]

(motor torque)

In absence of losses, conservation of power holds in energy transformation.

\[P_{elec} = v_{emf} i_a = \tau_m \omega = P_{mecc} \]

\[\Rightarrow k_v = k_t \] (in SI units)

Using Laplace transform, differential equations become algebraic relations!

\[X(s) = \mathcal{L}[x(t)] = \int_{0}^{\infty} x(t)e^{-st} \, dt \]
DC electrical motor

mathematical model for command and control

Electrical Balance

\[V_a = (R_a + sL_a) I_a + V_{emf} \]

Mechanical Balance

\[T_m = (sI_m + F_m) \Omega + T_{load} \]

Current Loop

\[V_{emf} = k_v \Omega \]

\[T_m = k_t I_a \]

\[k_v = k_t \]

Laplace Domain (Transfer Functions)

- \[V_c = \frac{G_v}{1 + sT_v} V_a \]
- \[I_a = k_i \]
- \[V' = V_c \]

Laplace Domain

Mechanical Balance

Electrical Balance

Current Loop

k_i = 0 → velocity generator

k_i C_i(0) G_v \gg R_a → torque generator

* = the motor is seen here as a steady state “generator” in order to actually regulate velocity or torque in an efficient way against \(T_{load} \), further control loops are needed!
Characteristic curves of a DC motor

at steady-state, for constant applied tension v_a

conversion SI ⇔ US unit systems (!!!)
1 Nm = 141.61 oz-in
100 oz-in = 0.70 Nm

medium size motor 160 W

small size motor 5.5 W

Robotics 1
Data sheet electrical motors

- DC drives

Nominal/Peak Torques and Speeds

<table>
<thead>
<tr>
<th>Model of actuator</th>
<th>RHS-14 6003</th>
<th>RHS-17 6006</th>
<th>RHS-20/RFS-20 6007</th>
<th>RHS-25/RFS-25 6012</th>
<th>RHS-32/RFS-32 6018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Torque</td>
<td>Inlb</td>
<td>Nm</td>
<td>Inlb</td>
<td>Nm</td>
<td>Inlb</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>5.4</td>
<td>87</td>
<td>9.8</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>7.8</td>
<td>177</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>106</td>
<td>12</td>
<td>212</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>266</td>
<td>20</td>
<td>266</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>266</td>
<td>20</td>
<td>354</td>
<td>40</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
<td>266</td>
<td>60</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>60</td>
<td>531</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
<td>443</td>
<td>60</td>
<td>885</td>
</tr>
<tr>
<td>Max. Instant. Torque</td>
<td>Inlb</td>
<td>Nm</td>
<td>Inlb</td>
<td>Nm</td>
<td>Inlb</td>
</tr>
<tr>
<td></td>
<td>159</td>
<td>18</td>
<td>248</td>
<td>28</td>
<td>743</td>
</tr>
<tr>
<td></td>
<td>301</td>
<td>34</td>
<td>478</td>
<td>54</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>504</td>
<td>57</td>
<td>743</td>
<td>57</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>743</td>
<td>80</td>
<td>1416</td>
<td>80</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>1947</td>
<td>100</td>
<td>3009</td>
<td>80</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>1947</td>
<td>100</td>
<td>3009</td>
<td>80</td>
<td>340</td>
</tr>
<tr>
<td></td>
<td>3009</td>
<td>80</td>
<td>340</td>
<td>80</td>
<td>340</td>
</tr>
<tr>
<td>Max. Speed of Rotation</td>
<td>rpm</td>
<td>rpm</td>
<td>rpm</td>
<td>rpm</td>
<td>rpm</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>100</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>80</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>80</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>40</td>
<td>80</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>80</td>
<td>80</td>
<td>40</td>
<td>80</td>
</tr>
</tbody>
</table>
Data sheet electrical motors

- AC drives

- for applications requiring a rapid and accurate response (in robotics!)
- induction motors driven by alternate current (AC)
- small diameter rotors, with low inertia for fast starts, stops, and reversals

