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Abstract— The position-dependent apparent gravity acting on this causes many problem for control design in the task
the end-effector of impedance haptic devices may represent space. On the other hand, compensating gravity in the task
a loss of IrztijnsTpa;ﬁnfy, and generally req”'reﬁ tto tEe aCt't;’le'y space would dramatically simplify the problem getting an
compensated. To that purpose, a new approach to the problem -
of gravity compensation was introduced in our previous work increased robustnesg and effflcllency. However, we noted that
[1]. The apparent gravity is preliminarily estimated in a given ~ mMost of the commercial haptic interfaces feature 3DoF and a
set of positions inside the workspace, then the acquired data 3-dimensional workspace without any redundancy in the join
are used to set up a suitable gravity compensation control space. This led us to adopt the new approach presented first
law. At each position of the aforementioned set, the estimation in [1], where the proposed gravity compensation algorithm

is performed via an iterative method based on a nonlinear . . . . . .
model subject to a feedback-linearizing PD controller. This suites for 3DoF haptic devices and is formulated directly in

paper, which builds upon our previous contribution, improves ~ the task space. This algorithm is split into two phases. The
the mathematical formulation of the problem and addresses first phase, referred to af-line autocalibration, is devoted
the analysis of stability and convergence properties of the to learn the nonlinear injective relationship between the-e
iterative estimation method. Finally guidelines for performance-  affactor apparent gravity and its position in the task space
based parameter design are dlscussed_. Validation experiments To that end, the device workspace is discretized using a
have been performed, and results are in good agreement with ; . ’ X ; . _
theoretical findings. cubic grid, whose vertices build up the set of positions in
which the end-effector apparent gravity must be measured.
I. INTRODUCTION The estimation procedure is composed by two nested loops.
In the last decade impedance force-feedback devicés the inner loop, an iterative procedure is implemented to
have been strongly improved thanks to both mechatronistimate the apparent gravity acting on the end-effector at
and software developments. As a consequence, improvit current vertex. The outer loop is devoted to iterate the
performance devices at lower prices are available taqravity estimation for each vertex of the grid. Note that the
day, as for example the Phantom Omni (Sensable Tecbff-line autocalibration procedure has been designed to be
nologies - www.sensable.com) or the Falcon (Novint automatically performed by the device.
home.novint.com). Thanks to technological development, _ ) )
using haptic devices has become a common practice in aOnce the gravity compeng,at|op terms have been estimated
large variety of disciplines, involving even medicine [2],@t €ach vertex of the cubic grid, the second part of the
Psychophysics and Neurophysiology [3]. In any virtual re/gorithm, referred to asn-line gravity compensation, can
ality application, the inertial and gravitational propest be applled.. According to data 'acquwed off-line, the gy;awt
characterizing the haptic manipulator may represent a di§ompensation term at a generical end-effector posidis
turbance which can strongly affect the simulation realimglétermined using a piece-wise-linear approximation:, fint
In the scope of this research, we focus on the probleﬂf'd cube qontammg( is identified, gnd then .t.he requwed
of compensating the apparent gravity acting on the en&_qmpensa‘uon term is compu_ted usmg.the trilinear mterpo-
effector, due to the gravitational contributions actingtbe  |ation among the values previously estimated at all vestice
whole kinematic chain of the haptic device. Several work8f that cube.
can be found in the literature where different techniques In this paper, which builds upon our previous work

are employed ?n order to actively cancel effects of grgvit 1], we report the results of further investigations deglin
on haptic manipulators [4]-{7]. Although the large variet \tvith the iterative estimation method applied in the off-

of approaches, they share some common traits. Generaliy,e 5 ocajibration phase. In particular, we studied iftab

gravity compensation is based on the knowledge of dewc(;n
kinematics, or otherwise force sensors are employed irrord
to achieve device mechanical transparency using admétan
control laws. The remainder of this article is structured as follows:

In robotics, the gravity compensation is rarely approache8ection Il deals with dynamical modeling and controller
in the task space, because in general the map from the jotiésign issues. Section Ill provides the mathematical fermu
space to the end-effector coordinates is not injective ardtion of the iterative estimation technique. In Section IV

A.Formaglio, S.Mulatto and D.Prattichizzo are with Depaminaf Infor- Stabl“.ty and Converg?nce properties of th? proposed raetho
mation Engineering. University of Siena, via Roma 56, 531Gn&; Italy. are discussed. Section V reports experiments and results.
{formaglio, mulatto, prattichizzo}@ii.unisi.it Finally, in Section VI concludes this paper.

d convergence properties of that method, and provide
uidelines for performance-based parameter design.



