
Control of Electromechanical Systems
November 13, 2017

Exercise 1

Consider the feedback control scheme of the motor speed ω in Fig. 1, where the torque actuation
includes a time constant τA = 0.1 s and a disturbance torque TL is present. The plant data are
J = 1 kg m2 and B = 0.1 Nm/(rad/s).
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Figure 1: Speed control scheme.

Design a control law C(s) in order to satisfy the following specifications.
• The closed-loop system is asymptotically stable.
• Constant torque disturbances are rejected at steady state.
• A reference acceleration profile ω̇d = 2 rad/s2 is reproduced with a maximum error e = ωd − ω

smaller than 0.1 rad/s at steady state.
• In response to a constant reference ωd, the transient behavior of the error is sufficiently damped.
Once a controller has been designed according to the previous specifications, determine the steady-
state response of the closed-loop system to a ramp disturbance TL(t) = 0.5 t Nm.

Exercise 2

Consider a system made of two inertias J > 0 and M > 0 connected through a transmission with
torsional stiffness K > 0 and in the presence of viscous friction acting on the two sides of the
transmission, respectively with coefficients B > 0 and D > 0. A control torque τ is applied to the
first inertia, whose angular position and speed are θ and ω. The angular position and speed of the
second inertia are θm and ωm. The system is thus described by the following differential equations:

θ̇ = ω

θ̇m = ωm

Jω̇ = τ −Bω +K(θm − θ)
Mω̇m = −Dωm +K(θ − θm).

• Determine the simplest feedback control law that is able to regulate the speed ωm of the inertia
M to a desired constant reference value ωd.

• If the gain of the chosen controller is increased, will the closed-loop system become unstable? If
so, which is the upper feasible limit for the control gain?

• If the chosen output ωm needs to track accurately a desired time-varying, sufficiently smooth
profile ωd = ωd(t), what is the expression of the feedforward torque τ = τffw(t) that will guarantee
zero tracking error in nominal conditions? What should be the initial state of the system (at
time t = 0) in order to obtain perfect tracking for all t ≥ 0?

• Draw a complete block diagram of the combined feedback/feedforward control scheme.
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Exercise 3 (in alternative to Exercise 4)

For the same plant of Exercise 1 (with actuation dynamics), consider a PI controller with propor-
tional action relocated in the feedback path. Draw the block diagram of the control scheme and
study the asymptotic stability of the closed-loop system when varying separately the KP and KI

gains. Whenever appropriate, use also a suitable root locus analysis.

Exercise 4 (in alternative to Exercise 3, with an extra bonus if you do both)

Consider the block diagram of the discrete-time control system in Fig. 4.13 of the textbook (drawn
again in Fig. 2), in which

WP (z) =
Tc

J

1
z − 1

and WSE(z) =
z + 1

2z
(averaging measurements of speed).

Assume further that no disturbing torque TL acts on the system. With inertia J = 0.1 kg m2,
sampling time Tc = 0.005 s, and integral gain KI = 1, study the stability of the closed-loop system
by using a root locus analysis for varying KP > 0.

Figure 2: Fig. 4.13, taken from the textbook.

[180 minutes, open books]
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Solution
October 27, 2017

Exercise 1

The considered plant

G(s) =
1

(Js+B)(1 + τAs)
=

1/B
(1 + (J/B)s)(1 + τAs)

=
1/(JτA)

(s+ (B/J))(s+ (1/τA))
=

10
(s+ 0.1)(s+ 10)

(1)

has gain KG = 1/B = 10, two asymptotically stable poles, a slow one in s = −B/J = −0.1 and a
fast one in s = −1/τA = −10, and no zeros —different equivalent representations are used in (1).
The open-loop response to a unitary step reaches the steady-state value very slowly (see Fig. 3).
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Figure 3: Step response of the open-loop plant (1).

