

Robotics 1

Industrial Robotics

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

What is a robot?

• industrial definition (RIA = Robotic Institute of America)

re-programmable multi-functional manipulator
designed to move materials, parts, tools, or specialized devices through
variable programmed motions for the performance of a variety of tasks,
which also acquire information from the environment
and move intelligently in response

■ ISO 8373:2012 definition

an automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications

more "visionary" definition
 intelligent connection between perception and action

Robots !!

Comau H4 (1995)

Waseda WAM-8 (1984)

Spirit Rover (2002)

No Robots!?

International Organization for Standardization

According to the above ISO definition in 2012, these are NOT robots

- software ("bots", AI, Robotic Process Automation RPA)
- voice assistants
- ATMs (automatic money teller machines)
- cooking machines, smart washing machines, ...

and also

- remote-controlled drones, UAV, UGV, UUV
- autonomous cars

but in the revised standard ISO8373:2021 these are now classified as (autonomous)

robotic devices!

A bit of history

- Robota (= "work" in slavic languages) are artificial humanlike creatures built for being inexpensive workers in the theater play Rossum's Universal Robots (R.U.R.) written by Karel Capek in 1920
- Laws of Robotics by Isaac Asimov in I, Robot (1950)
 - A robot may not injure a human being or, through inaction, allow a human being to come to harm
 - 2. A robot must obey orders given to it by human beings, except where such orders would conflict with the First Law
 - 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law

accent (for Italian students only): we say "robot" and never "robot" !!

Evolution toward industrial robots

computerized numerically controlled (CNC) machines

~ 1950

mechanical telemanipulators

robot manipulators

1970 Unimation PUMA

- with respect to the ancestors
 - flexibility of use
 - adaptability to a priori unknown conditions
 - accuracy in positioning
 - repeatability of operation

STATE OF THE PARTY OF THE PARTY

The first industrial robot

US Patent

General Motor plant, 1961

G. Devol and J. Engelberger (Unimation)

Historical pictures and clips

CARGORRINA SE

PARASARI UNIMATE
5030

video

bimanual remote manipulation at Oak Ridge Nat'l Labs

Unimate 6-dof robots

Robot manipulators

ASEA IRB-6 (1973) first robot all-electric-drives

Hirata AR-300 (1978) first SCARA robot

Cincinnati
Milacron T3
(1974)
first microcomputer
controlled
robot

Unimation PUMA 560 (1979) 6R with human-like dexterity

robots – a 50-year journey

robotics research up to 2000

Video compiled for the IEEE ICRA 2000 conference, S. Francisco

World Robotics 2025

executive summary for 2025 statistics by IFR issued yearly in late September

(for back issues since 2007, check course web site)

- total worldwide stock at end 2024: 4.6 million units of operational industrial robots (+9% w.r.t. 2023; +11% CAGR in five-year period 2019-24)
- new robot sales in 2024: 542K ($\pm 0\%$ w.r.t. 2023; +7% CAGR 2019-24)
- for the fourth consecutive year annual new installations exceeded 500K
- robot market value in 2022: \$15.7 billion (without software and peripherals)
 robotic systems market value: ~4 times as much
- electronics & automotive industries decline; market growth for collaborative robots
- China is by far the largest market (since 2013): installs every other robot (54%)!
- 80% of new robot installations in 5 countries: China, Japan, USA, Korea, Germany

Diffusion

STOOM WE

industrial robots in operation worldwide

(reference: **industrial robots in 1973 = 3K**, 1983 = 66K, 1993 = 575K, 2003 = 800K) length of **robot service life** is estimated in **12-15 years**

stop of growth rate in 2019: automotive transition, trade & political headwinds... and in 2020: deferred investments, plummeted consumer demand, travel restrictions, disrupted supply chains (due also to Covid-19)

of industrial robots by world area

growth in Asia!

new robots by industrial sectors

electronics back to main customer, due to weaker demand for automotive general industries compensate for the weaker or stagnant two main sectors

market shares of major industrial sectors

in 2014 in 2024

landscape dramatically changed in 10 years (with growth of general industries)

