Opening of the Munich School of Robotics and Machine Intelligence at TUM Scientific Colloquium München, October 26, 2018

Flexible joint robots: Model-based control revisited

Alessandro De Luca

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG) deluca@diag.uniroma1.it

Summary

- A world of soft robots
 - flexible joints, serial elastic actuation (SEA), variable stiffness actuation (VSA), distributed link flexibility
 - lightweight robots with flexible joints in physical Human-Robot Interaction (pHRI)
- Dynamic modeling of flexible joint manipulators
 - ... with few comments on its properties
- Classical control tasks and their solution
 - full-state feedback linearization design for trajectory tracking
 - regulation with partial state feedback and gravity compensation
- Model-based design based on feedback equivalence
 - exact gravity cancellation
 - damping injection on the link side
 - environment interaction via generalized impedance control
- Outlook

Classes of soft robots

Robots with elastic joints

- design of lightweight robots with stiff links for end-effector accuracy
- compliant elements absorb impact energy
 - soft coverage of links (safe bags)
 - elastic transmissions (HD, cable-driven, ...)

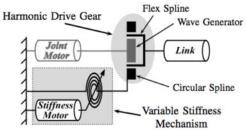
- elastic joints decouple instantaneously the larger inertia of the driving motors from smaller inertia of the links (involved in contacts/collisions!)
- relatively soft joints need more sensing (e.g., joint torque) and better control to compensate for static deflections and dynamic vibrations

torque-controlled robots (DLR LWR-III, KUKA LWR-IV & iiwa, Franka, ...)

Classes of soft robots

Robots with Variable Stiffness Actuation (VSA)

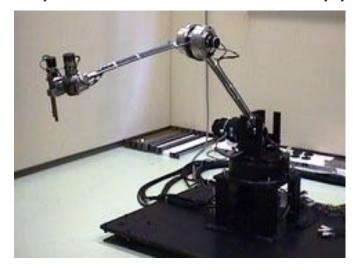
- uncertain interaction with dynamic environments (say, humans) requires to adjust online the compliant behavior and/or to control contact forces
 - passive joint elasticity & active impedance control used in parallel
- nonlinear flexible joints with variable (controlled) stiffness work at best
 - can be made stiff when moving slow (performance), soft when fast (safety)
 - enlarge the set of achievable robot compliance in a task-oriented way
 - feature also **robustness**, optimal **energy use**, **explosive motion** tasks, ...



Classes of soft robots

Robots with flexible links

- distributed link deformations
 - design of very long and slender arms needed in the application
 - use of lightweight materials to save weight/costs
 - due to large payloads (viz. large contact forces) and/or high motion speed
- as for joint elasticity, neglecting link flexibility will limit static (steady-state error) or dynamic (vibrations, poor tracking) performance
- extra control issue due to non-minimum phase nature of the outputs of interest w.r.t. the command inputs ... "move in the opposite direction!"



A matter of terminology ...

Different sources of elasticity, though similar robotic systems

- elastic joints vs. SEA (Serial Elastic Actuators)
 - based on the same physical phenomenon: compliance in actuation
 - compliance added on purpose in SEA, mostly a disturbance in elastic joints
 - different range of stiffness: 5-10K Nm/rad down to 0.2-1K Nm/rad in SEA
- joint deformation is often considered in the linear domain
 - modeled as a concentrated torsional spring with constant stiffness at the joint
 - nonlinear flexible joints share similar control properties
 - nonlinear stiffness characteristics are needed instead in VSA
 - a (serial or antagonistic) VSA working at constant stiffness is an elastic joint
- flexible joint robots are classified as underactuated mechanical systems
 - have less commands than generalized coordinates
 - non-collocation of command inputs and dynamic effects to be controlled
 - however, they are controllable in the first approximation (the easy case!)

