

Elective in Robotics

Motion Control of the CyberWalk Platforms – Part I

EU STREP FP6-511092 project (2005-2008)

www.cyberwalk-project.org (no longer active; see references at the end)

Prof. Alessandro De Luca

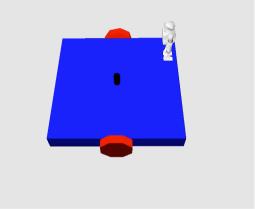
DIPARTIMENTO DI ÎNGEGNERIA ÎNFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

CyberWalk platforms

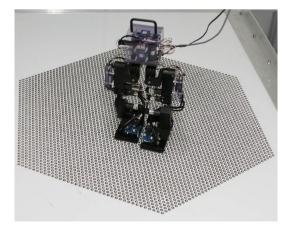
- ball-array/bearing
 - nonholonomic

video

simulation environment



small-scale CyberCarpet



- belt-array
 - omnidirectional

1-D linear treadmill

full-scale 2-D platform

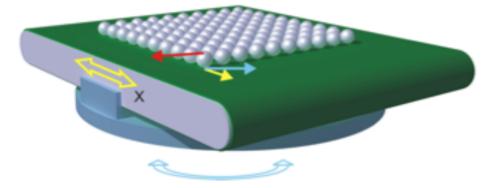
Control specifications

- keep the walker close to the platform center
 - taking into account platform dimensions
 - absolute orientation of walker is not relevant
- satisfy user's perceptual/comfort constraints
 - smoothly controlled motion, especially during start/stop transients
- only measurement of walker position is available
 - visual feedback from external camera system
 - possibly, also information on walker "orientation"
 - intentional walker motion (velocity/acceleration) unknown
- interface/synchronize control commands with VR visualization

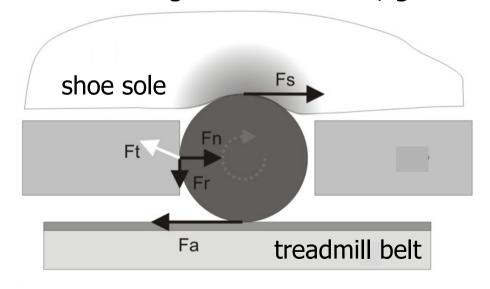
CyberCarpet platform

ball-array transmission principle

 a treadmill, mounted on a turntable, with a coverage of the belt by an array of balls arranged in a grid



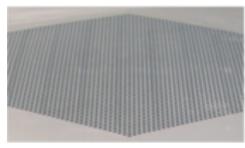
friction forces acting at the sole-ball, grid-ball, and belt-ball contacts

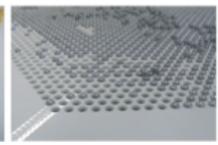


best friction conditions: high on sole- and belt-ball, low on grid-ball contacts

CyberCarpet platform ball-array and supporting grid

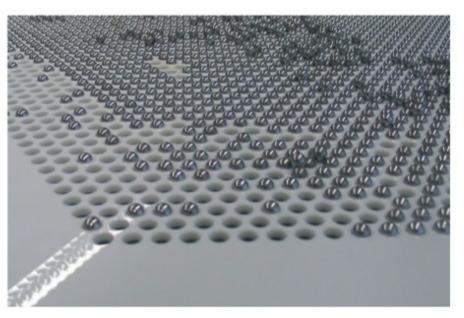
materials suitable for the grid supporting the balls





INOX steel Polyethylene (PE) stripes Acetal (POM) plate

4332 INOX steel balls of $d_{ball} = 8 \text{ mm}$ diameter with gaps of 0.5 d_{ball} (uniform floor feeling)



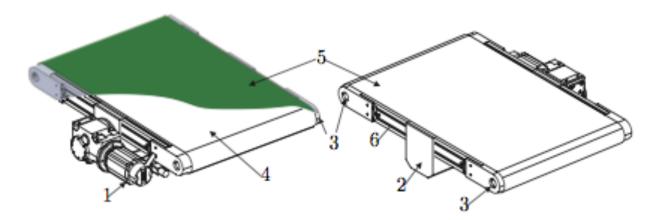
0.3 ball-grid friction coefficient

ball array in a hexagonal grid (inner/outer circles of 683 and 800 mm size)

CyberCarpet platform treadmill, belt and turntable

treadmill

- linear treadmill of 1.1 m length and 0.8 m width (best ratio \approx 1.4)
- Lenze three-phase motor with 2 Nm max torque, $\approx 1:20$ transmission ratio
- max 2 m/s linear speed, max 5 m/s² linear acceleration



belt

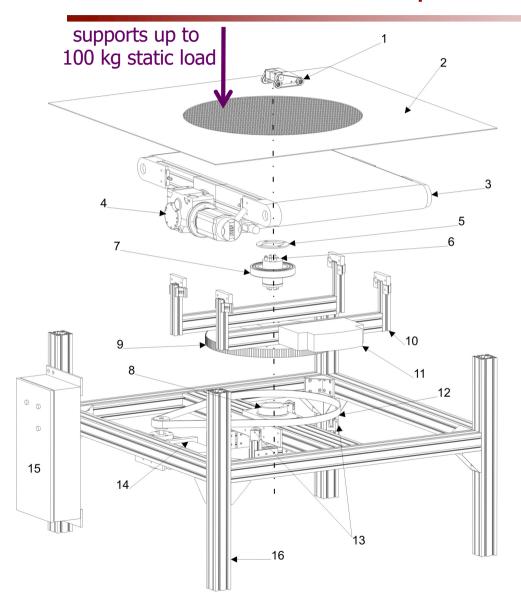
PVC of 5 mm, belt-ball friction coefficient > 0.7

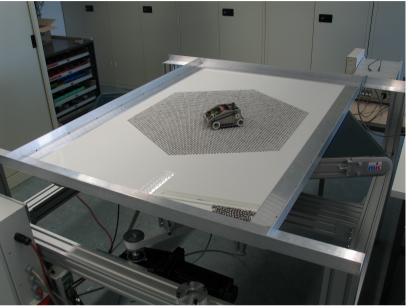
turntable

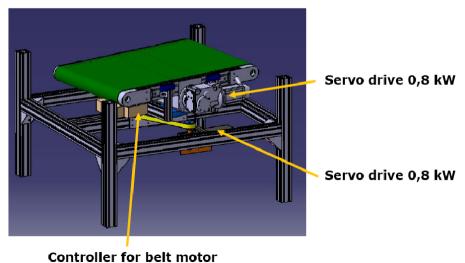
- same Lenze motor ≈ 1:64 transmission ratio (gear + toothed belt)
- max 2 rad/s angular speed, max 20 rad/s² angular acceleration
- total weight of moving parts (in rotation) ≈ 200 kg