Robotics 1 16

new robots by main application [from WR 2024]

material handling by far the most important application (with 52% share)

new installations in top markets (countries)

market share in China by Chinese robot suppliers at 57%

Italy (2nd EU market): 70% more new robots installed than in 2015

Density of robots

[as of 2019]

number of **robots per 10000 employees** in the **manufacturing** industry

Collaborative robots

annual installations and shares in industry

market share in industrial settings at 11.9% growth in double digit rate (at 12%)

Levels of human-robot collaboration

Types of collaboration with industrial robots

Requirement for intrinsic safety features vs. external sensors

Level of collaboration

source, IFR 2022

Top trends in industrial robotics - 2024

Al AND MACHINE LEARNING

MOBILE MANIPULATORS

COBOTS IN NEW APPLICATIONS

DIGITAL TWIN

HUMANOIDS

improved **AI**solutions at
incredible pace:
"physical" AI
& generative AI
in new applications

transportation & handling tasks to be **jointly automated** end-to-end in one device

two enabling technologies for **Industry 4.0** and **5.0** (sustainable, resilient,

(sustainable, resilient human-centric & energy-efficient) **R&D** of humanoid robots has boosted, **but** still

- i) few commercial deployments
- ii) mainly single purpose

Robotics 1 22

Industrial & service robots

Industrial robots

- automatically controlled, programmable, multipurpose, 3+ axes
- for use in industrial automation applications
- equipped with application-specific end-effectors

Service robots

- perform tasks excluding industrial automation
- usually application-specific design, often fewer than 3 axes
- sometimes not fully autonomous but remote-controlled

different customers, pricing, machinery, distribution channels, suppliers

... but separation line is blurring: same unit can act as both, depending on the application

Professional service robots

excluding medical robots (since WR 2025)

growth rates of top 5 applications of professional service robots (2023 to 2024)

new professional service robots in 2024: ~200K units (+9%)

... compare with new personal/domestic service robots: 20.1M units!!

Medical robots

medical robots growing strongly: 16700 new units in 2024 (+91%)

daVinci 5 surgical robot by Intuitive (cost ≈ 1.5M\$ in 2024)

Industrial robot

and its auxiliary equipment

- 1. Comau SMART H robot
- 2. C3G Plus controller
- 3. Welding control box
- 4. Application software
- 5. Air/water supply
- 6. SWIM Board
- 7. Integrated cables
- 8. Welding gun
- 9. Auxiliary devices in the robotic cell (servo-controlled axes)

SWIM = Spot Welding Integrated Module

ABB IRB 7600

commercial video by ABB

Robotics 1 27

Industrial applications

- manipulation (pick-and-place, handling, machine feeding)
- assembly and packaging
- spray painting and coating (nozzles)
- arc welding or spot welding (with pneumatic or servo-controlled guns)
- laser cutting and welding
- gluing and sealing
- mechanical machining operations (milling, drilling, deburring, grinding, ...)

video

At BMW car production line with ABB robots

pick-and-place with end-effector to reorient part

video video

pick-and-place with support to reorient part

pick-and-place heavy parts and human intervention

video video

metal cutting on a supporting machine with dofs

(video speeded up at some point)

glue deposit (on fancy paths!)

video video

cooperation of multiple robots for handling and inspecting/sealing a car body

coating parts for rust and corrosion protection

video video

spray painting

hood deburring with a suspended tool

video video

test measurements with assembly on a AGV

What a robot should do and what cannot do

video

spray painting very unhealthy for human operators assembly of flexible or complex parts (here a car dashboard)

⇒ human-robot collaboration (co-bots or co-workers)

Robotics 1 34

Reasons to automate with robots

in industrial settings

source, IFR 2022

Plasma cutting

video

small KUKA robot used for plasma cutting of a stainless steel toilet (courtesy of Engenious Solutions Pty)

Robotics 1 36

Robotized workcells

3D simulation of robotic tasks

- analysis of operative cycle times
- off-line programming and optimization
- layout design and collision checking
- 3D graphic simulation

Welding - 1

• spot with servo-controlled gun

• stud welding

Welding - 2

• spot (discrete) or arc (continuous)

Two cooperating robots in arc welding

ABB video at Laxa, Sweden

Palletizing

pallet = a portable platform on which goods can be moved, stacked, and stored

using Kawasaki robots (courtesy of Effedue Engineering)

