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Abstract— The position-dependent apparent gravity acting on
the end-effector of impedance haptic devices may represent
a loss of transparency, and generally requires to be actively
compensated. To that purpose, a new approach to the problem
of gravity compensation was introduced in our previous work
[1]. The apparent gravity is preliminarily estimated in a given
set of positions inside the workspace, then the acquired data
are used to set up a suitable gravity compensation control
law. At each position of the aforementioned set, the estimation
is performed via an iterative method based on a nonlinear
model subject to a feedback-linearizing PD controller. This
paper, which builds upon our previous contribution, improves
the mathematical formulation of the problem and addresses
the analysis of stability and convergence properties of the
iterative estimation method. Finally guidelines for performance-
based parameter design are discussed. Validation experiments
have been performed, and results are in good agreement with
theoretical findings.

I. INTRODUCTION

In the last decade impedance force-feedback devices
have been strongly improved thanks to both mechatronic
and software developments. As a consequence, improved
performance devices at lower prices are available to-
day, as for example the Phantom Omni (Sensable Tech-
nologies - www.sensable.com) or the Falcon (Novint -
home.novint.com). Thanks to technological development,
using haptic devices has become a common practice in a
large variety of disciplines, involving even medicine [2],
Psychophysics and Neurophysiology [3]. In any virtual re-
ality application, the inertial and gravitational properties
characterizing the haptic manipulator may represent a dis-
turbance which can strongly affect the simulation realims.
In the scope of this research, we focus on the problem
of compensating the apparent gravity acting on the end-
effector, due to the gravitational contributions acting onthe
whole kinematic chain of the haptic device. Several works
can be found in the literature where different techniques
are employed in order to actively cancel effects of gravity
on haptic manipulators [4]–[7]. Although the large variety
of approaches, they share some common traits. Generally,
gravity compensation is based on the knowledge of device
kinematics, or otherwise force sensors are employed in order
to achieve device mechanical transparency using admittance
control laws.

In robotics, the gravity compensation is rarely approached
in the task space, because in general the map from the joint
space to the end-effector coordinates is not injective and
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this causes many problem for control design in the task
space. On the other hand, compensating gravity in the task
space would dramatically simplify the problem getting an
increased robustness and efficiency. However, we noted that
most of the commercial haptic interfaces feature 3DoF and a
3-dimensional workspace without any redundancy in the joint
space. This led us to adopt the new approach presented first
in [1], where the proposed gravity compensation algorithm
suites for 3DoF haptic devices and is formulated directly in
the task space. This algorithm is split into two phases. The
first phase, referred to asoff-line autocalibration, is devoted
to learn the nonlinear injective relationship between the end-
effector apparent gravity and its position in the task space.
To that end, the device workspace is discretized using a
cubic grid, whose vertices build up the set of positions in
which the end-effector apparent gravity must be measured.
The estimation procedure is composed by two nested loops.
In the inner loop, an iterative procedure is implemented to
estimate the apparent gravity acting on the end-effector at
the current vertex. The outer loop is devoted to iterate the
gravity estimation for each vertex of the grid. Note that the
off-line autocalibration procedure has been designed to be
automatically performed by the device.

Once the gravity compensation terms have been estimated
at each vertex of the cubic grid, the second part of the
algorithm, referred to ason-line gravity compensation, can
be applied. According to data acquired off-line, the gravity
compensation term at a generical end-effector positionX is
determined using a piece-wise-linear approximation: first, the
grid cube containingX is identified, and then the required
compensation term is computed using the trilinear interpo-
lation among the values previously estimated at all vertices
of that cube.

In this paper, which builds upon our previous work
[1], we report the results of further investigations dealing
with the iterative estimation method applied in the off-
line autocalibration phase. In particular, we studied stability
and convergence properties of that method, and provide
guidelines for performance-based parameter design.

The remainder of this article is structured as follows:
Section II deals with dynamical modeling and controller
design issues. Section III provides the mathematical formu-
lation of the iterative estimation technique. In Section IV
stability and convergence properties of the proposed method
are discussed. Section V reports experiments and results.
Finally, in Section VI concludes this paper.