Exploiting joint elasticity in pHRI

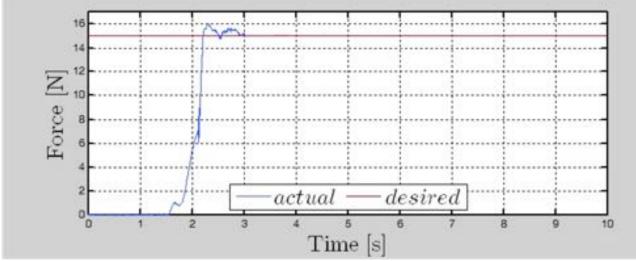
collision detection & reaction for safety (model-based + joint torque sensing)

[De Luca et al, 2006; Haddadin et al, 2017]

Exploiting joint elasticity in pHRI

Human-robot collaboration in torque control mode

contact force estimation & control (virtual force sensor, anywhere/anytime)

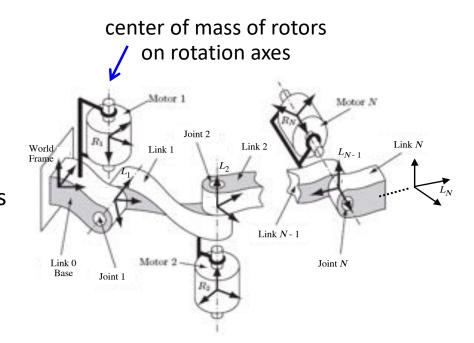


[Magrini *et al,* 2015]

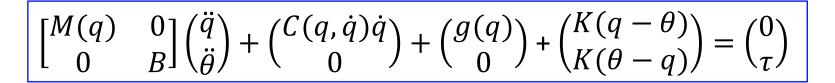
Dynamic modeling

Lagrangian formulation (so-called reduced model of Spong)

- open chain robot with N elastic joints and N rigid links, driven by electrical actuators
- use N motor variables θ (as reflected through the gear ratios) and N link variables q
- assumptions
 - A1) small displacements at joints
 - A2) axis-balanced motors
 - A3) each motor is mounted on the robot in a position preceding the driven link
 - A4) no inertial couplings between motors and links



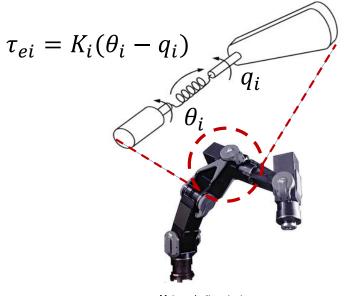
A2) \Rightarrow inertia matrix and gravity vector are independent from θ

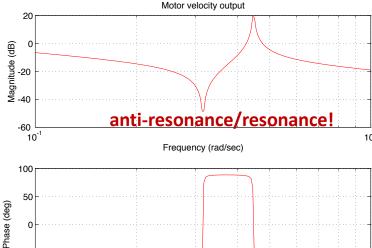


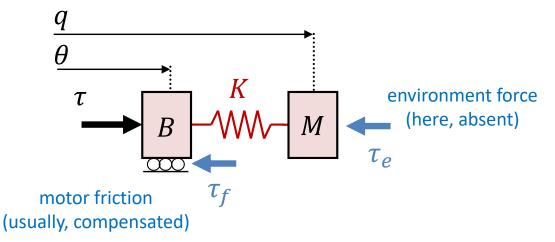
link equation
motor equation

Single elastic joint

Transfer functions of interest







$$P_{\text{motor}}(s) = \frac{\theta(s)}{\tau(s)} = \frac{Ms^2 + K}{MBs^2 + (M+B)K} \frac{1}{s^2}$$

- system with zeros and relative degree = 2
- passive (zeros always precede poles on the imaginary axis)
- stabilization can be achieved via output θ feedback

$$P_{\text{link}}(s) = \frac{q(s)}{\tau(s)} = \frac{K}{MBs^2 + (M+B)K} \frac{1}{s^2}$$