CyberCarpet platform

complete assembly



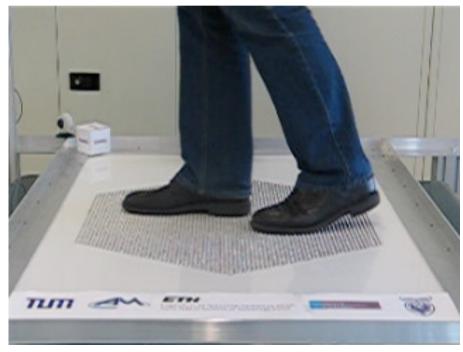


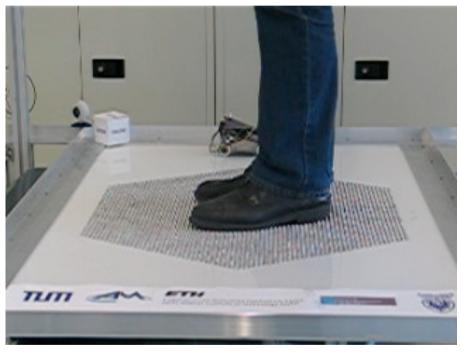


Walking tests with a human walker

in these tests, no platform control: the walker adapts its speed

video



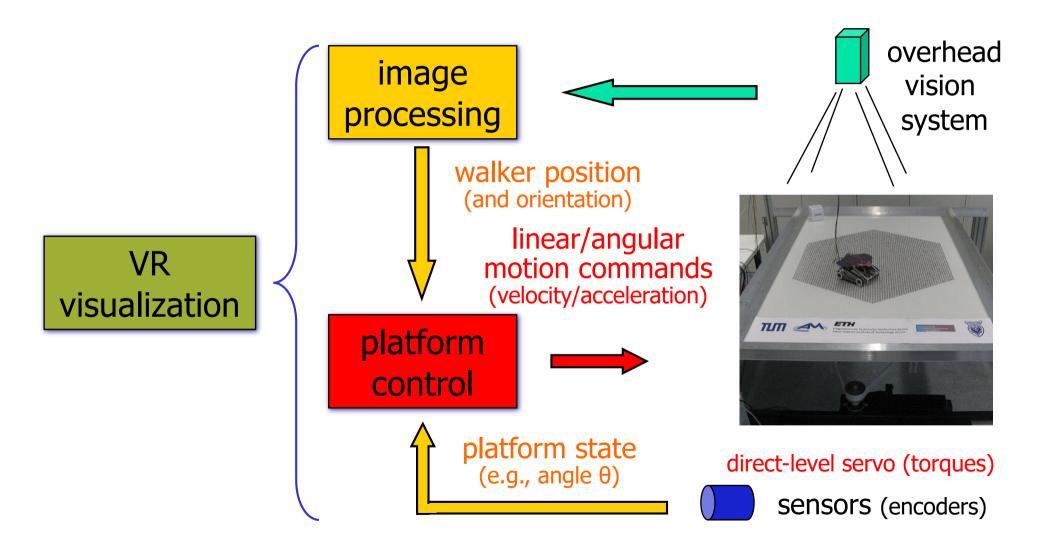


slow speed

increasing speed from zero to max

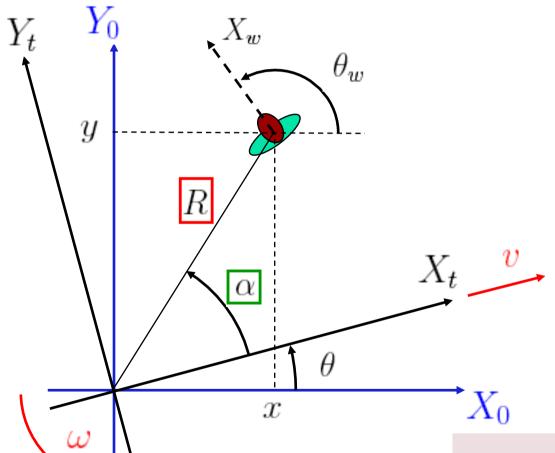
(at 1.4 m/s, balls start jumping out of place due to dynamic and friction effects with the sole)

System architecture



Kinematic model

ball-array platform (walker standing still)



$$\begin{array}{ll} \dot{x} &= -v\cos\theta + y\omega \\ \dot{y} &= -v\sin\theta - x\omega \\ \dot{\theta} &= \omega \\ \dot{\theta}_w &= -\omega \end{array}$$

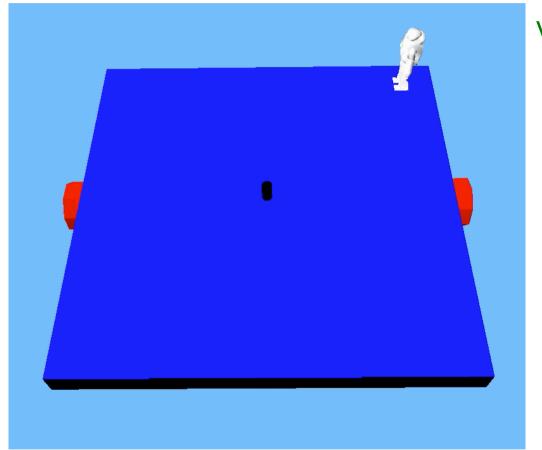
- motion "from below" reversed by balls rolling
- holonomic constraint

$$\theta + \theta_w = const$$

non-holonomic constraint

$$\sin \theta - \cos \theta - (x \cos \theta + y \sin \theta) \left[\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array} \right] = 0$$

Holonomic constraint

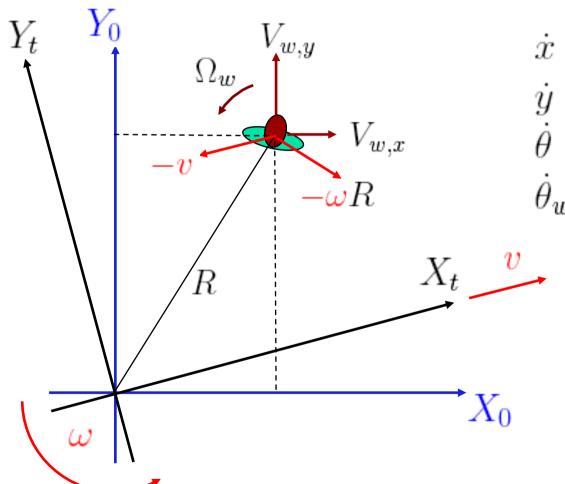


video

one of these two variables cannot be controlled independently $\longleftrightarrow \theta + \theta_w = \theta(0) + \theta_w(0)$ and is removed from the control problem

Kinematic model

ball-array platform (walker in motion)



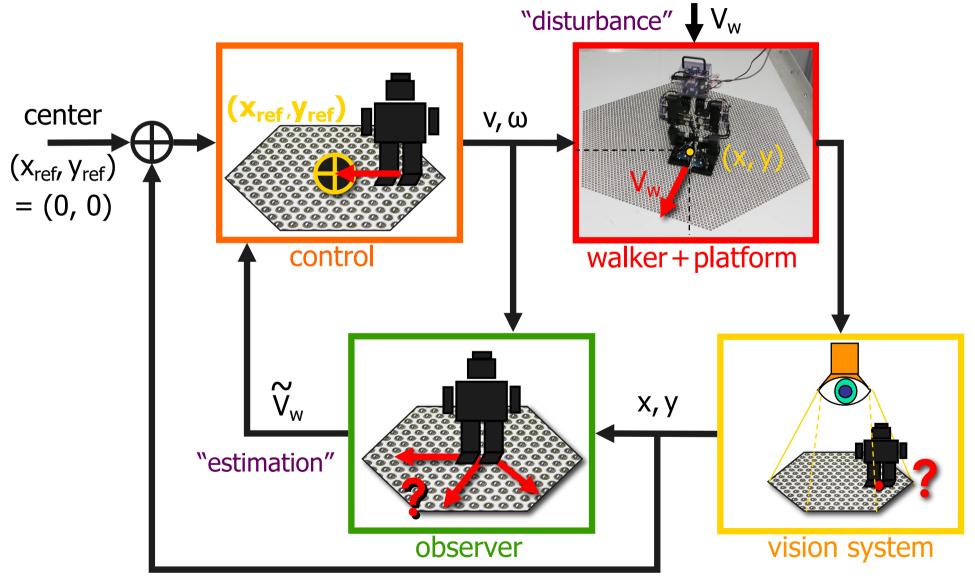
$$\dot{x} = -v\cos\theta + y\omega + V_{w,x}$$

$$\dot{y} = -v\sin\theta - x\omega + V_{w,y}$$

$$\dot{\theta}_w = -\omega + \Omega_w$$

 walker motion is an unknown "disturbance" for the controller

Control principle



CyberCarpet platform

note first that in place of the two Cartesian coordinates (x,y) one can also use the polar coordinates

$$R = \sqrt{x^2 + y^2}$$
 $\alpha = ATAN2(y, x) - \theta$

with the inverse transformation being

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = \operatorname{Rot}(\theta) R \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$$

from this we obtain also
$$\left[\begin{array}{c} x\cos\theta + y\sin\theta \\ y\cos\theta - x\sin\theta \end{array} \right] = \left[\begin{array}{c} R\cos\alpha \\ R\sin\alpha \end{array} \right]$$

taking the time derivative of polar coordinates (ATAN2 can be replaced by arctan) and substituting, we obtain two equations that could replace the first two in the model (for a standing user)

$$\dot{R} = -v\cos\alpha$$

$$\dot{\alpha} = v\frac{\sin\alpha}{R} - 2\omega$$

Control design – 1bis

Model derivation using polar coordinates

$$R = \sqrt{x^2 + y^2}$$

$$\dot{R} = \frac{1}{2} \frac{2x\dot{x} + 2y\dot{y}}{\sqrt{x^2 + y^2}} = \frac{x(-v\cos\theta + y\omega) + y(-v\sin\theta - x\omega)}{R}$$

$$= \frac{v(x\cos\theta + y\sin\theta)}{R} = \frac{vR\cos\alpha}{R} = -v\cos\alpha$$