To satisfy the steady-state requirement on the input-output behavior (control system of type 1,
with limited steady-state error in response to a ramp reference input) and on the disturbance-
output behavior (astatism, i.e., rejection of constant disturbances), the controller should introduce
a pole in s = 0 (integral action). In order to have additional parameters left for control synthesis,
a PI controller will be considered in the first place,

PI(s) = KP +
KI

s
=
KP s+KI

s
= KI

1 + τzs

s
= KP

s+ (1/τz)
s

, (2)

with control gain KI > 0, integral action, and a negative zero with time constant τz = KP /KI > 0.
In (2), different equivalent forms are presented for the PI controller. With the loop transfer function
F (s) = PI(s)G(s), the closed-loop system becomes

W (s) =
ω(s)
ωd(s)

=
F (s)

1 + F (s)
=

KI(1 + τzs)
s(Js+B)(1 + τAs) +KI(1 + τzs)

. (3)

On the other hand, the error transfer function in the closed loop is

We(s) =
e(s)
ωd(s)

=
ωd(s)− ω(s)

ωd(s)
= 1−W (s) =

s(Js+B)(1 + τAs)
s(Js+B)(1 + τAs) +KI(1 + τzs)

. (4)
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The asymptotic stability of W (s) in (3) can be checked by using the Routh criterion on the third-
degree polynomial at the denominator. The Routh table is:

3 | JτA B +KIτz

2 | J +BτA KI

1 | (J +BτA)(B +KIτz)−KIJτA

0 | KI

Being always J > 0, B > 0, and τA > 0, the necessary and sufficient conditions for asymptotic
stability are

KI > 0, KI (JτA − τz(J +BτA)) < B(J +BτA). (5)

Assuming that both inequalities (5) are satisfied, the steady-state error of our type 1 control system
to a ramp velocity reference (with rate 2 rad/s2) will be constant but different from zero. It can
be computed using (4) and the final value theorem as

e1 = lim
t→∞

e(t) = lim
s→0

sWe(s)
2
s2

= 2 · lim
s→0

(Js+B)(1 + τAs)
s(Js+B)(1 + τAs) +KI(1 + τzs)

=
2B
KI

. (6)

Therefore,

e1 ≤ 0.1 ⇒ KI ≥
2B
0.1

=
0.2
0.1

= 2. (7)

We verify next if and how a sufficiently damped transient behavior can be obtained with the PI
controller (2), under the constraint (7). A convenient choice is to proceed by (stable) pole-zero
cancelation, removing the slow dynamics of the plant with the zero of the PI law. Setting in (2)

τz =
J

B
= 10 ⇒ F (s) =

KP /(JτA)
s(s+ (1/τA))

⇒ W (s) =
KP /(JτA)

s(s+ (1/τA)) +KP /(JτA)
, (8)

the closed-loop system is reduced to a second-order, asymptotically stable dynamics with gain
W (0) = 1, without zeros, and with two poles in s1 and s2:

s2 +
1
τA
s+

KP

JτA
= 0 ⇒ s1,2 = − 1

2τA
± 1

2

√(
1
τA

)2

− 4KP

JτA
= −5± 1

2

√
100− 40KP . (9)

The choice τz = 10 in (8) implies KP = 10KI and, from (7), also KP ≥ 20. Therefore, the
two poles in (9) will be complex conjugate. Moreover, their natural frequency will increase and
their damping uniformly decrease when taking larger values of KP . Thus, we should choose the
minimum value that satisfies also the steady-state condition, i.e., KP = 20. The final PI law is

PI(s) = KP +
KI

s
= 20 +

2
s

= 20
s+ 0.1
s

, (10)

yielding
s1,2 = −5± j13.22 ⇒ ωn = 14.14, ζ = 0.35. (11)

Note that we could get to the same result by looking at the simple root locus of the denominator of
W (s) in (8) when varying K ′ = KP /(JτA) > 0, i.e., by changing the gain KP in the PI controller.

In practice, the obtained damping coefficient ζ = 0.35 is the best that can be obtained when using
only a PI control design. Such damping may be considered adequate when looking at the step
response in Fig. 4: the overshoot is about 30%, with only few oscillations, whereas the rise time is
tr ' 0.15 s. The associated control effort Tref (t) reported in Fig. 4 has a peak value of 20 at t = 0,
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Figure 4: Step response for the closed-loop system obtained with the PI control law (10).
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Figure 5: Control effort during the step response of Fig. 4.
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Figure 6: Response to a ramp input ωd(t) = 2t for the same controlled system as in Fig. 4.
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still moderate. The response to a ramp input ωd(t) = 2t is shown in Fig. 6: the steady-state error
is e1 = 0.1, as predicted.