- NO zeros!!
- maximum relative degree = 4

-100

Feedback linearization

For accurate trajectory tracking tasks

the link position q is a linearizing (flat) output

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q-\theta) \\ K(\theta-q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

$$q^{(4)} = u$$

differentiating twice the link equation and using the motor acceleration yields

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

- an exactly linear and I/O decoupled closed-loop system is obtained
 - to be stabilized with standard techniques for linear dynamics (pole placement, LQ, ...)
- requires higher derivatives of q ·

$$q,\dot{q},\ddot{q},q^{(3)}$$

- however, these can be computed from the model using the state measurements
- requires higher derivatives of the dynamics components

• A $O(N^3)$ Newton-Euler recursive numerical algorithm is available for this problem

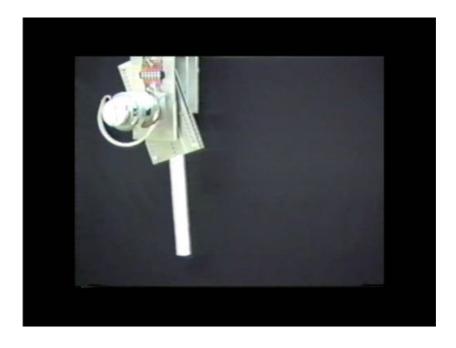
Feedback linearization

Based on the rigid model only vs. when including joint elasticity

$$\tau = M(q)(\ddot{q}_d + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)) + C(q, \dot{q})\dot{q} + g(q)$$

$$\tau = BK^{-1}M(q)u + K(\theta - q) + B\ddot{q} + BK^{-1}\left(2\dot{M}q^{(3)} + \ddot{M}\ddot{q} + \frac{d^2}{dt^2}(C\dot{q} + g(q))\right)$$

$$u = \left(q_d^{[4]} + K_J(\ddot{q}_d - \ddot{q}) + K_A(\ddot{q}_d - \ddot{q}) + K_D(\dot{q}_d - \dot{q}) + K_P(q_d - q)\right)$$



rigid computed torque

[Spong, 1986]

elastic joint feedback linearization

Feedback linearization

Benefits on an industrial KUKA KR-15/2 robot (235 kg) with joint elasticity

feedback linearization + high-damping

conventional industrial robot control

three squares in:

vertical front plane

vertical sagittal plane

[Thümmel, 2007]

trajectory tracking with model-based control

Regulation tasks

Using a minimal PD+ action on the motor side

for a desired constant link position q_d

- evaluate the associated desired motor position θ_d at steady state
- collocated (partial state) feedback preserves passivity, with stiff K_P gain dominating gravity
- focus on the term for gravity compensation (acting on link side) from motor measurements

$$\theta_d = q_d + K^{-1}g(q_d)$$

$$\tau = \tau_g + K_P(\theta_d - \theta) - K_D \dot{\theta} \qquad K_D > 0$$

$ au_g$	gain criteria for stability	
$g(q_d)$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[Tomei, 1991]
$g(\theta - K^{-1}g(q_d))$	$\lambda_{min} \begin{bmatrix} K & -K \\ -K & K + K_P \end{bmatrix} > \alpha$	[De Luca, Siciliano, Zollo, 2004]
$g(\overline{q}(\theta)), \ \overline{q}(\theta): \ g(\overline{q}) = K(\theta - \overline{q})$	$K_P > 0$, $\lambda_{min}(K) > \alpha$	[Ott, Albu-Schäffer, 2004]
$g(q) + BK^{-1}\ddot{g}(q)$	$K_P > 0$, $K > 0$	[De Luca, Flacco, 2010]