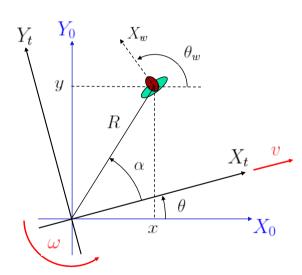
$$= \arctan\left(\frac{y}{x}\right) - \theta$$

$$\alpha = \arctan\left(\frac{y}{x}\right) - \theta$$

$$\dot{\alpha} = \frac{1}{1 + (y/x)^2} \left(\frac{\dot{y}}{x} - \frac{y\dot{x}}{x^2} \right) - \dot{\theta} = \frac{1}{x^2 + y^2} (\dot{y}x - y\dot{x}) - \omega$$

$$= \frac{1}{R^2} \left[x(-v\sin\theta - x\omega) - y(-v\cos\theta + y\omega) \right] - \omega$$

$$= \frac{1}{R^2} \left[v \left(y \cos \theta - x \sin \theta \right) - \omega \left(x^2 + y^2 \right) \right] - \omega = \frac{1}{R^2} \left[v R \sin \alpha - \omega R^2 \right] - \omega$$
$$= v \frac{\sin \alpha}{R} - 2\omega$$



CyberCarpet platform

- consider first the case of a user standing still: $V_w = 0$ $\Omega_w = 0$
- we are interested in controlling (x, y) only, and we will do this by an input-output feedback linearization method; it is

$$\left[\begin{array}{c} \dot{x} \\ \dot{y} \end{array}\right] = \left[\begin{array}{cc} -\cos\theta & y \\ -\sin\theta & -x \end{array}\right] \left[\begin{array}{c} v \\ \omega \end{array}\right] = A(x,y,\theta) \left[\begin{array}{c} v \\ \omega \end{array}\right]$$

• as long as $\det A = x \cos \theta + y \sin \theta \neq 0$, we can set

$$\begin{bmatrix} v \\ \omega \end{bmatrix} = A^{-1}(x, y, \theta) \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \qquad \dot{x} = v_1, \qquad \dot{y} = v_2$$

obtaining linear, decoupled behavior in terms of the new commands v_1 , v_2

• choosing then $v_1 = -k_1x$, $v_2 = -k_2y$ with positive gains k_i , i = 1,2, the user is exponentially stabilized to the origin

$$x(t) = e^{-k_1 t} x_0$$
 $y(t) = e^{-k_2 t} y_0$

CyberCarpet platform

• setting (from now on) $k_1 = k_2 = k > 0$, it follows that

$$\frac{y(t)}{x(t)} = \frac{\dot{y}(t)}{\dot{x}(t)} = \frac{y_0}{x_0}$$

 $\frac{y(t)}{x(t)} = \frac{\dot{y}(t)}{\dot{x}(t)} = \frac{y_0}{x_0}$ "straight line" recover to the center if the walker is standing still

• the resulting control law (written in either set of coordinates) is

(1)
$$\begin{cases} v = \frac{k(x^2 + y^2)}{x\cos\theta + y\sin\theta} = \frac{kR^2}{R\cos\alpha} = \frac{kR}{\cos\alpha} \\ \omega = \frac{k(y\cos\theta - x\sin\theta)}{x\cos\theta + y\sin\theta} = \frac{kR\sin\alpha}{R\cos\alpha} = k\tan\alpha \end{cases}$$

which is (as expected!) singular when

$$lpha=\pm rac{\pi}{2}$$
 or/and $R=0$ ($lpha$ is not defined)

namely for $R\cos\alpha = x\cos\theta + y\sin\theta = 0$

• the control law should be modified so as to handle these singularities

CyberCarpet platform

• when $R \neq 0$, singularity at $\alpha = \pm \frac{\pi}{2}$ is eliminated multiplying (1) by $|\cos \alpha|$

(2)
$$\begin{cases} v = kR \operatorname{sgn}(\cos \alpha) \\ \omega = k \sin \alpha \operatorname{sgn}(\cos \alpha) \end{cases}$$
 with $\operatorname{sgn}(arg) = \begin{cases} +1 & \text{for } arg \ge 0 \\ -1 & \text{for } arg < 0 \end{cases}$

• the output dynamics of the controlled system is no longer linear

$$\dot{x} = -k |\cos \alpha| x$$
, $\dot{y} = -k |\cos \alpha| y$

and closed-loop asymptotic stability requires a Lyapunov/LaSalle analysis

• let $\theta + \alpha = \theta_0 + \alpha_0 =: \beta_0$ be the constant angle pointing to the walker; the Lyapunov candidate and its time derivative are

$$V(x,y,\theta) = \frac{1}{2}(x^2 + y^2 + \sin^2(\beta_0 - \theta))$$

$$= \frac{1}{2}(R^2 + \sin^2\alpha) \ge 0,$$

$$V = 0 \text{ iff } (x,y,\theta) \in \mathcal{S} \text{ with }$$

$$\mathcal{S} = \{(0,0,\theta) : \sin(\beta_0 - \theta) = 0\}$$

$$\dot{V} = R\dot{R} + \sin\alpha\cos\alpha\dot{\alpha}$$

$$= -k |\cos\alpha| (R^2 + \sin^2\alpha) \le 0$$

$$\dot{V} = 0 \text{ if } (x,y,\theta) \in \mathcal{S} \text{ or } \cos\alpha = 0$$

$$\text{at } \cos\alpha = 0 \text{ it is } \omega = \pm k \text{ (non-invariant state)}$$

$$\dot{V} = R\dot{R} + \sin\alpha \cos\alpha \dot{\alpha}$$
$$= -k |\cos\alpha| (R^2 + \sin^2\alpha) \le 0$$

 $\longrightarrow S$ is asymptotically stable

Control design - 5 CyberCarpet platform

• at R=0, control (2) is not smooth at the origin (chattering problems); multiplying it further by R yields finally

$$v = kR^2 \operatorname{sgn}(\cos \alpha)$$

$$= k(x^2 + y^2) \operatorname{sgn}(x \cos \theta + y \sin \theta)$$

$$\omega = kR \sin \alpha \operatorname{sgn}(\cos \alpha)$$

$$= k(y \cos \theta - x \sin \theta) \operatorname{sgn}(x \cos \theta + y \sin \theta)$$
smooth singularity-free velocity-level feedback law

- asymptotic stability properties can be proved similarly to the previous case by Lyapunov/LaSalle arguments
- "straight line" recover of the standing walker to the center still holds

Control design - 6 Walker in motion on CyberCarpet platform

- when the walker is in motion (with an intentional linear velocity V_w), control (1) or (2) or (*) do not allow the walker to recover the center
- for example, if the walker is moving (in the virtual space) in a straight line with constant speed \bar{V} , there will be a steady-state position error with control (1) at a distance $\bar{R} = \bar{V}/k$ from the center
- in this particular case, the addition of an integral action in the auxiliary commands

$$v_1 = -k\left(x + a\int xdt\right), \quad v_2 = -k\left(y + a\int ydt\right)$$

will zero the steady-state error

- there is, however, a problem of overshooting; in addition, for more general cases, there is no guarantee that this will work
- a disturbance observer can be set up to estimate the intentional linear velocity of the walker, so as to use it for control purposes