Finally, with the chosen PI controller (10), we obtain the following disturbance-output transfer
function for the closed-loop system:

Wdist(s) =
ω(s)
TL(s)

= − s(1 + τAs)
s(Js+B)(1 + τAs) +KI(1 + τzs)

. (12)

Therefore, the steady-state response to a ramp disturbance TL(t) = 0.5 t [Nm] is computed as

eL = lim
s→0

sWdist(s)
0.5
s2

= −0.5 · lim
s→0

(1 + τAs)
s(Js+B)(1 + τAs) +KI(1 + τzs)

= −0.5
KI

= −0.25. (13)

Wishing to increase the damping characteristics of the closed-response, we should add a further
action in the form of a lead compensator (made by a zero preceding a pole in the frequency domain,
with unitary gain). A simple design choice is to cancel also the other pole of the plant with the
zero of this additional compensator, replacing it with a pole that has a smaller time constant, say
reduced by a factor of 5:

C(s) =
(
KP +

KI

s

)
1 + τAs

1 + 0.2τAs
=
(

20 +
2
s

)
1 + 0.1s
1 + 0.02s

. (14)

This would lead to

F (s) = C(s)P (s) =
5KP /(JτA)
s(s+ (5/τA))

⇒ W (s) =
5KP /(JτA)

s(s+ (5/τA)) + 5KP /(JτA)
, (15)

with the closed-loop poles moved to

s1,2 = − 5
2τA
± 1

2

√(
5
τA

)2

− 20KP

JτA
. = −25± 1

2

√
2500− 200KP , (16)

For the same KP = 20, two complex poles are obtained with an associated response that is now
(slightly more than) critically damped:

s1,2 = −25± 1
2
√
−1500 = −25± j19.36 ⇒ ωn = 31.62, ζ = 0.79. (17)

Figure 7 shows the output of the closed-loop system in response to a unitary step. The rise time
has been reduced to tr = 0.125 s, whereas overshoot and oscillations are now practically absent.
The largely improved transient behavior of the controlled output is indeed counterbalanced by a
larger control effort during the first few instants of the response, with a peak of 100 at t = 0 —see
Fig. 8). In Fig. 9, the response to a ramp input ωd(t) = 2t shows the same previous steady-state
error e1 = 0.1, but a faster transient behavior.
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Figure 7: Step response for the closed-loop system obtained with the control law (14).
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Figure 8: Control effort during the step response of Fig. 7.
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Figure 9: Response to a ramp input ωd(t) = 2t for the modified closed-loop system.
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Exercise 2

We start by deriving the input-output transfer function between the torque τ and the angular
speed ωm of the body with inertia M . Applying Laplace transform to the system equations gives(

Js2 +Bs+K
)
θ(s) = Kθm(s) + τ(s) (18)(

Ms2 +Ds+K
)
θm(s) = Kθ(s). (19)

Solving (19) for θ(s) and replacing in (18) yields(
Js2 +Bs+K

) (
Ms2 +Ds+K

)
K

θm(s) = Kθm(s) + τ(s),

and thus

P ′(s) =
θm(s)
τ(s)

=
K

(JM)s4 + (BM +DJ)s3 + (K(J +M) +BD)s2 +K(B +D)s [+K2 −K2]
.

(20)
Equation (20) considers the angular position as output. Noting the presence of a pole in s = 0,
the transfer function of our interest is obtained as

P (s) =
ωm(s)
τ(s)

= sP ′(s) =
K

(JM)s3 + (BM +DJ)s2 + (K(J +M) +BD)s+K(B +D)
, (21)

i.e., a system with third-order dynamics (but no integral action) and without zeros. Using Routh
criterion, it is easy to verify that the open-loop system (21) is asymptotically stable for all physically
valid parameters J > 0, M > 0, K > 0, and with B ≥ 0, D ≥ 0, but not both simultaneously zero
(or anyway too small). In fact, the stated assumption is that B and D are both strictly positive.