<table>
<thead>
<tr>
<th></th>
<th>unit</th>
<th>HKM-20-60</th>
<th>HKM-20-30</th>
<th>HKM-25-60</th>
<th>HKM-25-30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Power</td>
<td>Watts</td>
<td>100</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rated Torque</td>
<td>in-lb</td>
<td>115</td>
<td>223</td>
<td>233</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>N-m</td>
<td>13</td>
<td>26</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>Maximum Torque</td>
<td>in-lb</td>
<td>345</td>
<td>700</td>
<td>830</td>
<td>1330</td>
</tr>
<tr>
<td></td>
<td>N-m</td>
<td>39</td>
<td>79</td>
<td>94</td>
<td>150</td>
</tr>
<tr>
<td>Rated Speed</td>
<td>r/min</td>
<td>60</td>
<td>30</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>r/min</td>
<td>80</td>
<td>40</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td>Current Rated</td>
<td>A</td>
<td>1.8</td>
<td>1.4</td>
<td>4.8</td>
<td>3</td>
</tr>
<tr>
<td>Current Max</td>
<td>A</td>
<td>5</td>
<td>4</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Thermal Time Constant</td>
<td>min.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gear Reduction Ratio</td>
<td>R:1</td>
<td>50</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>Output Resolution</td>
<td>P/rev</td>
<td>50,000</td>
<td>100,000</td>
<td>75,000</td>
<td>150,000</td>
</tr>
<tr>
<td></td>
<td>arc sec</td>
<td>26</td>
<td>13</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Absolute Accuracy</td>
<td>+/- arc sec</td>
<td>75</td>
<td>40</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>
Motion transmission gears

- optimize the transfer of mechanical torque from actuating motors to driven links
- quantitative transformation (from low torque/high velocity to high torque/low velocity)
- qualitative transformation (e.g., from rotational motion of an electrical motor to a linear motion of a link along the axis of a prismatic joint)
- allow improvement of static and dynamic performance by reducing the weight of the actual robot structure in motion (locating the motors remotely, closer to the robot base)
Transmissions in robotics

- **spur gears**: modify direction and/or translate axis of (rotational or translational) motor displacement
 - problems: deformations, backlash
- **lead screws, worm gearing**: convert rotational into translational motion (prismatic joints)
 - problems: friction, elasticity, backlash
- **toothed belts and chains**: dislocate the motor w.r.t. the joint axis
 - problems: compliance (belts) or vibrations induced by larger mass at high speed (chains)
- **harmonic drives**: compact, in-line, power efficient, with high reduction ratio (up to 150-200:1)
 - problems: elasticity
- **transmission shafts**: long, inside the links, with flexible couplings for alignment
Transmission gears in motion

- racks and pinion
 - one rack moving (or both)

- epi-cycloidal gear train
 - or hypo-cycloidal (small gear inside)

- planetary gear set
 - one of three components is locked: sun gear, planet carrier, ring gear
Harmonic drives

Wave Generator (C) of slightly elliptic external form (with ball bearings)

Circular Spline (A)

inner \#teeth CS = outer \#teeth FS + 2

reduction ratio

n = \#teeth FS / (\#teeth CS - \#teeth FS)
= \#teeth FS / 2

input from motor

output to load

START
Operation of an harmonic drive

Harmonic Drive Gearing

PRINCIPLE of OPERATION

commercial video by Harmonic Drives AG
Optimal choice of reduction ratio

\[P_m = T_m \dot{\theta}_m = T_u \dot{\theta}_u = P_u \]

\[n = \text{reduction ratio (} \gg 1) \]

\[\dot{\theta}_m = n \dot{\theta}_u \quad \Rightarrow \quad T_u = n T_m \]

\[T_m = J_m \ddot{\theta}_m + \frac{1}{n} (J_u \ddot{\theta}_u) = (J_m n + J_u / n) a \]

\[\frac{\partial T_m}{\partial n} = (J_m - J_u / n^2) a = 0 \]

\[n = (J_u / J_m)^{1/2} \]

“matching” condition between inertias
Transmissions in industrial robots

- transmissions used (inside) 6-dof Unimation industrial robots with serial kinematics

PUMA 260: 1st axis

PUMA 560: 2nd and 3rd axes

PUMA 560: inner and outer links

PUMA 560: last 3 axes
Inside views on joint axes 4, 5 & 6 of an industrial KUKA robot

- looking inside the forearm to see the transmissions of the spherical wrist
- motor rotation seen from the encoder side (small couplings exist)
Exploded view of a joint in the DLR-III robot

\[\tau_j = K(\theta - q) \]

Stiffness \(K \)

Joint torque \(\tau_j \)

\(q \)

\(\theta \)