II. MODELING AND CONTROL

The haptic end-effector is modeled as a point-like position-
dependent massM(X), subject to gravityG(X) and to
the virtual environment forceF(X , Ẋ) to be rendered by
actuators, yielding the following non-linear dynamics:

M(X)Ẍ +G(X) = F(X , Ẋ) (1)

whereX ∈R
3 is the end-effector position,M(X)∈R

3×3 and
F(X , Ẋ),G(X) ∈ R

3. We assume an isotropic model of the
apparent massM(X), defined as a function of the apparent
gravity, hence:

M(X) =
‖G(X)‖

g
I

whereg = 9.81m
s2 andI is a 3x3 identity matrix. Referring to

the top of the Fig. 1, letFH(X , Ẋ) = F(X , Ẋ) − G(X) be
the resultant force really perceived by the user during haptic
interaction. Until effects of gravity are not compensated,
FH(X , Ẋ) may be quite different fromF(X , Ẋ), causing a
possible loss of transparency. To that purpose, the control
force F(X , Ẋ) should integrate a compensation term ideally
equal toG(X) in addition to the virtual environment force,
in order to cancel or at least strongly reduce the effects of
the gravity, (see the bottom of the Fig. 1).
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Fig. 1. Top: dynamical contributions normally acting on the haptic
device end-effector. Bottom: the effects of apparent can be ideally cancelled
applying a compensation term .

A proportional-derivative (PD) controller with a feedfor-
ward term is applied to hold the end-effector at the position
XD where the apparent gravity must be estimated. Assuming
that the apparent gravity is exactly known, the force rendered
by the actuators is:

F(X , Ẋ) = KP(XD −X)−KDẊ +G(X) (2)

where KP and KD are the proportional and derivative gain
matrices.

Combining the (1) with the control (2), it yields the
nonlinear dynamical system

M(X)Ẍ = KP(XD −X)−KDẊ (3)

Ideally, the gravitational termG(X) is cancelled by the
control, but the non-linearity in the inertial termM(X) holds.

The PD parametersKP and KD can be chosen in order
to linearize the closed-loop dynamics. In the literature, this
approach is referred to asfeedback linearization [8], and
allows to come up with a transformation of the open-loop
system yielding a closed-loop linear system. The linearizing
PD parameters are:

KP(X) = βM(X) and KD(X) = αM(X) (4)

where α,β ∈ R, and α,β > 0. Substituting the linearizing
parameters (4) in (3), we have:

M(X)Ẍ = βM(X)(XD −X)−αM(X)Ẋ

and hence:

Ẍ = β (XD −X)−αẊ (5)

which is a linear and asymptotically stable system.
A fast-tracking PD controller can be designed using

classical control theory [9]. The PD parameters can be
chosen according to the desired closed-loop performance,
in terms of the raise timeTs and the percentage overshoot
p̂ characterizing the unit-step time response of the haptic
probe positionX . Given the user-desired pair (Ts, p̂), the
corresponding parametersα andβ can be computed through
analytic relationships, graphically represented in Figures 2
and 3. We summarize the simple graphical procedure to
design the controller parametersα and β . First, choose the
desired valuesTs and p̂; then, referring to the curves in
Figure 2, select the value ofβ corresponding to the desired
Ts and p̂; finally, select the value ofα using the curves in
Figure 3 according to the desired ˆp and theβ previosly
chosen.
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Fig. 2. Design plots for parameterβ . The curves represent the relationship
between β and the raise timeTs, parametrized for several values of
percentage overshoot ˆp.
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Fig. 3. Design plots for parameterα. The curves represent the relationship
betweenα andβ , parametrized for several values of percentage overshoot
p̂.

III. ITERATIVE ESTIMATION TECHNIQUE

The model discussed in the previous section assumes that
the nonlinear terms are known so that the controlled system
can match the performance speficications. Actually, these are
the terms that the proposed procedure aims to measure and
are unknown. The basic idea consists of replacing the exact
terms M(X) and G(X) appearing in (2) and (4) with their
estimatesM̂(X) and Ĝ(X), and using recursion to update
such values in order for the estimation error to converge to
zero.

Henceforth,Ĝ j(Xi), M̂ j(Xi), KP(i, j) KD(i, j) will represent
the values computed at thejth iteration performed at theith

vertexXi.
Note that the PD control parameters will depend on the

apparent gravity estimation, hence the following constraint
must hold:

Ĝ j(Xi) 6= [0,0,0]T ∀i, j. (6)

A. Initialization rules

As pointed out in the Introduction, the off-line autocal-
ibration in composed by two nested loops [1]. In order to
globally initialize loop variables fori = 0 and j = 0, a simple
procedure is applied. The user is asked to manually bring
the end-effector almost in the center of its workspace. At
a time instant decided by the user, a central elastic force
field (with user-defined stiffnessk0) is activated. Then the
user can release the end-effector while the force field holds
it hanged to the position chosen by the user. The steady-state
positioning error between the field center and the actual end-
effector position is used to initialize the estimateĜ0.