The request of output regulation (i.e., zero error at steady state) for any desired constant reference
velocity ωd asks for the inclusion of an integrator in the controller (type 1 control system). As a
feedback law of minimum complexity, we will show next that a PI controller

PI(s) = KP +
KI

s
= KP

s+ (1/TI)
s

, with TI = KI/KP , (22)

where KP > 0 and KI > 0 (and thus, with a positive integration time TI > 0) is able to achieve
also asymptotic stability of the closed-loop system. Our analysis will be mainly qualitative, based
on a simple root locus. If desired, the actual conditions for asymptotic stability in terms of the
original parametric data of the plant can be derived from the Routh criterion.

To proceed, consider only the loop transfer function

F (s) = PI(s)P (s) = KKP (s+ (1/TI))
JMs4 + (BM +DJ)s3 + (K(J +M) +BD)s2 +K(B +D)s

=
KKP

JM

s+ (1/TI)

s

(
s3 +

BM +DJ

JM
s2 +

K(J +M) +BD

JM
s+

K(B +D)
JM

)
= K ′

s+ (1/TI)
s(s+ a)(s2 + bs+ c)

.

(23)

In the last expression, we have a > 0, b > 0, and c > 0, since the plant has been assumed
asymptotically stable. Moreover, apart from the pole in s = 0 introduced by the PI controller,
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at least one pole should be real and negative, i.e., in −a. On the other hand, the two roots of
s2 + bs+ c = 0 can be either complex conjugate or both real, possibly also coincident (in any case,
always with negative real part). As a consequence, we can design the zero of the PI controller so
as to cancel one real pole of the plant, or

a TI = a
KI

KP
= 1 ⇒ F (s) =

K ′

s(s2 + bs+ c)
⇒ W (s) =

F (s)
1 + F (s)

=
K ′

s(s2 + bs+ c) +K ′
.

(24)
The root locus for K ′ > 0 takes one of the two possible forms shown in Fig. 10, depending on
the presence or not of a pair of complex conjugate poles in F (s). The overall behavior is anyway
similar, with an upper bound K ′max for K ′ that preserves asymptotic stability of the closes-loop
system.
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Figure 10: The two possible root loci of interest for K ′ > 0, depending on whether F (s) in (24)
has one real and two complex poles [left] or three real poles [right].

The actual upper limit KP,max for KP can be found (still in symbolic form) from the Routh table
associated to the denominator of W (s) in (24):

3 | 1 c

2 | b K ′

1 | bc−K ′

b
0 | K ′

Being b > 0 and c > 0, the necessary and sufficient conditions for asymptotic stability are

0 < K ′ < K ′max = b c ⇒ KP,max =
JM b c

K
. (25)

This implies also an upper limit on the actual gain KI = KPTI of PI(s). Indeed, when increasing
the proportional gain KP up to its limit, also the integral gain KI should be increased similarly,
so that their ratio (i.e., TI) remains constant and equal to 1/a (to preserve the cancelation of a
pole of the plant by the zero of the PI controller).

For the generation of a feedforward torque τffw(t) associated to a desired (smooth) trajectory ωd(t)
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for the chosen system output, consider again the differential equations

Jω̇ = τ −Bω +K(θm − θ) (26)

Mω̇m = −Dωm +K(θ − θm). (27)

We first isolate θ from eq. (27),

θ = θm +K−1 (Mω̇m +Dωm) , (28)

and then differentiate (28) twice

ω = ωm +K−1 (Mω̈m +Dω̇m) , (29)

ω̇ = ω̇m +K−1 (M
...
ωm +Dω̈m) . (30)

We isolate next τ from eq. (26),

τ = Jω̇ +Bω +K(θ − θm), (31)

and substitute then in (31) both (29) and (30), as well as K(θ − θm) from (27). This yields

τ = Jω̇m + JK−1 (M
...
ωm +Dω̈m) +Bωm +BK−1 (Mω̈m +Dω̇m) + (Mω̇m +Dωm) . (32)

Substituting in (32) ωm = ωd(t), together with its three time derivatives ω̇m = ω̇d(t), ω̈m = ω̈d(t),
and