Il. MODELING AND CONTROL where Kp and Kp are the proportional and derivative gain

The haptic end-effector is modeled as a point-like positiorfnatrices.
dependent mas$1(X), subject to gravityG(X) and to ~ Combining the (1) with the control (2), it yields the
the virtual environment forcd=(X,X) to be rendered by honlinear dynamical system
actuators, yielding the following non-linear dynamics:

M(X)X +G(X) = F(X,X) 1)
whereX € R? is the end-effector positioM(X) € R®<2 and Ideally, the gravitational ternG(X) is cancelled by the

F(X,X),G(X) € R3. We assume an isotropic model of thecontrol, but the non-linearity in the inertial ter(X) holds.

apparent masM(X), defined as a function of the apparent T_he P,D parameterkp and Kp can be chosgn in OTdef
gravity, hence: to linearize the closed-loop dynamics. In the literatuhgs t

1G(X)|| approach is referred to agedback linearization [8], and
M(X) = ——=—1I i i -
9 allows to come up with a transformation of the open-loop
system yielding a closed-loop linear system. The lineagzi
PD parameters are:

M(X)X = Kp(Xp — X) —KpX (3)

whereg= 9.813 andl is a X3 identity matrix. Referring to
the top of the Fig. 1, leFy(X,X) = F(X,X) — G(X) be
the resultant force really perceived by the user duringibapt Kp(X)=BM(X) and Kp(X)=aM(X) (4)
interaction. Until effects of gravity are not compensated,

Fu(X,X) may be quite different fronF(X,X), causing a wherea,B € R, anda, > 0. Substituting the linearizing
possible loss of transparency. To that purpose, the contrearameters (4) in (3), we have:

force F (X, X) should integrate a compensation term ideally . )

equal toG(X) in addition to the virtual environment force, M(X)X = BM(X)(Xp — X) — aM(X)X

in order to cancel or at least strongly reduce the effects of )
the gravity, (see the bottom of the Fig. 1). and hence:

X =B(Xp —X)—aX (®)

which is a linear and asymptotically stable system.

A fast-tracking PD controller can be designed using
classical control theory [9]. The PD parameters can be
chosen according to the desired closed-loop performance,
in terms of the raise timds and the percentage overshoot
p characterizing the unit-step time response of the haptic
probe positionX. Given the user-desired paifig( p), the
corresponding parametessand 3 can be computed through
analytic relationships, graphically represented in Fégu2
and 3. We summarize the simple graphical procedure to
design the controller parametemsand 3. First, choose the
desired valuesls and pg; then, referring to the curves in
Figure 2, select the value @ corresponding to the desired
Ts and p; finally, select the value ofr using the curves in
Figure 3 according to the desirga ahd the 8 previosly
chosen.
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A proportional-derivative (PD) controller with a feedfor- o s a0 s wo  m0 @ @ a0 a0 o
ward term is applied to hold the end-effector at the position Te(ms)
Xp where the apparent gravity must be estimated. ASSumingy. 2. Design plots for parametgr The curves represent the relationship
that the apparent gravity is exactly known, the force reeder between 3 and the raise timeTs, parametrized for several values of
by the actuators is: percentage overshogt

FX.X) = Ke(o—X)—KpX+G(X)  (2)
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G(Xi) is achieved at verteX;. The outer loop will move the

Fig. 3. Design plots for parameter. The curves represent the relationship €nd-effector to the next vertex, and a new initialization fo
betweena and 3, parametrized for several values of percentage overshoghe inner loop afX;,; is obtained by setting:
p.

Go(Xis1) = G(X), Vi. 9)

1. ITERATIVE ESTIMATION TECHNIQUE B. Recursion rules

The model discussed in the previous section assumes thah
the nonlinear terms are known so that the controlled syste
can match the performance speficications. Actually, these EE?