Let X0 ∈ R
3 be the position arbitrarily chosen by the user,

as well as the center of the force field. LetX be the current
end-effector position. The force field is rendered according
to the equation:

F(X , Ẋ) = k0(X0−X)

The steady state positionX∞ is considered to be reached as
soon asnS consecutive velocity samples satisfy the condition
‖Ẋ‖ ≤ εS, wherenS andεS are user-defined parameters.

Hence, the global initialization of the gravity compensa-
tion term Ĝ0(X0) is computed as:

Ĝ0(X0) = k0 (X0−X∞) (7)

then we have:

M̂0(X0) =
‖Ĝ0(X0)‖

g
I

and finally:

KD(0,0) = αM̂0(X0) and KP(0,0) = βM̂0(X0) (8)

The inner loop terminates as soon as the final estimation
Ĝ(Xi) is achieved at vertexXi. The outer loop will move the
end-effector to the next vertex, and a new initialization for
the inner loop atXi+1 is obtained by setting:

Ĝ0(Xi+1) = Ĝ(Xi), ∀i. (9)

B. Recursion rules

Recursion for this method builds upon a simple basic
principle. At the jth iteration for a generical vertexXi, the
apparent gravity estimation error will reflect in a non-zero
end-effector positioning error at the steady state. Hence,
the steady-state effort exerted by the proportional part of
the control is used to update the gravity estimation. Then
this procedure is iterated. In mathematical terms, given the
current vertexXi, the force to render at the end-effector at
the jth step is computed as:

Fj(X , Ẋ) = KP(i, j)(Xi −X)−KD(i, j)Ẋ + Ĝ j(Xi) (10)

The PD parameterKP(i, j) and KD(i, j) are computed ac-
cording to the estimation at( j−1)th step:

KP(i, j) = βM̂ j−1(Xi) and KD(i, j) = αM̂ j−1(Xi) (11)

where

M̂ j−1(Xi) =
‖Ĝ j−1(Xi)‖

g
I

The apparent gravity estimate is updated at steady state of
the jth iteration, according to the following recursion rule:

Ĝ j+1(Xi) = KP(i, j)(Xi −X)+ Ĝ j(Xi) (12)

Again, the steady state is considered to be reached as soon
as nS consecutive velocity samples satisfy the condition
‖Ẋ‖ ≤ εS.

The final estimationĜ(Xi) at the ith vertex is avail-
able as soon as the convergence is achieved. The stop
condition for the inner loop is matched as soon asnG

consecutive values of estimated gravity satisfy the condi-
tion ‖Ĝ j(Xi)− Ĝ( j−1)(Xi)‖ ≤ εG, wherenG andεG are user-
defined parameters, .

Now, in order to move the end-effector towards the vertex
i+1, the controller (10) is used again in the outer loop, with
Ĝ0(Xi+1), computed according to the relationship (9) and the
PD parameters computed as:

KD(i+1,0) = αM̂(Xi) and KP(i+1,0) = βM̂(Xi) (13)



IV. STABILITY AND CONVERGENCE

In this section the convergence of the iterative method
implemented in the inner loop is analyzed. To that end, we
will study stability and convergence in an arbitrary desired
position XD in the workspace, such that the results can be
applied for each vertex of the desired grid, without loss of
generality.

Recalling that the proposed method originates from the
one proposed in [10], also the proof of convergence presented
in the following is derived from the work by De Luca and
Panzieri.

Note that according to the recursion rules reported in the
previous section, a generical iterationj ends only when
the corresponding dynamical system has reached the steady
state. This in turn means that before analyzing the con-
vergence properties of the iterative method, it is required
to guarantee the stability of the controlled system at each
iteration. To that end, consider:

M(X)Ẍ +G(X) = KPj(XD −X)−KD j Ẋ + Ĝ j (14)

that is obtained combining equations (1) with (10) and
simplifying the notation by defining:

KD j =
α‖Ĝ j‖

g
I and KPj =

β‖Ĝ j‖

g
I

Let the gravity estimation error atjth iteration E j(X) be
defined as:

E j(X) = G(X)− Ĝ j

In the following, in order to come up with analytical results
we will assume that the error depends linearly on position
X , in other terms we will approximate it with the first order
term of its Taylor series:

E j(X) ≈ Ẽ jX

whereẼ j ∈R
3x3 is the Jacobian matrix. The system (14) can

be rewritten as:

M(X)Ẍ = KPj(XD −X)−KD j Ẋ − Ẽ jX (15)