Estimating walker velocity on CyberCarpet platform

• an estimate V_w of the walker intentional linear velocity V_w is obtained by two dynamic observers (one for each component) with states ξ_x and ξ_y

$$\begin{array}{lll} \dot{\xi}_x &=& -v\cos\theta + y\omega + k_w(x - \xi_x) \\ \tilde{V}_{w,x} &=& k_w(x - \xi_x) \\ \dot{\xi}_y &=& -v\sin\theta - x\omega + k_w(y - \xi_y) \end{array} \qquad \begin{array}{ll} \text{the actual commands} \\ \text{sent to the platform} \\ \text{should be used here} \\ \tilde{V}_{w,y} &=& k_w(y - \xi_y) \end{array}$$

which are copies of the system dynamics, with a forcing term in place of the unknown walker velocity estimate, and where only measured positions and input commands are used

• it is easy to verify that the estimate is a first-order stable filter of the intentional walker's linear velocity

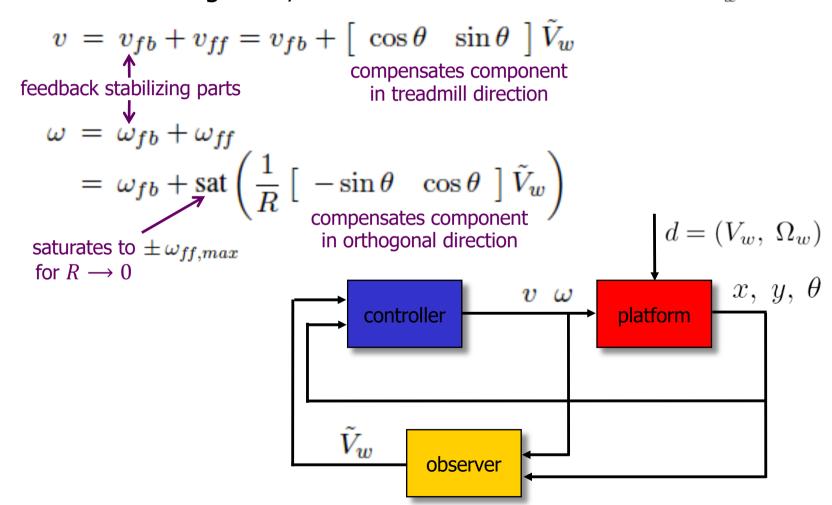
$$\dot{\tilde{V}}_{w,x} = k_w \left(V_{w,x} - \tilde{V}_{w,x} \right)$$
 in Laplace domain
$$\dot{\tilde{V}}_{w,y} = k_w \left(V_{w,y} - \tilde{V}_{w,y} \right)$$
 in Laplace domain walker velocity, walker velocity, the estimation error goes to zero

goes to zero

Final feedback/feedforward control

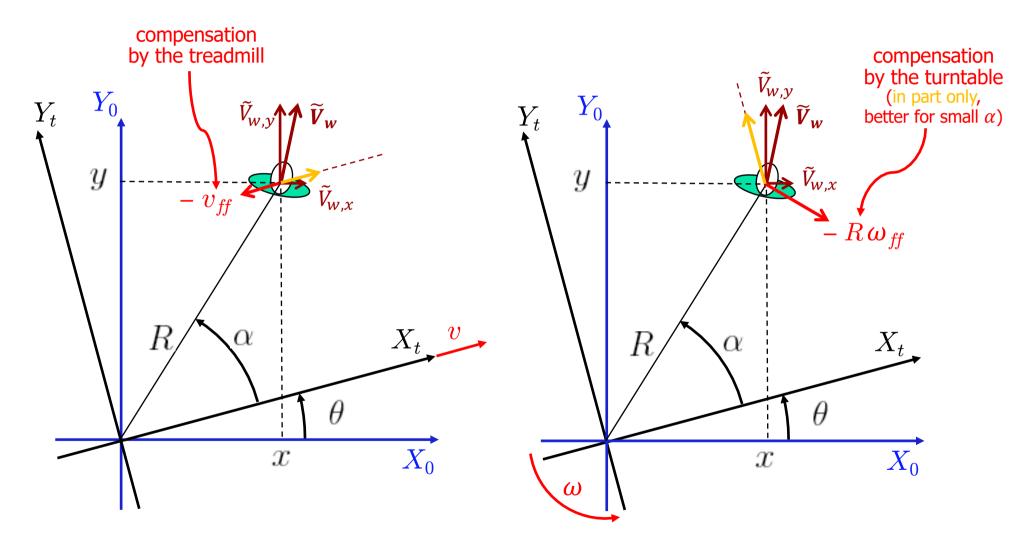
CyberCarpet platform

• the estimate is used within a feedforward term, added to the previous feedback centering term, to counteract the "disturbance" V_w



Role of feedforward actions

CyberCarpet platform



Comments on the final control law

CyberCarpet platform

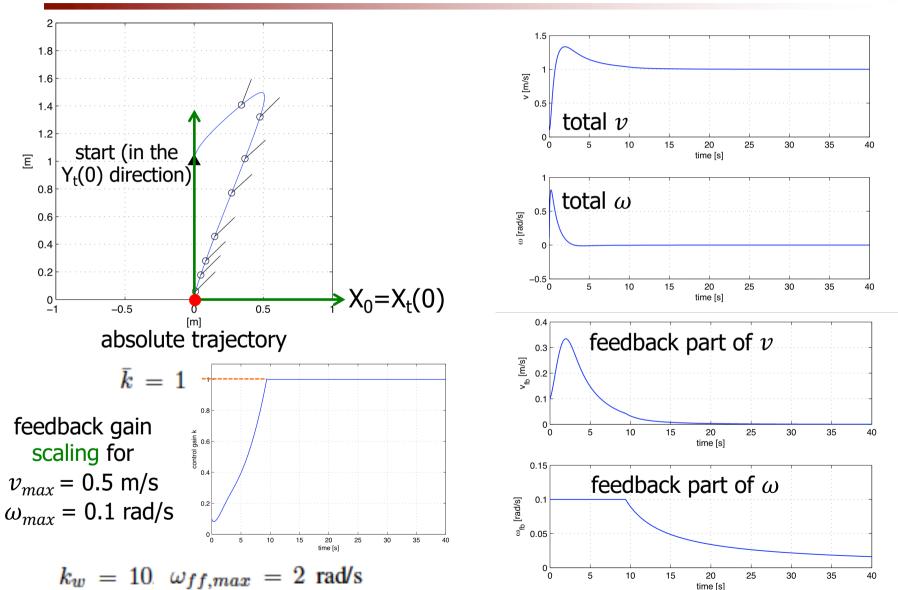
- including intentional angular velocity in the disturbance observer
 - feasible, but not done here ...
- gain scaling of feedback part, so as to satisfy perceptual constraints

$$|v| \le v_{max} \quad |\omega| \le \omega_{max} \qquad \longrightarrow \qquad k = \frac{\overline{k}}{\max\left\{1, \frac{|v|}{v_{max}}, \frac{|\omega|}{\omega_{max}}\right\}} > 0$$

- the feedforward action needs not to be scaled since it contributes to canceling absolute motion of the walker, thus reducing perceptual effects
- saturation in the feedforward angular velocity
 - avoids control explosion for R approaching zero
 - for sufficiently smooth intentional velocity of the walker, the platform tends to align with V_w so that the ω_{ff} remains anyway small