Folding

with loading of sheets under the press

Deburring

 car windshields may have large manufacturing tolerances and a sharp contour profile

- the robot follows a given predefined Cartesian path
- the contact force between cutting blade and glass must be feedback controlled
- deburring robot head mounts a force load cell and is pneumatically actuated

Robotics 1

Deburring center

video

deburring center for steel parts using Comau SMART NJ 110-3.0/foundry robot (courtesy of Adami srl)

Robotics 1

Off-line robot workstation

articulated robot in metal surface finishing operation

Safety in robotic cells

commercial video from ABB SafeMove (2008) cell monitoring system: no fences!

Robot manipulator kinematics

KUKA 150_2 S2000 open kinematic chain (series of rigid bodies connected by joints)

Comau
Smart H4
closed kinematic chain

Fanuc F-200iB parallel kinematics

Mitsubishi RP (repeatability 5 micron, payload 5 kg)

Mitsubishi RH (workspace 850 mm, velocity 5 m/s)

Bosch Turbo

SCARA (Selective Compliant Arm for Robotic Assembly)

- 4 degrees of freedom (= joints): 3 revolute + 1 prismatic (vertical) axes
- compliant in horizontal plane for micro-assembly and pick-and-place

Robotics 1

video

fastest SCARA robot for pick-and-place tasks!

Cartesian or gantry robots

STONE STONE

video

Güdel FP-5 robot
3P linear/prismatic joints
(possibly, with additional rotation around vertical axis)
maximum stroke 14, payload up to 1100 kg

Comau Mast robot 3P linear/prismatic joints with a 3R spherical wrist payload up to 560 kg

Delta and Hexa parallel robots

video

ABB 365
Flexpicker
5-DOF Delta
parallel
kinematics

ABB 340 Flexpicker

4-DOF Delta parallel kinematics 1-2 kg payload, max speed 19 m/s 150 pick-and-place ops/minute

3-DOF Delta in motion (https://link to web)

Hexa robot

video

6-DOF parallel kinematics with DD actuation Uchiyama (Tohoku), Pierrot (Montpellier) - 1994

Delta robots are replacing SCARA in planar pick-and-place or assembly

Chocolate packaging with lightweight parallel robots

test video with ABB Flexpicker

video with Adept Quatro s650

Distribution by robot type

[in 2004]

of kinematic configuration

for 59600 articulated robots installed back in 2004 (90% of all robots installed in America, 74% in Europe, only 49% in Asia)

Robot data sheet

Fanuc R-2000i/165F

Specifiche tecniche

Voce		R-2000//165F	
Про		Articolato	
Assi controllati		6 assi (J1, J2, J3, J4, J5, J6)	
Installazione		A pavimento	
Area di lavoro (Velocità massima)	Rotazione asse J1	360° (105°/s)	
	Rotazione asse J2	135° (105°/s)	
	Rotazione asse J3	361,8° (105°/s)	
	Rotazione asse J4	720° (130°k)	
	Rotazione asse J5	250° (130°/s)	
	Rotazione asse J6	720° (210°/s)	
Cartco massimo al polso		165 kg	
Momento di carico max. al polso (Nota 1)	Asse J4	94 kgfm 92 1 N m	
	Asse J5	94 kgfm 92 1 Nm	
	Asse J6	47kgfm 461Nm	
Momento di Inerzia max. al polso	Asse J4	800kgfcms ³ 78,4kgm ³	
	Asse J5	800kgfcms ¹ 78,4kgm ²	
	Asse J6	410kgfcms³ 40,12kgm³	
Tipo di azionamento		Motori elettrici AC	
Ripetibilità		± 0,3 mm	
Peso		1.210 kg	
Ambiente Installazione		Temperatura ambiente: 0-45° C Umidità ambiente Normale: ≤ 75% Breve (in un mese) ≤ 95% Vibrazioni 0,5 G max.	