In order to study the stability of this dynamical system,
we must note that the term̃E jX will shift the equilibrium
point, then the system can eventually converge at the new
destination point defined as:

XD j = [KPj + Ẽ j]
−1KPj XD

SinceKPj is a controller parameter, it is always possible to
choose a valueβ such that[KPj + Ẽ j] > 0 (in the sense of
positive definiteness), thus guaranteeing also that the inverse
matrix [KPj + Ẽ j]

−1 exists. Finally, the system (14) can be
rewritten as:

M(X)Ẍ = F̃j (16)

where

F̃j = −KPj(X −XD j)−KD j Ẋ (17)

Now consider the following energy-based Lyapunov func-
tion:

V (X) =
1
2

[

ẊT M(X)Ẋ +(X −XD j)
T [KPj + Ẽ j](X −XD j)

]

(18)
SinceM(X) > 0 and [KPj + Ẽ j] > 0 for a suitable choice of
β , we haveV (X) > 0. From straightforward computations,
the derivative ofV (X) is:

V̇ (X) = −ẊT [F̃j +KPj(X −XD j)] (19)

Using the (17),V̇ (X) becomes:

V̇ (X) = −ẊT KD j Ẋ (20)

Since KD j > 0, we haveV̇ (X) < 0, hence the system con-
trolled by a feedback-linearizing PD controller is stable and
converges at the equilibrium pointXD j , whatever the initital
positionX from which the tracking begins.

Once the stability has been proven for the generical
iteration j, we can discuss now the convergence of the
estimation method. According to (12), the( j + 1)th gravity
estimation is computed as the steady-state effort of control
(10) at the end of iterationj, which in turn is ideally equal
to the apparent gravity forceG(XD j) at position XD j (see
equation (14)). Then, the difference between the estimations
achieved at two consecutive iterations is:

‖Ĝ j+1− Ĝ j‖ = ‖Fj(XD j ,0)−Fj−1(XD j ,0)‖

= ‖G(XD j)−G(XD j−1)‖

Note that beingX the physical end-effector position inside
its workspace, we haveX ∈ D ⊂ R

3, whereD is a compact
set, andG(X) is continuous and differentiable overD (since
it is a physical feature of the system). Hence there exists
c ∈ R, c > 0, such that:

‖G(XD j)−G(XD j−1)‖ ≤ c‖XD j −XD j−1‖

≤ c(‖∆ j‖+‖∆ j−1‖)

where∆ j = XD −XD j is the positioning error at steady state
of iteration j. By comparing the inequalities above, it yields
that:

‖Ĝ j+1− Ĝ j‖ ≤ c(‖∆ j‖+‖∆ j−1‖)

and hence, according to the (12):

β‖Ĝ j‖

g
‖∆ j‖ ≤ c(‖∆ j‖+‖∆ j−1‖)

that can be finally rewritten as:

‖∆ j‖ ≤

(

cg

β‖Ĝ j‖− cg

)

‖∆ j−1‖

Summarizing, choosingβ such thatβ‖Ĝ j‖ ≥ 2cg, it stems
that as j → ∞ the error ∆ j → 0, thus alsoXD j → XD,
Ĝ j → G(XD), and Ẽ j → 0, for any position the tracking
starts from, provided that the estimated gravity is never equal
to zero. Hence in addition to stability, a suitable choice
of the parameterβ can guarantee also the convergence of
the method, providing a reliable estimation of the apparent



gravity forceG(XD) acting on the end-effector at the desired
positionXD.

Actually, the proofs above hold until actuator saturation
is avoided, i.e. until the control effort at each time instant
does not exceed the maximum nominal force that the device
is capable to exert.

V. EXPERIMENTS

Several validation experiments have been performed ap-
plying the proposed algorithm to different haptic de-
vices with 3DoF. As an example, in the following we
report results achieved with an Omega Haptic Device
(www.forcedimension.com), estimating the apparent gravity
at the desired positionXD = [0,−30,0]T .

To design the PD controller we chose performance speci-
ficationsTs = 200ms and 5% overshoot, yielding the values
α = 40 andβ = 700 (see Figures 2 and 3). The other user-
defined parameters wherek0 = 0.5 N

mm , nS = 20, εS =
0.1(mm/s),nG = 5 andεG = 0.5g.

The method required 14 iterations to achieve the esti-
mation Ĝ(XD), starting with the end-effector in an initial
position randomly chosen as[−9.2,−68.3,11.6]T .
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Fig. 4. End-effector trajectory recorded during the 1st iteration step,
decomposed in itsx, y and z components.