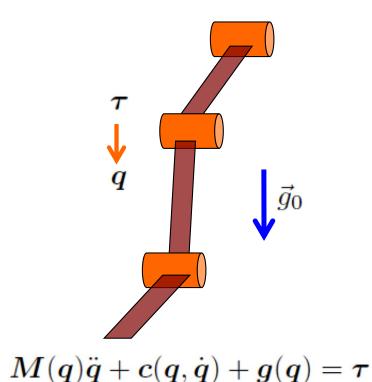
exact gravity cancellation
(with full state feedback)

$$\alpha = \max(\left\| \frac{\partial g(q)}{\partial q} \right\|)$$

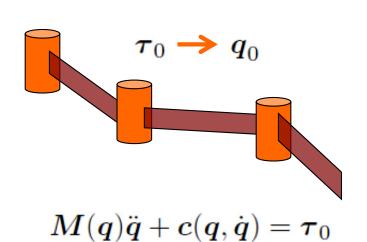
Exact gravity cancellation

A slightly different view

for rigid robots this is trivial, due to collocation



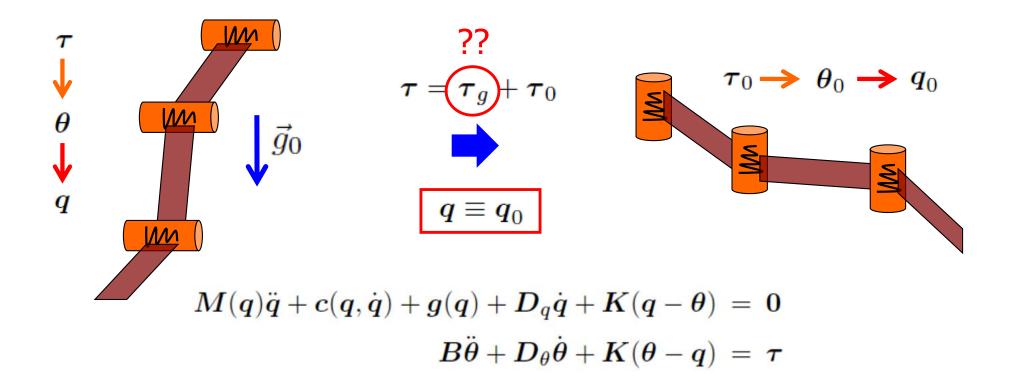
$$oldsymbol{ au} = oldsymbol{ au}_g + oldsymbol{ au}_0$$
 $oldsymbol{ au}_g = oldsymbol{g}(oldsymbol{q})$
 $oldsymbol{q} \equiv oldsymbol{q}_0$



Exact gravity cancellation

... based on the concept of feedback equivalence between nonlinear systems

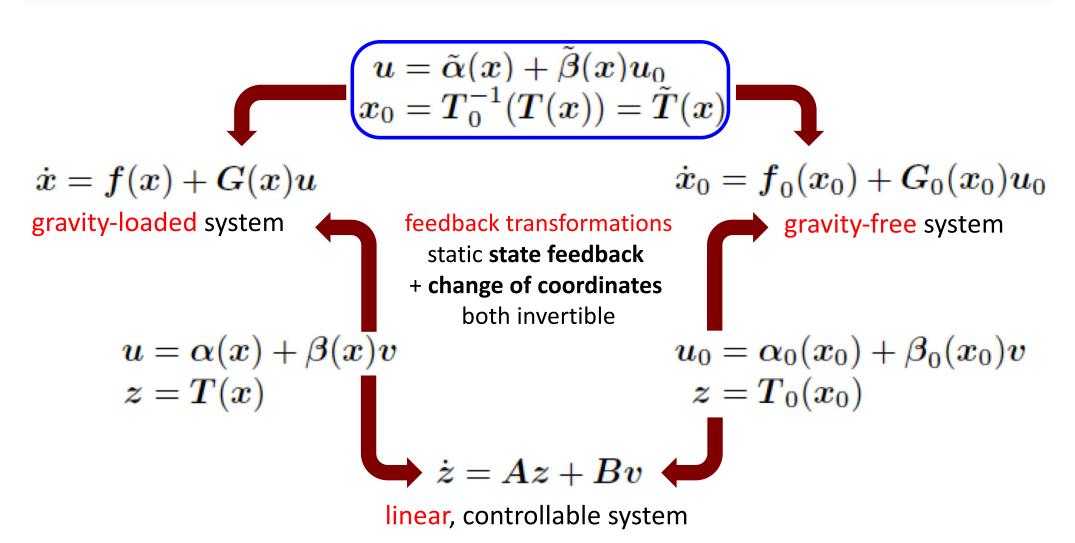
for elastic joint robots, non-collocation of input torque and gravity term