; arent gravity estimation error will reflect in a non-zero
the terms that the proposed procedure aims to measure aegﬂcg g Y

are unknown. The basic idea consists of replacing the exaﬁ;lt -effector_positioning error at the steady state. Hence,
terms M(X) and G(X) appearing in (2) and (4) with their e steady-state effort exerted by the proportional part of

timatesh (X 4 G(X d usi ion t dat the control is used to update the gravity estimation. Then
estimatesM(X) and G(X), and using recursion to up A€ this procedure is iterated. In mathematical terms, given th

such values in order for the estimation error to converge Q- . vertexX, the force to render at the end-effector at

ecursion for this method builds upon a simple basic
inciple. At the jt" iteration for a generical verteX;, the

zero. . A ith i .
HenceforthG;(X), Mj(X), Kp(i, j) Kp(i, j) will represent the J step is computed as:
. . . . h . . ~
:/r;ert;/)a(ﬂ)tées computed at tH&" iteration performed at thi Fi(X,X) = Kp(i, })(X — X) —Kp(i, )X+ G;(%)  (10)

Note that the PD control parameters will depend on thene pp parameteKs(i, j) and Ko (i, j) are computed ac-
apparent gravity estimation, hence the following constrai cording to the estimation &t — 1)!" step:

must hold:

Gj(%) #[0,0,0]" Vi, j. 6)  Kp(i,j)=BM;_1(%) and Kp(i,j)=aM;_1(X%) (11)
A. Initialization rules
. . . . where
As pointed out in the Introduction, the off-line autocal- 16 2(%)]
ibration in composed by two nested loops [1]. In order to Mjfl(xi) B el AP L
globally initialize loop variables for=0 andj =0, a simple g

procedure is applied. The user is asked to manually bring 1,6 4pharent gravity estimate is updated at steady state of

the' end.-effector almost in the center of its Workspgce. Ahe jth iteration, according to the following recursion rule:
a time instant decided by the user, a central elastic force

field (with user-defined stiffnesky) is activated. Then the Gi1(X) = Kp(i, ) (% —X) + G (X 12
user can release the end-effector while the force field holds (%) e D ) i) (12)
it hanged to the position chosen by the user. The steady-st@{gain, the steady state is considered to be reached as soon
pOSItlonlng error between the field center and the actual engs Ns consecutive Ve|ocity Samp|es Satisfy the condition
effector position is used to initialize the estimaig. X < és.

Let Xo € R? be the position arbitrarily chosen by the user, The final estimationG(X) at the i" vertex is avail-
as well as the center of the force field. Létbe the current pie as soon as the convergence is achieved. The stop
end-effector position. The force field is rendered acc@din.qngition for the inner loop is matched as soon ras
to the equation: consecutive values of estimated gravity satisfy the condi-

F(X,X) = ko(Xo — X) tior! 1Gj(Xi) — G(j_1) (Xl < &, whereng and &g are user-
. ) ) defined parameters, .

The steady state positiok, is considered to be reached as Now, in order to move the end-effector towards the vertex

soon asis consecutive velocity samples satisfy the conditio |y the controller (10) is used again in the outer loop, with

IX|| < &, wherens and s are user-defined parameters. &/ .y computed according to the relationship (9) and the
Hence, the global initialization of the gravity compensapn parameters computed as:

tion term GO(XO) is computed as:
Go(Xo) = ko (Xo — Xeo) 7 Ko(i+1,0=aM(X) and Ke(i+1,0)=BM(X) (13)



IV. STABILITY AND CONVERGENCE Now consider the following energy-based Lyapunov func-
In this section the convergence of the iterative methogon: 1
mplemented |r.1'the inner loop is anglyzed. To that endZ wey/ (X) = 3 [XTM(X)X+(X—XD].)T[KPJ. +EjJ(X—Xp,)]
will study stability and convergence in an arbitrary degire (18)
position Xp in the workspace, such that the results can bi

applied for each vertex of the desired grid, without loss o . we haveV(X) > 0. From straightforward computations,

generality. » the derivative oV (X) is
Recalling that the proposed method originates from the

one proposed in [10], also the proof of convergence predente V(X) = —XT[Fj+Kp, (X = Xp,)] (19)
in the following is derived from the work by De Luca and :
Panzieri. Using the (17)V(X) becomes:

Note that according to the recursion rules reported in the V(X) = fXTKDjX (20)
previous section, a generical iteratignends only when
the corresponding dynamical system has reached the stedigice Kp, > 0, we haveV(X) < 0, hence the system con-
state. This in turn means that before analyzing the cottrolled by a feedback-linearizing PD controller is stabtela
vergence properties of the iterative method, it is requiregonverges at the equilibrium poidb,, whatever the initital
to guarantee the stability of the controlled system at eadtpsition X from which the tracking begins.