As it was expected, the PD controlled system revealed
to be stable at each iteration. In order to show in detail the
dynamical behavior of the system during the iterations, as an
example we report in Figures 4 through 7 the end-effector
trajectories recorded during steps 1, 3, 6 and 9, respectively.
For the reader’s ease, each trajectory has been decomposed
in its x, y and z components. In steps 1, 3 and 6 the raise
time and the overshoots are close to those defined during the
design phase. On the other hand, in step 9 the positioning
error is already very close to zero, hence the system is
reaching the convergence and is almost still, except for the
slight effects of measurement noise.

Note that the time duration can be different for each tra-
jectory, depending on the time required to match the steady-
state condition defined bynS an εS (in our experiments,
we decided to lower bound the duration of each step at
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Fig. 5. End-effector trajectory recorded during the 3rd iteration step,
decomposed in itsx, y and z components.
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Fig. 6. End-effector trajectory recorded during the 6th iteration step,
decomposed in itsx, y and z components.

100ms). Moreover, as the iterations proceed, the steady-
state values of thex, y and z components approach to those
of the target destinationXD = [0,−30,0]T . To discuss in
detail the convergence properties of the applied method, the
Figures 8 and 9 respectively show the positioning error∆ j

and the estimated masŝM j over the 14 iterations. As in our
expectations, the error rapidly converges to zero, while the
apparent mass reaches the convergence atM̂(XD) = 217g,
which is very close to the value 214g we measured inXD

through a force sensor (represented by the dashed line in
Figure 9).

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper, we report results of further investigation
on the autocalibrated gravity compensation algorihtm intro-
duced in our previous work [1]. In particular, stability and
convergence properties characterizing the iterative method
for apparent gravity estimation have been analyzed. We
provided analytical proofs that the system is stable during
each iteration. Besides, the iterative procedure converges
yielding the estimation of the apparent gravity acting in the
target position. Validation experiments were performed with
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Fig. 7. End-effector trajectory recorded during the 9th iteration step,
decomposed in itsx, y and z components.
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Fig. 8. Steady state postioning error∆ j over all iterations.

0 2 4 6 8 10 12 14
80

100

120

140

160

180

200

220

240

M̂
j

(g
)

j

Fig. 9. Apparent mass estimation̂M j over all iterations. The straight dashed
line represents the apparent mass 214g measured inXD through a force
sensor.

several 3DoF devices, and the experimental results were in
good agreement with the theoretical findings.

Note that the off-line autocalibration has been developed
to be as general as possible, in order to be applied to any
3DoF impedance haptic device. Anyway, a preliminary phase
of parameter tuning is required, according to the desired
specifications such as the accuracy of the estimation and
the resolution of the cubic grid. Achieving a reliable gravity
estimate at a given position requires an amount of time
depending on the particular dynamical behavior of the used
haptic device, but also on system parameters. In order to
upper bound the duration of the whole off-line autocali-
bration, the user can create a low-resolution grid featuring
a low number of vertices, choose stop conditions not too
strict and design a fast-tracking PD controller. On the other

hand, the design choices that allow a fast autocalibration can
conflict with each other and with the requirement to achieve
an accurate gravity estimation. Recall that the on-line gravity
compensation is based on a piece-wise linear approximation
of the nonlinear relationship between the apparent gravity
and the end-effector position [1]. Hence, it is clear that
decreasing the grid resolution would improve performance
in terms of time, but will make the interpolation intervals
larger, with a possible degradation of the approximation
accuracy. Similar remarks hold for the stop conditions:
relaxing the conditions to check the steady state reaching and
the estimate achievement would improve time performance
but will degradate estimation accuracy as well.

Time performance can be improved by selecting low
values ofTs and p̂, corresponding to highα and β . Note
that a high valueβ would also guarantee the stability and
the convergence of the iterative method, but may also lead
to actuators saturation. At worse case, saturation may occurr
when the tracking error is maximum, i.e. while the end-
effector begins to move from the current vertex from the
next one, hence it directly depends on the side lenght of
each cube of the grid. Given the maximum nominal force that
the device is capable to exert, asβ increases the cube side
lenght should decrease in order to avoid saturation, with the
aforementioned consequences in terms of time performance.

In summary, since the effective behavior of the proposed
procedure will depend also on the unknown dynamics char-
acterizing the haptic device of interest, it is hard to define
precise specifications that hold for any existing device. Itis
our opinion that the main target should be the estimation
accuracy in spite of a longer execution time, anyway a
different parameter tuning can be chosen according to the
remarks discussed so far.
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