$$\boldsymbol{\tau}_g = \boldsymbol{g}(\boldsymbol{q}) + \boldsymbol{D}_{\theta} \boldsymbol{K}^{-1} \dot{\boldsymbol{g}}(\boldsymbol{q}) + \boldsymbol{B} \boldsymbol{K}^{-1} \ddot{\boldsymbol{g}}(\boldsymbol{q})$$

Feedback equivalence

Exploit the system property of being feedback linearizable (without forcing it!)

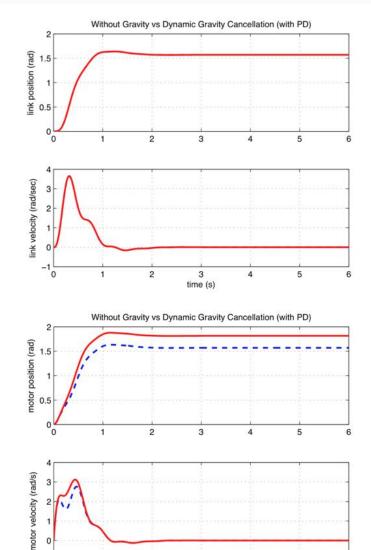


z ≈ **linearizing** outputs

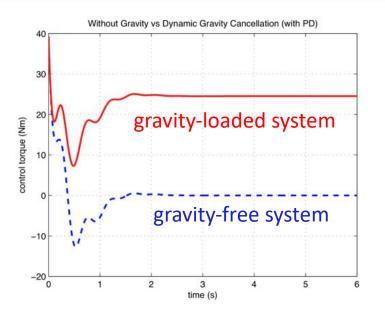
A global PD-type regulator

Exact gravity cancellation + PD law on modified motor variables: A 1-DOF arm

different motor behavior

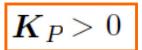


time (s)



gravity-loaded system under PD
+ gravity cancellation
vs.
gravity-free system under PD

gravity-free system under PD (with same gains)



 $\boldsymbol{K}>0$

works without strictly positive lower bounds (good also for VSA!)

Vibration damping on lightweight robots

Vibration damping **OFF**

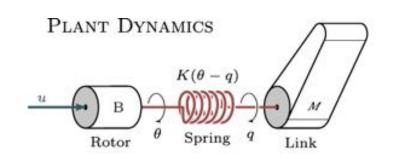
Cartesian vibration damping ON

[Albu Schäffer et al, 2007]

For relatively large joint elasticity (low stiffness), as encountered in VSA systems, vibration damping via joint torque feedback + motor damping is **insufficient** for high performance!

Damping injection on the link side

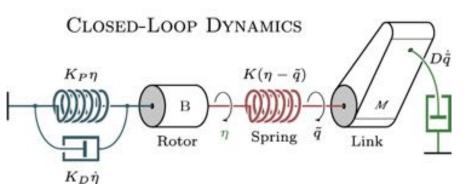
Method for the VSA-driven bimanual humanoid torso David