...
ωm =

...
ωd(t), and reorganizing terms leads to the nominal command

τffw(t) = (B +D)ωd(t) +
(
J +M +K−1BD

)
ω̇d(t) +K−1 (JD +MB) ω̈d(t) +K−1JM

...
ωd(t),

(33)
where we have assumed that all estimated parameters are the true ones (Ĵ = J , M̂ = M , B̂ = B,
D̂ = D, and K̂ = K). From (33), the required smoothness of the desired trajectory is ωd(t) ∈ C3.
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Figure 11: Combined feedback/feedforward control scheme for the given two-mass/spring system.

Indeed, the same result could have been obtained in a simpler fashion by just inverting the
plant (21) in the Laplace domain, τffw(s) = P−1(s)ωd(s). However, the time domain analysis
helps in finding also the correct initial conditions which guarantee that the feedforward command
τffw(t) achieves perfect tracking of ωd(t) right from the initial instant t = 0, For this, the initial
state of the system has to be matched with the initial value of the trajectory and its first few
derivatives. In particular, the following conditions should hold:

θ(0)− θm(0) = K−1 (Mω̇d(0) +Dωd(0)) ,

ω(0) = ωd(0) +K−1 (Mω̈d(0) +Dω̇d(0)) ,

ωm(0) = ωd(0).

(34)

Note that only the relative angular position of the two bodies with inertia J and M is constrained
at t = 0. Being the desired trajectory specified at the velocity level, the absolute angular position of
one of the two bodies is completely free. The block diagram of the combined feedback/feedforward
control scheme is drawn in Fig. 11.
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Exercise 3

Figure 12 shows the requested control scheme. Splitting the single feedback path in two successive
loops, and resolving the internal one first, leads to a final closed-loop transfer function

W (s) =
ω(s)
ωd(s)

=
KI

s
(
(Js+B)(1 + τAs) +KP

)
+KI

=
KI

JτAs3 + (J +BτA)s2 + (B +KP )s+KI
,

(35)
which is characterized by the absence of zeros.
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Figure 12: PI control scheme for the plant in Exercise 1, with proportional action relocated in the
feedback path.

To study the asymptotic stability of W (s), we construct the Routh table

3 | JτA B +KP

2 | J +BτA KI

1 | (J +BτA)(B +KP )−KIJτA

0 | KI

Being J > 0, B > 0, and τA > 0, and assuming KP > 0 (although this is not strictly necessary),
we have asymptotic stability when

KP > 0, 0 < KI <
(J +BτA)(B +KP )

JτA
= KI,max. (36)

This means in particular that by arbitrarily increasing KP > 0, we can also arbitrarily increase
the value of KI > 0 without losing asymptotic stability. Replacing now the original data from
Exercise 1, we obtain

KP > 0, 0 < KI < 1.01 +
KP

0.1
. (37)

On the other hand, if we fix one gain and let the other vary, a graphical analysis can be performed
with the help of a suitable root locus. The simpler case is to fix KP > 0 in the denominator of
W (s) and have KI > 0 vary. Rewriting

denW (s) = d1(s)+K ′1n1(s), with d1(s) = s

(
s2 +

J +BτA
JτA

s+
KP +B

JτA

)
, K ′1 =

KI

JτA
, n1(s) = 1,

(38)
a root locus can drawn as a function of K ′1 > 0 by considering as zeros of F (s) the roots of n1(s)
(i.e., no zeros) and as poles of F (s) the three roots of d1(s). It is easy to see that this is exactly
the situation already encountered in Exercise 2, with the W (s) defined in (24). Therefore, one can
use the same qualitative root loci of Fig. 10 to conclude that there will be asymptotic stability
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for increasing KI until reaching an upper bound. This upper bound is indeed exactly the KI,max

defined in (36).

When we fix instead KI > 0 in the denominator of W (s) and let KP > 0 vary, we can rewrite

denW (s) = d2(s)+K ′2n2(s), with d2(s) = s3 +
J +BτA
JτA

s2 +
B

JτA
s+

KI

JτA
, K ′2 =

KP

JτA
, n2(s) = s.