Workspace

Mobility and workspace

visualization

video

kinematic simulation of a 6-dof Comau robot (all revolute joints)

Mobility and workspace

visualization

video

CoppeliaSim simulation of the 7-dof KUKA LWR4+ robot (all revolute joints)

Robot end-effector sensors and tools

Simple (rigid to soft) grippers

video

OnRobot RG6 and Soft Grippers

video

qbrobotics SoftClaw

soft medium strong

https://youtu.be/FOM5Pl6Yb4U

Calibration of robot kinematics

Man-machine interface

most traditional ones

- teach-box pendants used as robot programming interface (now also with 3D view)
- cabinet with power electronics for robot supervision and control

Programming and control environment

control modules and interfaces (Reis Robotics)

communication keywords

SCADA =
Supervisory Control
And Data Acquisition

VME = internal protocol with separated data and address lines

Fieldbus = family
of industrial computer
network protocols for
real-time distributed
control

CAN [Bosch] =
Controller Area Network
serial bus standard
(IEEE RS-485)

ıg

Motion programming and scaling

also simulated in CoppeliaSim

commercial video from ABB
TrueMove & QuickMove fast motion control performance

ABB RAPID programming language: sequence of coordinated Cartesian commands MoveL (linear, point-to-point) and MoveC (center & radius, by an arc)

Robot programming from CAD

3D laser cutting for metal sheets and tubes, using a 6R robot (FANUC) commercial video by Golden Laser: https://youtu.be/FLSDIdtlHR0

 AGV (Automated Guidance Vehicles) for material and parts transfer on the factory floor: wire- or laser-driven along predefined paths

Lifting AGV for warehouses

video by Elettric80

Kiva Systems

company acquired in 2012 for \$775 million by Amazon (store automation)

Intelligent AGV in factories

commercial video of ADAM mobile robot (RMT Robotics)

changing nature of manufacturing and work

- growing shift from high volume/low mix to low volume/high mix is having a deep impact on manufacturing
- many industries are facing acute shortages of skilled labor
- quicker return-of-investment (ROI) of automation and rising wages are eventually discouraging labor arbitrage
- increased focus is being placed on workplace safety
- securing supply chains, increasing resilience and sustainability

Source: Steven Wyatt (IFR). "Today's trends, tomorrow's robots!" Frankfurt, 27 September 2017 (+ my addition ...)

Robotics 1

addressing some real facts opens huge opportunities

	The Trends	The Challenges	The Enablers
	Low volume high mix	Automation complexity and unpredictability	Collaborative automation for greater flexibility
Ö	Shorter cycles, faster launches	Shop floor disruptions and high engineering costs	Better software for engineering efficiency
ക്ഷ	Increased need for automation and scalability in SMEs	Lack of robot integration and programming expertise	Easier to use robots with more intuitive programming
	Rising cost of downtime	Higher lifetime TCO due to increase in planned downtime	Advanced analytics and services for greater reliability
Å	Increased and sporadic human intervention	Lost productivity to maintain safety	Collaborative automation to maintain safety and productivity

answers to these challenges lie in Simplification, Digitalization, and Collaboration

Simplification (critical for SME, but also for large global manufacturers)

- robots easier to install, program (with open source) and operate will unlock entry barriers to the large market of small and medium enterprises (SMEs)
- trend towards having production closer to the consumer needs is driving the importance of **standardization** & consistency across global brands

Digitalization (Big Data allows taking better decisions on factory operations)

- Industry 4.0 & 5.0, linking the real-life factory with a virtual/digital twin, will play an increasingly important role in global manufacturing
- vision and sensing devices, coupled with analytics platforms, will pave the way for new industrial business models
- IoT/AI/Machine Learning will drive many robotics developments in coming years

Collaboration

- collaborative robotics is shifting traditional limits of "what can be automated?"
- cobots increase manufacturing flexibility as 'low-volume, high-mix' becomes the main standard
- collaboration is also about productivity with increased physical and cognitive human/robot interaction

Robotics 1

What's next in industrial robotics?

"connected" future of robotics

self-optimizing production

 robots doing the same task connect across all global locations so performance can be easily compared and improved

self-programming robots

 robots automatically download what they need to get started from a cloud library and then optimize through "self-learning"

connected and collaborative robots will enable SMART Manufacturing for both SMEs & Global Enterprises

Franka Emika robot

... one possible example

video

Robotics 1