$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} q \\ \ddot{\theta} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \theta) \\ K(\theta - q) \end{pmatrix} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$$

$$K(q - \theta) = K(q - \theta_0) + D\dot{q}$$

state transformation



$$\tau = \tau_0 - D\dot{q} - BK^{-1}D\ddot{q}$$

feedback control

$$\begin{bmatrix} M(q) & 0 \\ 0 & B \end{bmatrix} \begin{pmatrix} \ddot{q} \\ \ddot{\boldsymbol{\theta}}_{\mathbf{0}} \end{pmatrix} + \begin{pmatrix} C(q, \dot{q})\dot{q} \\ 0 \end{pmatrix} + \begin{pmatrix} g(q) \\ 0 \end{pmatrix} + \begin{pmatrix} K(q - \boldsymbol{\theta}_{\mathbf{0}}) \\ K(\boldsymbol{\theta}_{\mathbf{0}} - q) \end{pmatrix} = \begin{pmatrix} -\boldsymbol{D}\dot{\boldsymbol{q}} \\ \tau_{0} \end{pmatrix}$$

- same principle of feedback equivalence (including state transformation)
- ESP = Elastic Structure Preserving control by DLR [Keppler et al, 2016]
- generalizations to trajectory tracking, to nonlinear joint flexibility, and to visco-elastic joints

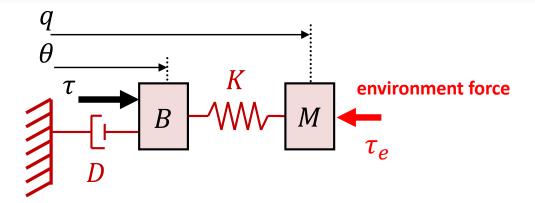
Damping injection on the link side

Method for VSA-driven bimanual humanoid torso David at DLR

[Keppler et al, 2017]

Environment interaction via impedance control

Matching a generalized (fourth order) impedance model: A simple 1-DOF case

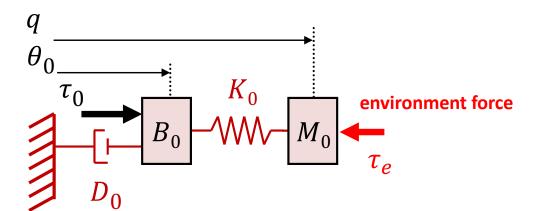


 $M\ddot{q} + K(q - \theta) = \tau_e$ $B\ddot{\theta} + D\dot{\theta} + K(\theta - q) = \tau$

feedback control

assume that $M_0 = M$ in order to avoid **derivatives** of the measured force τ_e

$$\tau = K(\theta - q) + D\dot{\theta} - BK^{-1} \begin{cases} (K - K_0)M^{-1}(\mathbf{\tau_e} + K(\theta - q)) \\ + K_0B_0^{-1}(\tau_0 - D_0\dot{\boldsymbol{\theta}}_0 - K(\theta - q)) \end{cases}$$



$$\dot{\theta}_0 = \dot{q} + KK_0^{-1} (\dot{\theta} - \dot{q})$$

state transformation

$$M_0 \ddot{q} + K_0 (q - \theta_0) = \tau_e$$

$$B_0 \ddot{\theta}_0 + D_0 \dot{\theta}_0 + K_0 (\theta_0 - q) = \tau_0$$

again, by the principle of feedback equivalence (including the state transformation)

Outlook

Control of flexible robots in 2020+

- Mature field revamped by a new "explosion" of interest
 - simpler control laws for compliant and soft robots are very welcome
 - sensing requirements could be a bottleneck
 - combine (learned) feedforward and feedback to achieve robustness
 - iterative learning on repetitive tasks is available for flexible manipulators
 - optimal control (min time, min energy, max force, ...) still open for fun
- Revisiting model-based control design
 - do not fight too much against the natural dynamics of the system
 - it is unwise to stiffen what was designed/intended to be soft on purpose
 - still, don't give up too much of desirable performance!
- Ideas assessed for joint elasticity may migrate to many application domains and other classes of soft-bodied robots
 - locomotion, shared manipulation, physical interaction in complex tasks, ...
 - keep in mind intrinsic constraints and control limitations (e.g., instabilities in the system inversion of tip trajectories for flexible link robots)