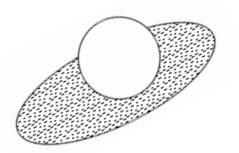
Simulations with the final control law

straight line walk at 1 m/s



Walker geometric model

shoulders and head of the walker modeled as an ellipsoid and a circle



$$s = \{x, y, \theta_w, c_x, c_y\}$$
ellipsoid circle center center (relative to ellipse)

areas may vary due to changes in human pose, but ellipsoid and circle sizes have been kept constant

orientation of minor ellipsoid axis

- each particle is an hypothesis about the state of the walker, with an associated (Gaussian) probability distribution
- at each iteration, the visual tracker generates a set of new hypotheses propagating particles through a simple dynamics
- this prior distribution of the next state is then tested using the observation of the image captured by the overlooking camera, and probabilities associated
- a set of particles is redrawn, modeling the posterior probability distribution of the walker state, from which the current position/orientation is extracted

Visual tracking algorithm

color-based particle filter

N particles are equally initialized (mouse clicks on first image)

$$s^{(1)}, \dots, s^{(N)}$$
 $\pi^{(j)}, j = 1, \dots, N$ $(N = 500)$

Algorithmic steps, at each iteration t:

- evolution $s_t = s_{t-1} + w_{t-1} \leftarrow$ random Gaussian variable
- color (normalized) histograms p and p' are built for the pixels in the shoulder-head and head regions and compared to stored q and q'histograms using the Bhattacharyya (B.) coefficients $\rho[p,q]$ and $\rho[p',q']$

$$d = \sqrt{1 - \frac{\rho[p, q] + \rho[p', q']}{2}} \longrightarrow s^{(j)} \longrightarrow \pi^{(j)} = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{d^2}{2\sigma^2}\right)$$

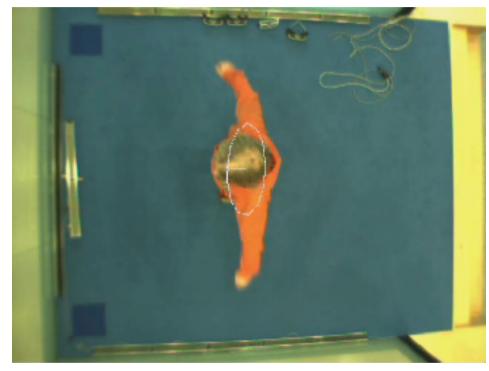
B. distance = similarity measure probabilities associated to particles

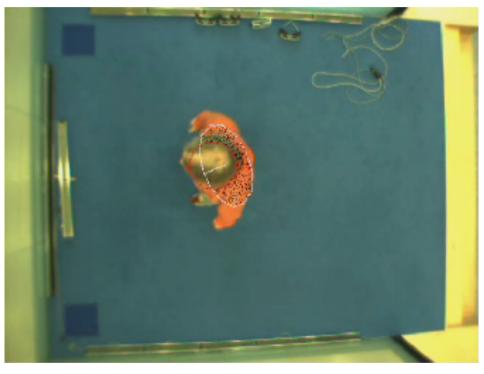
- a set of N new particles is drawn (with replacement) by random sampling using these probability distributions
- the walker's current pose is obtained by weighted averaging of the current particle set, where the weights are the B. distances $d^{\left(j \right)}$

Full-scale visual tracking

from single overhead camera

video





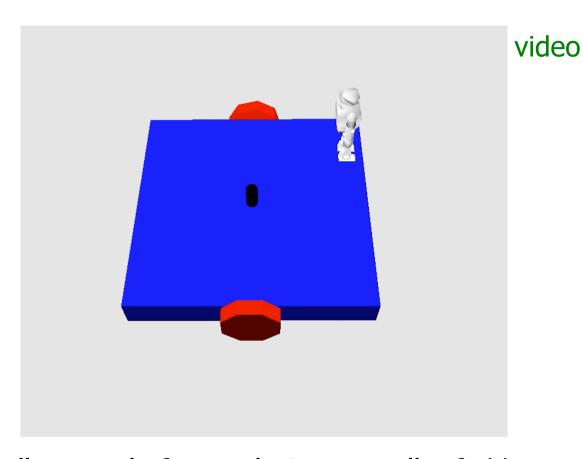
ellipsoid only

ellipsoid plus head

on-line visual localization of walker position and orientation

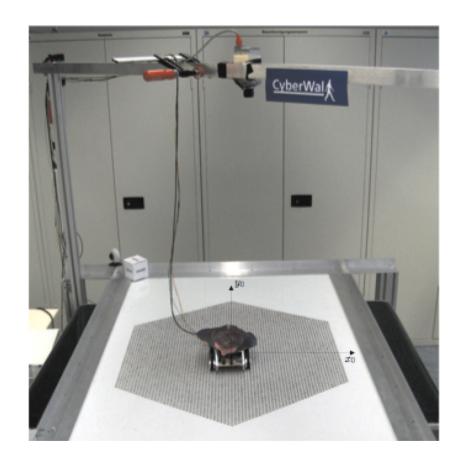
3 Hz rate with basic algorithm was improved to 17 Hz, by constructing histograms only for 500 randomly selected points in the relevant regions

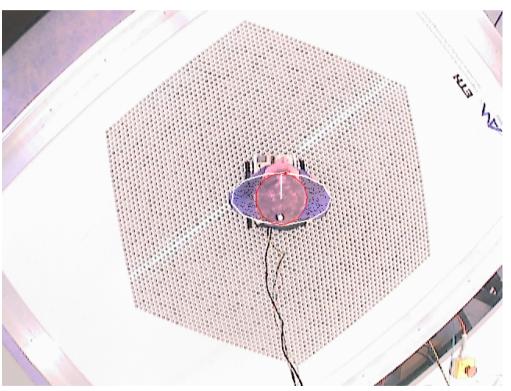
Simulation CyberCarpet using the visual data



ball-array platform velocity controller fed by the real full-scale walker position (random walk) obtained with the previous visual tracking system

Actual experimental set-up

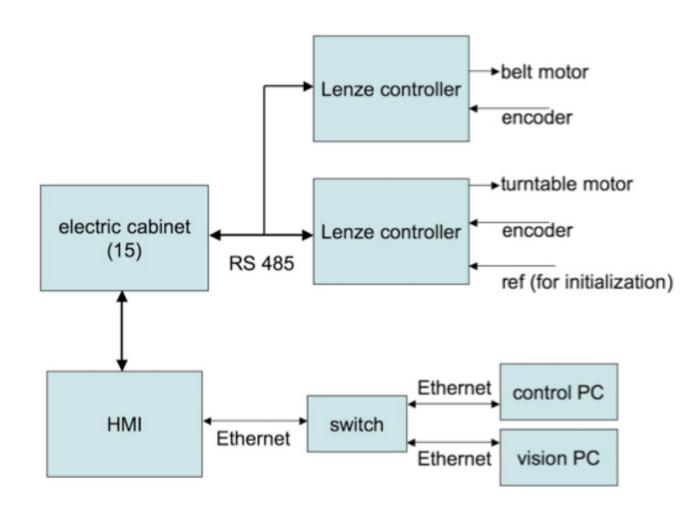




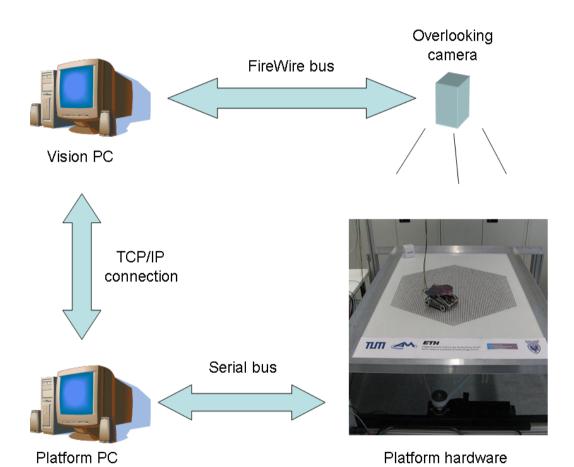
side view with mobile robot

top view from the camera

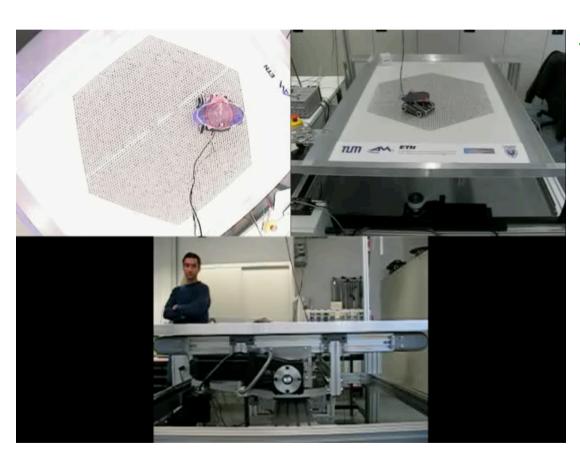
Scheme of control hardware



Experiments ball-array platform



- position extraction data rate:10 Hz
- velocity commands data rate:10 Hz
- walking user replaced by a remote-controlled car
- different scenarios
 - standing still, but initially out of center
 - moving at constant velocity
 - traveling on a circular path
 - traveling on a square path