inceM(X) >0 and [Kp, + Ej] > 0 for a suitable choice of

iteration. To that end, consider: Once the stability has been proven for the generical
. . iteration j, we can discuss now the convergence of the
M(X)X +G(X) = Kp, (Xp —X) — Kp; X +G;j (14)  estimation method. According to (12), ti¢-+ 1) gravity

stimation is computed as the steady-state effort of cbntro
10) at the end of iteratior), which in turn is ideally equal
to the apparent gravity forc&(Xp;) at positionXp,; (see

that is obtained combining equations (1) with (10) an
simplifying the notation by defining:

al|Gj| BHGJ || equation (14)). Then, the difference between the estimstio
Kp;, = TI and Kp, achieved at two consecutive iterations is:
Gjs1-Gj| = |IFf(Xp;,0)—Fj_1(Xp,,0
Let the gravity estimation error a" iteration Ej(X) be I1Gs+1 =G B ”GJ(XDJ’ )G i-1(%0;, 0)
defined as: = | (XDJ-)* (XDj D
E;(X) = G(X) _éj Note that beingX the physical end-effector position inside

its workspace, we hav¥ € D c R3, whereD is a compact
In the following, in order to come up with analytical resultsset, andG(X) is continuous and differentiable ovir (since
we will assume that the error depends linearly on positioit is a physical feature of the system). Hence there exists
X, in other terms we will approximate it with the first orderc € R, ¢ > 0, such that:

term of its Taylor series:
d 16(%,)~G(Xo, Il < X0, — %o,
< c(llajll+[laj-al)

whereE; € R¥3 is the Jacobian matrix. The system (14) carl" hereA; = Xp —Xp; is the positioning error at steady state
be rewritten as: of iteration j. By comparing the inequalities above, it yields

that:
M(X)X = Kp;(Xp —X) — Kp; X — E;X (15) [Gj+1—Gjll < clIAjl[+[|Aj-all)

Ej(X) ~ EjX

In order to study the stability of this dynamical systemand hence, according to the (12):

we must note that the terfg;X will shift the equilibrium BIG|

point, then the system can eventually converge at the new — 141 < c(|ajll+ 1Aj=1ID
destination point defined as: 9

XDJ' = [KPJ' + Ej]ilKPJ'XD

SinceKp, is a controller parameter, it is always possible to 18] < (BGII—Cg> 18-l

choose a valug8 such that[Kp +E; jl >0 (in the sense of '

positive definiteness), thus guaranteeing also that thexsev Summarizing, choosing such thatB||GJH > 2cg, it stems
matrix [Ke, +E] ! exists. Finally, the system (14) can bethat asj — « the error Aj — 0, thus alsoXp; — Xp,

that can be finally rewritten as:

rewritten as: GJ — G(Xp), and Ej — 0, for any position the tracking
M(X)X = |fj (16) starts from, provided that the estimated gravity is neveiaeq

to zero. Hence in addition to stability, a suitable choice

where of the parametef3 can guarantee also the convergence of

Fj = —Kp, (X =Xp;) — KDJ.X (17) the method, providing a reliable estimation of the apparent



gravity forceG(Xp) acting on the end-effector at the desired : : ¥ step trajectonies (mfn) —
position Xp. X op

Actually, the proofs above hold until actuator saturation °/
is avoided, i.e. until the control effort at each time in$tan ,0:50 TS S S S S S S S
does not exceed the maximum nominal force that the device 2

is capable to exert.

> 295+
V. EXPERIMENTS \
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Several validation experiments have been performed ap-
plying the proposed algorithm to different haptic de- |
vices with 3DoF. As an example, in the following we 12//— ]
report results achieved with an Omega Haptic Device T T I e T
(www.forcedimension.com), estimating the apparent dyavi t(ms)
at the desired pOSitiOKD = [0’730’ O}T' Fig. 5. End-effector trajectory recorded during th& Reration step,

To design the PD controller we chose performance specalecomposed in itg, y and z components.
ficationsTs = 200ms and 5% overshoot, yielding the values

o =40 andf3 = 700 (see Figures 2 and 3). The other user- 6" step trajectories (mm)

defined parameters wherey = O.Smﬂﬂ, ng =20, &= 5 0z i i i i i i i

0.1(mm/s),ng = 5 andeg = 0.5g. ol ]
The method required 14 iterations to achieve the esti- 01¥1 |

mation G(Xp), starting with the end-effector in an initial T am e we  we w0 70w

position randomly chosen ds-9.2, —68.3,116]'. ‘ ‘ ‘ ‘ ‘ ‘ ‘
-29.951- 4
. . > -30F 4
‘ ‘ 18 ‘step Fra]ec?ones‘(mm)‘ ‘ | ms\x\ﬂ_ﬂ |
8 al 730'10 180 2(;0 3éo Al‘)O 5(;0 650 780 800
x 0r - -0.05 T T T T T T T
-8 = - -0.1f -