(39)
The associated root locus (taking in those cases the more general name of root contour) can be
generated with the same rules of the first case. Figure 13 shows two situations in which two out
of the three poles of d2(s) are complex conjugate (other situations may occur as well, and can be
treated similarly). When analyzing the first column of the Routh table of d2(s), two subcases are
possible:

0 < KI <
B(J +BτA)

JτA
⇐⇒ all three roots have negative real parts; (40)

KI ≥
B(J +BτA)

JτA
⇐⇒ two (complex) roots have positive real parts, (41)

the remaining one is real and negative.

In the first subcase (40), shown on the left of Fig. 13, K ′2 and thus KP can be arbitrarily increased
without a loss of asymptotic stability. In the second subcase (41), shown on the right of Fig. 13,
there is a lower bound K ′2,min on K ′2 (i.e., on KP ) that should be overcome before obtaining
asymptotic stability. This analysis —especially the guarantee that the center s0 of the asymptotic
directions of the positive locus (which are vertical for a pole-zero excess = 2) is always negative—
is indeed in accordance with the conditions for asymptotic stability stated in (36).
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Figure 13: The two possible root contours for K ′2 > 0, depending on whether the complex poles of
d2(s) in (39) have their real part negative [left] or positive [right].
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Exercise 4

We manipulate the block diagram in Fig. 2 in order to obtain the discrete-time transfer function
of the closed-loop system. With reference to Fig. 14, we split the feedback path in two and resolve
the inner loop gives first

W1(z) =

Tc

J

1
z − 1

1 +KP ·
z + 1

2z
· Tc

J

1
z − 1

=
2Tc z

2J z(z − 1) +KPTc (z + 1)
. (42)
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Figure 14: Unwrapping the two loops of Fig. 2.

Next, we resolve also the outer loop and obtain finally

W (z) =
W1(z) · KIz

z − 1

1 +W1(z) · KIz

z − 1
· z + 1

2z

=

2Tc z

2J z(z − 1) +KPTc (z + 1)
· KIz

z − 1

1 +
2Tc z

2J z(z − 1) +KPTc (z + 1)
· KIz

z − 1
· z + 1

2z

=
2KITc z

2

2J z(z − 1)2 +KPTc (z + 1)(z − 1) +KITc (z + 1)
.

(43)

In view of the request of a parametric study of the asymptotic stability by means of a root locus,
we divide numerator and denominator by 2J (to make unitary the coefficient of the highest power
at the denominator) and insert the numerical data of the problem (J = 0.1 kg m2, Tc = 0.005 s,
and KI = 1). This leads to

W (z) =
0.1 z2

z(z2 − 1.95z + 1.05) + 0.05KP (z + 1)(z − 1)
=

0.1 z2

d(z) +K ′ n(z)
. (44)

The three roots of d(z) = 0 are in {0, 0.9750± j0.3152} and the complex roots are outside the unit
circle (on a circle of radius r = 1.0247). Figure 15 shows the root locus traced with MATLAB for
K ′ = 0.05KP > 0.

The system is asymptotically stable when all three roots belong to the unit circle. This happens
in the gain interval

K ′ ∈ [0.0264, 0.9486] ⇐⇒ KP ∈ [0.5272, 18.9728] = [KP,min,KP,max] . (45)
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Figure 15: The root locus associated to K ′ > 0, n(z), and d(z), as defined in (44). The unit circle
in the z-plane is also shown (in orange).

The location of the poles of W (z) in (44) corresponding to the stability boundaries are

KP,min = 0.5272 ⇒ z = {0.0264, 0.9486± j0.3163}
with distance to the origin of the complex pair = 0.0264;

KP,max = 18.9728 ⇒ z = {0.9486, 0.0264± j0.9996}
with distance to the origin of the complex pair = 0.9486.

(46)

Figure 16 shows the discrete-time step response of W (z) in (44) obtained for KP = 10, i.e., of

W (z) =
0.1 z2

z3 − 1.45z2 + 1.05z − 0.5
. (47)
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Figure 16: Discrete-time step response of W (z) in (47) (Tc = 0.005 s).
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