video

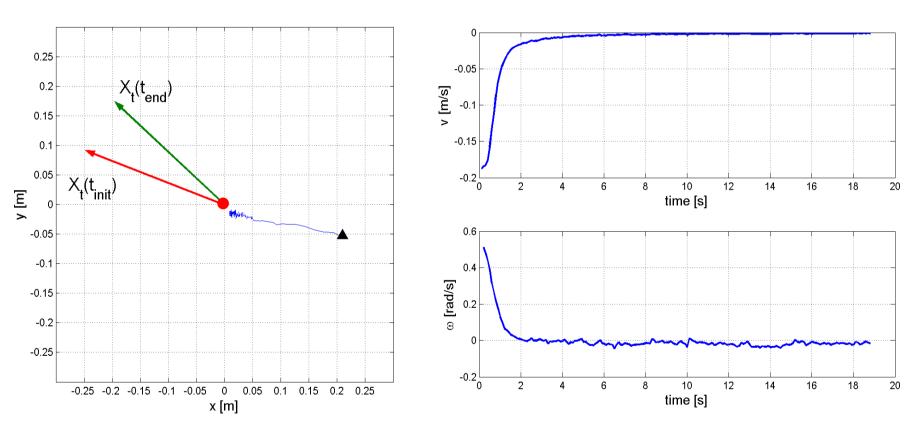
- no need of velocity compensation
- control parameters (used everywhere)

$$k=4$$

$$k_w=0.3$$

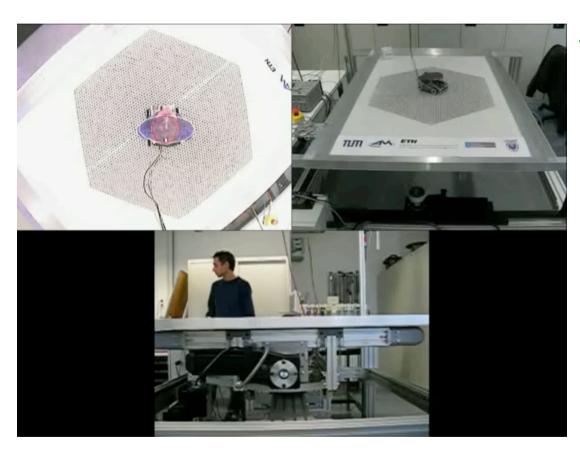
$$\omega_{ff,max}=0.05 \text{ rad/s}$$

Standing still



absolute trajectory

platform velocity commands

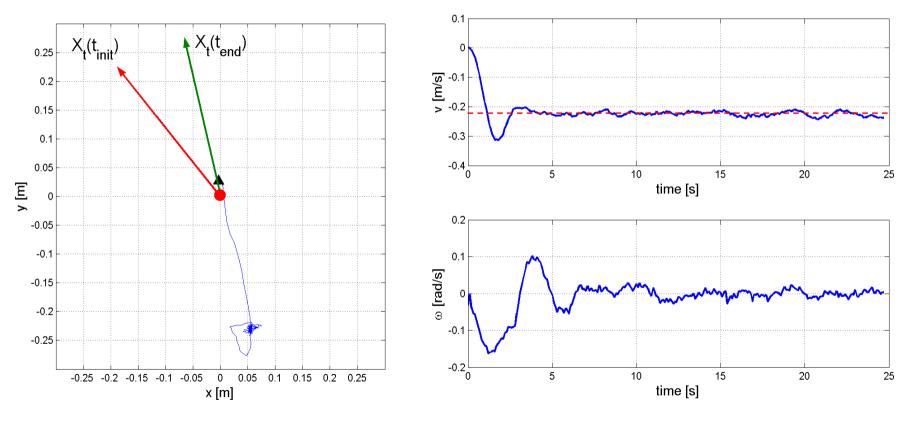


video

- user velocity ~ 0.22 m/s
- without compensation of intentional velocity

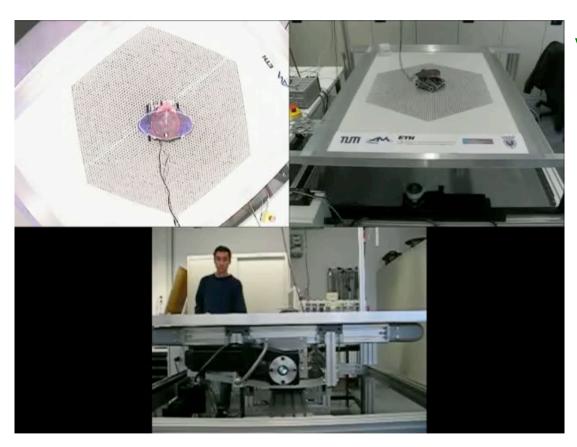
Moving at constant velocity

without compensation of intentional velocity



absolute trajectory

platform velocity commands

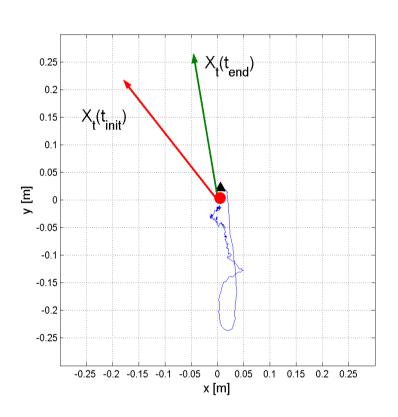


video

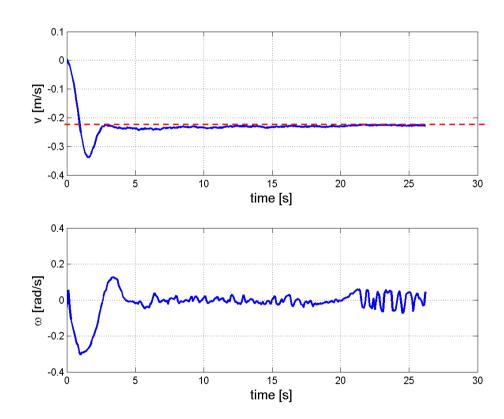
- user velocity ~ 0.22 m/s
- with feedforward compensation of intentional velocity