! ! ! ’ ! ! ! ! ! -0.25 L L L L L L L
5ol | 0 100 200 300 400 500 600 700 800
> t (ms)
ol g i
‘ ‘ ‘ ‘ ‘ ‘ ‘ ; ; Fig. 6. End-effector trajectory recorded during th® @eration step,

decomposed in itg, y andz components.

2,\,\4 L 100ms). Moreover, as the iterations proceed, the steady-

B (1 R state values of th&, y and z components approach to those
of the target destinatiorXp = [0,—30,0]". To discuss in
detail the convergence properties of the applied methad, th
Figures 8 and 9 respectively show the positioning efxpr
and the estimated mas4; over the 14 iterations. As in our
As it was expected, the PD controlled system revealegikpectations, the error rapidly converges to zero, whike th
to be stable at each iteration. In order to show in detail thgpparent mass reaches the convergenchl (@) = 217g,
dynamical behavior of the system during the iterations,nas avhich is very close to the value 214g we measuredgn
example we report in Figures 4 through 7 the end-effectahrough a force sensor (represented by the dashed line in
trajectories recorded during steps 1, 3, 6 and 9, respéctiveFigure 9).
For the reader’s ease, each trajectory has been decomposed
in its x, y and z components. In steps 1, 3 and 6 the raiseV!- DISCUSSION AND CONCLUDING REMARKS
time and the overshoots are close to those defined during theln this paper, we report results of further investigation
design phase. On the other hand, in step 9 the positionig the autocalibrated gravity compensation algorihtmointr
error is already very close to zero, hence the system diiced in our previous work [1]. In particular, stability and
reaching the convergence and is almost still, except for trenvergence properties characterizing the iterative atkth
slight effects of measurement noise. for apparent gravity estimation have been analyzed. We
Note that the time duration can be different for each tragprovided analytical proofs that the system is stable during
jectory, depending on the time required to match the steadgach iteration. Besides, the iterative procedure consgerge
state condition defined bys an &g (in our experiments, yielding the estimation of the apparent gravity acting ia th
we decided to lower bound the duration of each step #arget position. Validation experiments were performethwi

Fig. 4. End-effector trajectory recorded during th& fteration step,
decomposed in itg, y andz components.
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Fig. 7. End-effector trajectory recorded
decomposed in itg, y andz components.

during th® @eration step,
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Fig. 9. Apparent mass estimatib]ly over all iterations. The straight dashed
line represents the apparent mass 214g measuret ithrough a force
sensor.

hand, the design choices that allow a fast autocalibraton c
conflict with each other and with the requirement to achieve
an accurate gravity estimation. Recall that the on-lineitya
compensation is based on a piece-wise linear approximation
of the nonlinear relationship between the apparent gravity
and the end-effector position [1]. Hence, it is clear that
decreasing the grid resolution would improve performance
in terms of time, but will make the interpolation intervals
larger, with a possible degradation of the approximation
accuracy. Similar remarks hold for the stop conditions:
relaxing the conditions to check the steady state reachidg a
the estimate achievement would improve time performance
but will degradate estimation accuracy as well.

Time performance can be improved by selecting low
values of Ts and p, corresponding to higle and 3. Note
that a high valueB would also guarantee the stability and
the convergence of the iterative method, but may also lead
to actuators saturation. At worse case, saturation mayroccu
when the tracking error is maximum, i.e. while the end-
effector begins to move from the current vertex from the
next one, hence it directly depends on the side lenght of
each cube of the grid. Given the maximum nominal force that
the device is capable to exert, Bsincreases the cube side
lenght should decrease in order to avoid saturation, with th
aforementioned consequences in terms of time performance.

In summary, since the effective behavior of the proposed
procedure will depend also on the unknown dynamics char-
acterizing the haptic device of interest, it is hard to define
precise specifications that hold for any existing devicés It
our opinion that the main target should be the estimation
accuracy in spite of a longer execution time, anyway a
different parameter tuning can be chosen according to the
remarks discussed so far.
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