Moving at constant velocity

• with feedforward compensation of intentional velocity

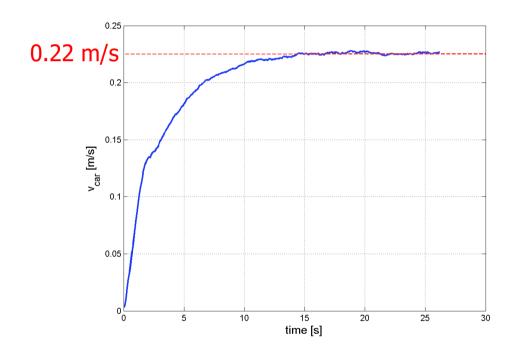


absolute trajectory

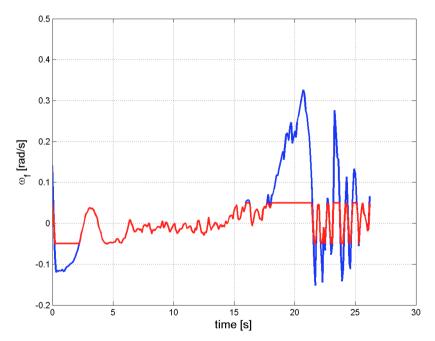


platform velocity commands

- estimation of the
- intentional speed



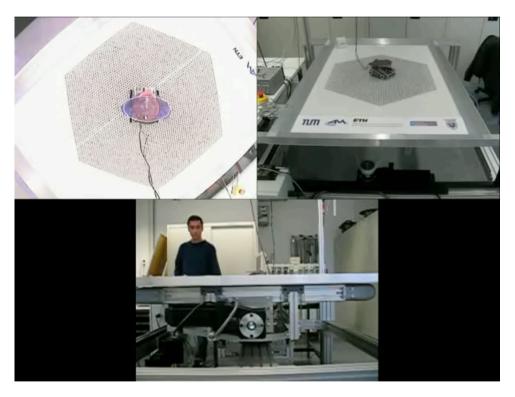
angular feedforward term with and without saturation

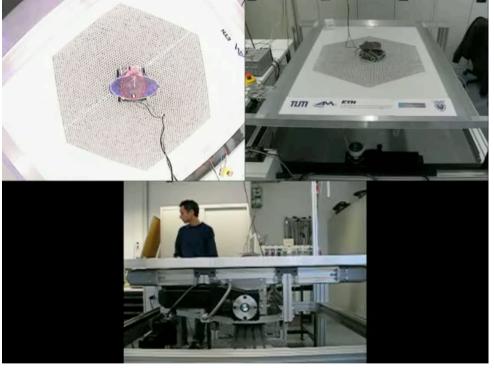


$$\omega_{ff,max} = 0.05 \text{ rad/s}$$

of radius = 0.35 m, at speed \approx 0.14 m/s, stop after about 23.5 s

video video

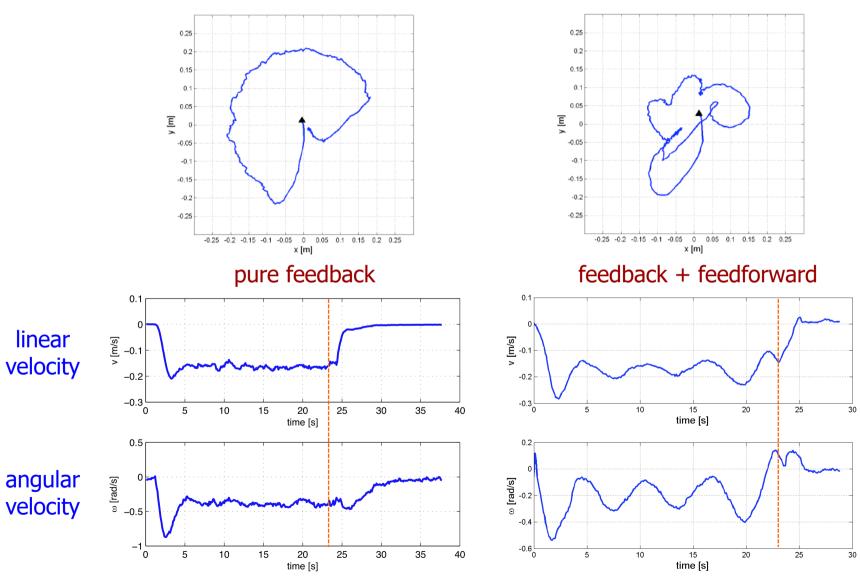




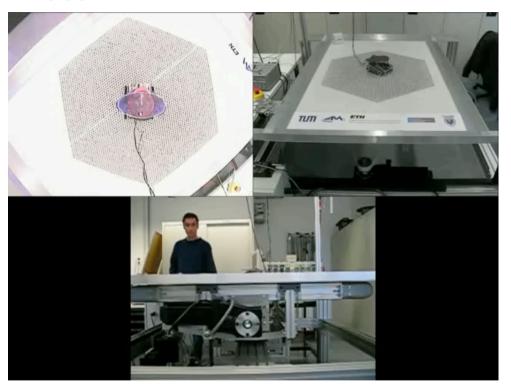
pure feedback without compensation

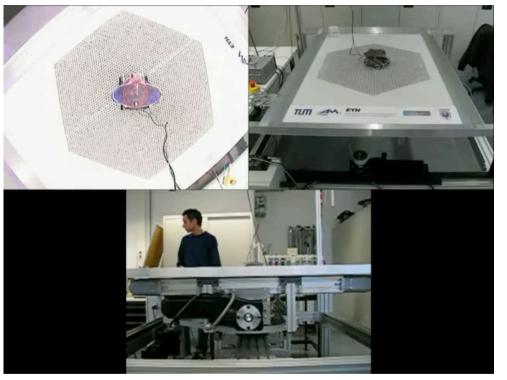
 with feedforward compensation of intentional velocity

Moving on circular path



of side = 0.4 m, at speed \approx 0.1 m/s, turning at corners with $\omega = \pi/4$ rad/s video

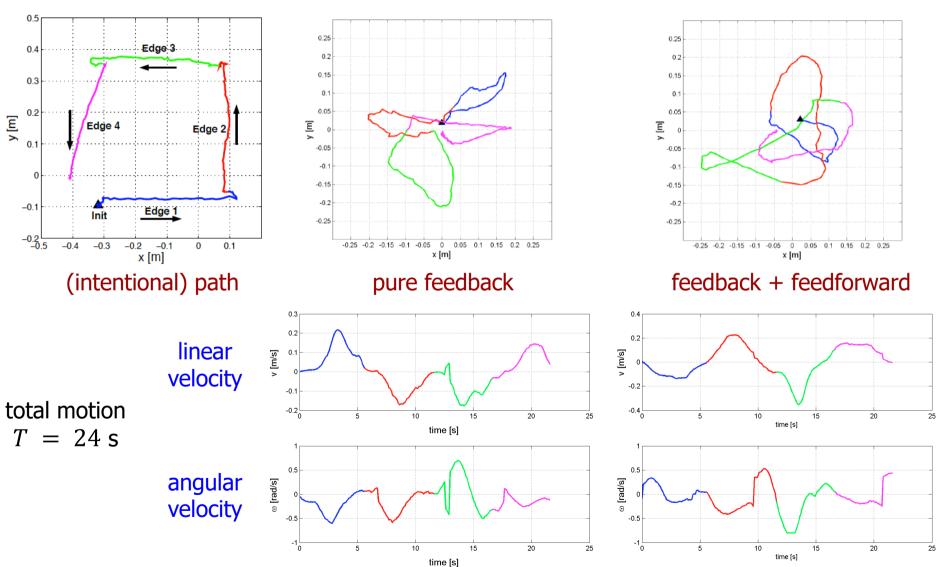




pure feedback without compensation

 with feedforward compensation of intentional velocity

Moving on square path



Acceleration-level control

STORY MARK

ball-array platform

why?

- compliance with actuator limitations and perceptual comfort of the user (especially for full-scale case)
 - direct "control" over imposed accelerations
- softer transients (no jumps in velocity)
- allows analysis of dynamic effects on walker

how?

- add one integrator on each input in the model
- extension of a first-order (velocity) smooth control law

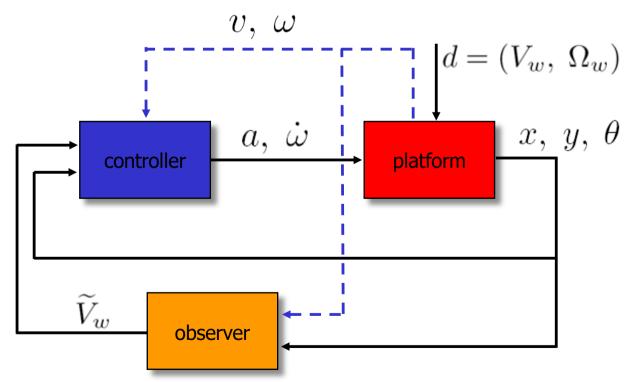
$$\left[\begin{array}{c} v \\ \omega \end{array}\right] = f(x, y, \theta, \widetilde{V}_w)$$

Acceleration control design

ball-array platform

a cascaded second-order control law

$$\begin{bmatrix} a \\ \dot{\omega} \end{bmatrix} = \frac{\mathrm{d}f(x, y, \theta, \widetilde{V}_w)}{\mathrm{d}t} - \underbrace{k_w} \begin{bmatrix} v \\ \omega \end{bmatrix} - f(x, y, \theta, \widetilde{V}_w)$$



Simulation results

ball-array platform

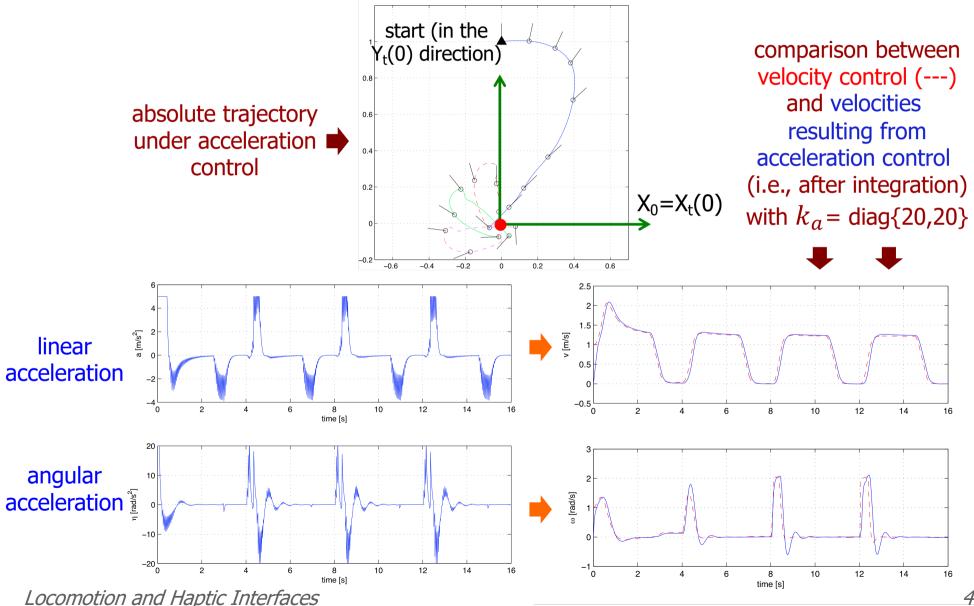
- CyberCarpet under acceleration control
- walker: square path of side = 3 m, max velocity = 1.2 m/s (b-c-b acceleration)

Accompanying video submitted to ICRA'07 Acceleration-level control of the CyberCarpet Alessandro De Luca Raffaella Mattone Paolo Robuffo Giordano Dipartimento di Informatica e Sistemistica Università di Roma "La Sapienza" Via Eudossiana 18, 00184 Roma, Italy {deluca, mattone, robuffo}@dis.uniroma1.it

video

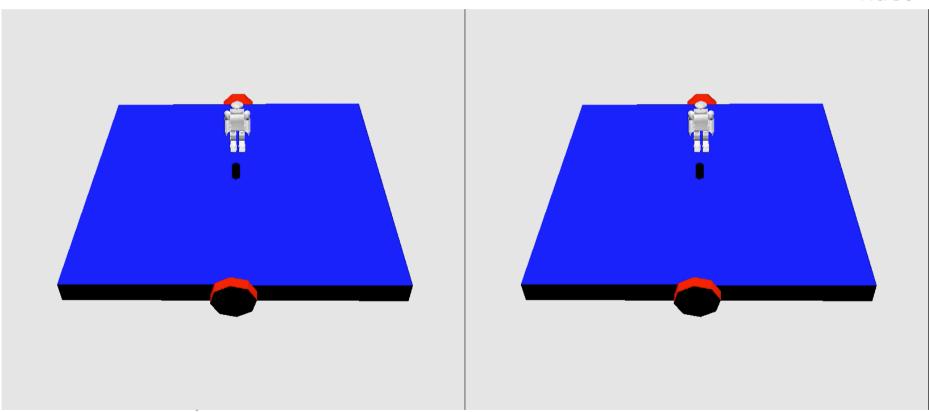
Simulation results

ball-array platform



Dynamic analysis ball-array platform

- CyberCarpet under acceleration control
- walker: square path of side = 3 m, max velocity = 1.2 m/s (b-c-b acceleration) video

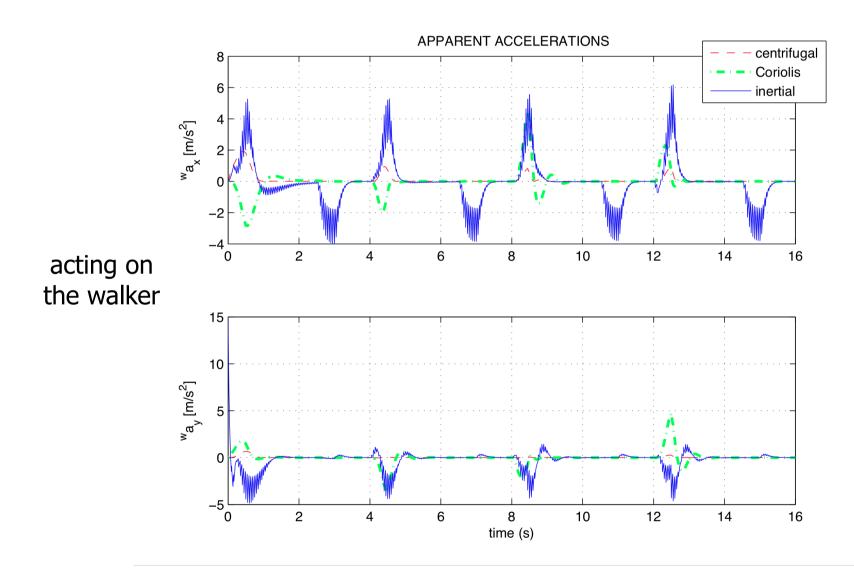


inertial acceleration

Coriolis acceleration centrifugal acceleration

Apparent accelerations

ball-array platform



STONE STONE

Bibliography

- A. De Luca, R. Mattone, and P. Robuffo Giordano, "The motion control problem for the CyberCarpet," 2006 IEEE Int. Conf. on Robotics and Automation (ICRA'06), pp. 3532-3537, Orlando, 2006
- A. De Luca, R. Mattone, and P. Robuffo Giordano, "Feedback/feedforward schemes for motion control of the CyberCarpet," 8th IFAC Symp. on Robot Control (SYROCO'06), Bologna, 2006
- A. De Luca, R. Mattone, and P. Robuffo Giordano, "Acceleration-level control of the CyberCarpet," 2007 IEEE Int. Conf. on Robotics and Automation (ICRA'07), pp. 2330-2335, Roma, 2007
- A. De Luca, R. Mattone, P. Robuffo Giordano, H. Ulbrich, M. Schwaiger, M. Van den Bergh, E. Koller-Meier, and L. Van Gool, "Motion control of the CyberCarpet platform," *IEEE Trans. on Control Systems Technology*, vol. 21, no. 2, pp. 410-427, 2013 [on-line in IEEE Xplore since 6 Feb 2012]

Updated web links

(as of March 2021)

working links about the CyberWalk project

- https://www.kyb.tuebingen.mpg.de/149540/perception-for-action (MPI, Biological Cybernetics)
- https://www.uni-ulm.de/in/psy-acog/forschung/projekte/former-3rdparty-projects/cyberwalk/ (Marc Ernst, project coordinator)
- https://www.mw.tum.de/en/am/research/completed-projects/cyberwalk (TUM, Applied Mechanics)
- http://www.diag.uniroma1.it/labrob/research/CW.html (Sapienza, DIAG)

